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Abstract

The family of bent functions is a known class of Boolean functions,

which have a great importance in cryptography. The Cayley graph

defined on Zn
2 by the support of a bent function is a strongly regular

graph srg(v, k,�, µ), with � = µ. In this paper we list the parameters

of such Cayley graphs. Moreover, a condition is given on (n,m)-bent

functions F = (f1, . . . , fm), involving the support of their components

fi, and their n-ary symmetric di↵erences.
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1 Introduction

A cryptosystem is an encryption and decryption algorithm for a message. If

Alice wants to send a message p to Bob, the encryption algorithm E com-

putes the ciphertext z starting from a key KA, i.e. z = E(p,KA). Bob uses

the decryption algorithm D to recover p from a key KB, i.e. p = D(z,KB).

Necessarily, for all p,KA,KB, D(E(p,KA),KB) = p. Cryptosystems are

called private key, if the parties know each other and have shared informa-

tion about their private keys, or public key if it is not necessary that the two

parties know each other, and they have two public keys. The best known

private key algorithms are DES (Data Encryption Standard) and its suc-

cessor AES (Advanced Encryption Standard). The reader can find more

information on cryptography in [12]. One of the most important features

of cryptographic algorithms is the confusion, i.e. the relation between any

1

https://doi.org/10.32388/A2V6PB.2



bit and all the plaintext appearing at random. After the linear cryptanaly-

sis techniques of H. Matsui [11], one of the research items in cryptography

was to find functions as far as possible from the linear functions, that is

maximizing the Hamming distance, in order to resist to linear attacks, see

[3]. Among the family of Boolean functions, such functions are called bent

functions. In [1, 2] a characterization of bent functions is given in terms of

strongly regular graphs. Here, we give considerations on parameters of such

strongly regular graphs, and a first characterization of (n,m)-bent functions.

2 Preliminaries

Let Z2 be the binary field. A Boolean function is a function f : Zn
2 �! Z2

and to denote f we will use two di↵erent notations: the classical notation,

where the input string is given by n binary variables, and the 2n-tuple vector

representation f = (f0, f1, . . . , f2n�1) where fi = f(b(i)) and b(i) is the

binary expansion of the integer i. We will denote by ⌦f the support of f ,

i.e.

⌦f = {w 2 Zn
2 |f(w) 6= 0} = {w 2 Zn

2 |f(w) = 1}.

Definition 2.1. Let l be a Boolean function.

• We say that l is a linear function if 8x, y 2 Zn
2 , l(x+ y) = l(x) + l(y).

• We say that l is an a�ne function if it is a linear function plus a

constant in Z2.

We denote with A the set of all a�ne functions

The nonlinearity of a Boolean function f is the minimum Hamming

distance between f and an a�ne function, i.e.

Nl(f) = min�2A|{x 2 Zn
2 |f(x) 6= �(x)}|.

Definition 2.2. A Boolean function f is called bent function if Nl(f) =
2n�2

n
2

2 .
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Note that by Definition 2.2 nmust be even. Bent functions are also called

PN (perfectly nonlinear). Here we define the Abstract Fourier Transform

of a Boolean function f as the rational valued function f
⇤ which defines

the coe�cients of f with respect to the orthonormal basis of the group

characters Qw(x) = (�1)(w·x), where ” · ” is the standard inner product and

w · x =
Pn

i=1 xiwi = Tr
n
1 (wx). Then

f
⇤(w) =

P
x2Zn

2
(�1)Trn1 (wx)

f(x)

2n
.

Note that f⇤(b(0)) =
|⌦f |
2n . The Walsh spectrum is the set of values of f⇤(w).

Here we investigate the spectrum in terms of a graph eigenvalue problem.

3 The Cayley graph Cay(Zn
2 ,⌦f )

Definition 3.1. Let � be a group with identity e.

• A Cayley subset, is a subset C ✓ � such that e /2 C and whenever

g 2 C, then g
�1 2 C.

• The Cayley graph G = Cay(�, C) of � with respect to C is the graph

whose vertex set is �, when two vertices g and h are adjacent if and

only if gh�1 2 C.

We modify this definition by dropping the condition e /2 C, allowing

loops in the Cayley graph.

Consider now the additive group (Zn
2 ,�), where � is the component-

wise sum. For all w 2 Zn
2 , w

�1 = w, then each subset of Zn
2 is a Cayley

subset. We can associate each Boolean function f to the Cayley graph

Gf = Cay(Zn
2 ,⌦f ). The vertex-set V (Gf ) is the whole Zn

2 , while the edge-

set is E(Gf ) = {(u, v) 2 Zn
2 |u � v 2 ⌦f} = {(u, v) 2 Zn

2 |f(u � v) = 1}.
The graph has 2n�dimh⌦f i vertices which are the cosets of h⌦f i in Zn

2 .

Since eigenvectors of the Cayley graph are exactly the group characters

Qw(x) = (�1)Trnm(wx), see [14],the following two results give a characteriza-

tion of the spectrum of Gf from the Walsh spectrum of f .
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Result 3.2. [1, Theorem 1] The i-th eigenvalue �i of the Cayley graph,

which corresponds to the eigenvector Qb(i), is given by

�i =
X

x2Zn
2

(�1)Trn1 (b(i)x)f(x) = 2nf⇤(b(i)).

Result 3.3. [1, Proposition 2]

1. The largest spectral coe�cients is �0 = 2nf⇤(b(0)) = |⌦f |, with multi-

plicity 2n�dimh⌦f i.

2. The number of non zero spectral coe�cients is the rank of the adjacency

matrix of Gf .

3. If Gf is connected, f has a spectral coe�cient equal to ��0 if and only

if its Walsh spectrum is symmetric with respect to 0.

4 Strongly regular graphs

A strongly regular graph with parameters (v, k,�, µ), denoted by srg(v, k,�, µ),

is a graph with v vertices, each vertex lies on k edges, any two adjacent ver-

tices have � common neighbours and any two non-adjacent vertices have µ

common neighbours. We give now some folklore results on strongly regular

graphs, see [4] for more details.

Result 4.1. k(k � �� 1) = µ(v � k � 1).

The spectrum of the adjacency matrix of an srg(v, k,�, µ) is fully deter-

mined by its parameters.

Result 4.2. A strongly regular graph G with parameters (v, k,�, µ) has ex-

actly three eigenvalues: k, ✓1 and ✓2 of multiplicity, respectively, 1, m1 and

m2, where:

✓1 =
1

2

⇥
(�� µ) +

p
(�� µ)2 + 4(k � µ)

⇤
,

✓2 =
1

2

⇥
(�� µ)�

p
(�� µ)2 + 4(k � µ)

⇤
,

m1 =
1

2

h
(v � 1)� 2k � (v � 1)(�� µ)p

(�� µ)2 + 4(k � µ)

i
,
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m2 =
1

2

h
(v � 1) +

2k � (v � 1)(�� µ)p
(�� µ)2 + 4(k � µ)

i
.

We write the spectrum as k, ✓
m1
1 , ✓

m2
2 . On the other hand, we can express

the parameters of a strongly regular graph starting from its spectrum

v = 1 +m1✓1 +m2✓2,

� = k + ✓1✓2 + ✓1 + ✓2,

µ = k + ✓1✓2 = �� ✓1 � ✓2.

Corollary 4.3. Consider a srg(v, k,�, µ), with spectrum k, ✓
m1
1 , ✓

m2
2 . Then

� = µ if and only if ✓1 = �✓2.

Result 4.4. The parameters � and µ of a srg(v, k,�, µ) may be derived

from its spectrum, since:
8
<

:
� = k + ✓1 + ✓2 + ✓1✓2

µ = k + ✓1✓2.

(1)

In [1, 2] a characterization of bent functions is given in a graph theoretical

point of view.

Result 4.5. [1, Lemma 12] If f is a bent function, the graph Gf is a strongly

regular graph with � = µ.

Result 4.6. [2, Theorem 3] Bent functions are the only functions whose

associated Cayley graph Gf is a strongly regular graph with � = µ.

Proposition 4.7. The Cayley graph Gf of a bent function is exactly one of

the following:

• srg(2n, 2
n+2

n
2

2 ,
2n+2

n
2 �2n�1

2 ,
2n+2

n
2 �2n�1

2 );

• srg(2n, 2
n�2

n
2

2 ,
2n�2

n
2 �2n�1

2 ,
2n�2

n
2 �2n�1

2 ).

Proof. From [1, Definition 4] we know the three eigenvalues k, ✓1, ✓2 = �✓1

of Gf . From 4.4 we get the parameters � and µ, while 4.1 allows us to

compute v = 2n = |Zn
2 |.
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Example 4.8. The first strongly regular graph defined by bent functions are

n = 2 • srg(4, 3, 1, 1), i.e. the complete graph K4.

• srg(4, 1, 0, 0), i.e. a trivial strongly regular graph made of 2 dis-

connected edges.

n = 4 • srg(16, 10, 6, 6).

• srg(16, 10, 2, 2).

n = 6 • srg(64, 36, 20, 20).

• srg(64, 28, 12, 12).

n = 8 • srg(256, 136, 72, 72).

• srg(256, 120, 56, 56).

n = 10 • srg(1024, 528, 272, 272).

• srg(1024, 496, 240, 240).

Note that in each case graphs have the parameters of the complements of the

a�ne polar graphs V O
⌥(2n, 2), which is the graph arising from a quadric Q

in the vector space V = V (2n, 2) and two points u, v 2 V represent adjacent

vertices if and only if Q(u � v) = 0. Note that the quadric is elliptic or

hyperbolic while we consider the first or the second example, respectively.

See the table of strongly regular graphs in [5] for more details.

5 Vectorial bent function

Consider now functions F : Zn
2 �! Zm

2 , F (x1, . . . , xn) = (f1, . . . , fm), where

for each i, fi : Zn
2 �! Z2. The set of a�ne vectorial functionsAn,m is defined

as in the case m = 1. We can introduce two di↵erent ways to express the

nonlinearity of a vectorial Boolean function:

nl(F ) = minv2Zn
2 \{0}Nl(F · v) (2)

Nl(F ) = min�2An,m |{x 2 Zn
2 |F (x) 6= �(x)}| (3)
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Definition 5.1. A (n,m)-bent function, or vectorial bent function, is a

function F = (f1, . . . , fm) such that nl(F ) = 2n�2
n
2

2 , or equivalently each

linear combination of f1, . . . , fm is a bent function.

In order to give graph based properties of (n,m)-bent functions we need

now to define the set operation symmetric di↵erence, which is the equivalent

of the logical operation XOR.

Definition 5.2. The symmetric di↵erence between two sets A and B is

A4B = (A \B) [ (B \A) = (A [B) \ (A \B).

Proposition 5.3. The power set of any set X is an elementary abelian

2-group under the operation of symmetric di↵erence.

Proof. The symmetric di↵erence is commutative and associative:

• A4B = B4A;

• (A4B)4C = A4(B4C).

Moreover the empty set is the identity and each element has order two:

• A4; = A;

• A4A = ;.

An elementary abelian 2-group is also called Boolean group, see [9] for

more details.

The symmetric di↵erence of a collection of sets is made of elements con-

tained in an odd number of sets. The n-ary symmetric di↵erence is defined

as follows;

4M =
n
a 2

[
M

���]{A 2 M |a 2 A} = 2k + 1, k 2 N
o
.

Proposition 5.4. Consider a vectorial Boolean function F = (f1, . . . , fm),

with fi : Zn
2 �! Z2, and let ⌦i = ⌦f(i) be the support of fi, of i = 1, . . . ,m.

If the function F is (n,m)-bent, then the Cayley graphs Cay(Zn
2 ,4i2I⌦i)

are strongly regular with � = µ for all index subset I ✓ [1, . . . ,m].
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6 Conclusion

Future works should extend this notions to the case n odd, by taking into

account APN (almost perfectly non linear) functions, i.e. functions which

are as close as possible to perfect nonlinearity.
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