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Abstract
In Particle accelerators, commissioning of a complex

beam line requires extensive use of computer models. When
the as-built beam line cannot be exactly modeled by the
simulation (due for example to mechanical errors or to the
extensive usage of the non-linear focusing forces), the solu-
tion found in the simulations needs to be adjusted. Thus, it is
often required to modify the settings by exploring different
parameters ranges on the real accelerator. Given the high
parameter space, this is a demanding task both in term of
beam time and in term of required expertise. Furthermore,
there is no guarantee to reach the optimal solution. This pa-
per proposes a Reinforcement Learning approach to develop
a model able to efficiently explore the parameter space of a
beam line and iteratively move towards the optimal solution.
The approach is first applied for the ADIGE Medium Resolu-
tion Mass Separator at INFN Legnaro National Laboratories,
where the potentials of an electrostatic multipole must be
correctly tuned to minimize the output beam emittance after
the separation stage.

INTRODUCTION
Beam commissioning is a critical phase of the operation

of a particle accelerators. It requires extensive use of com-
puter models to simulate the real accelerator and its beam
dynamics. The simulation applies some algorithms to op-
timize a certain number of beam properties, including the
beam transmission and the beam emittance. The simulation
results thus include the setpoint of all the beam transport
and accelerating elements which correspond to the optimal
beam parameters.

In practice, the task of perfectly modelling the real acceler-
ator with a simulation it’s not trivial. This task is especially
complicated when the accelerator is old and there are many
mechanical uncertainties or when the effect of non-linear
focusing forces becomes relevant. In these cases the results
from the simulation can’t be directly used, because the op-
timal solution may be quite different from the one derived
by the simulation leading the beam transport may fail com-
pletely. Thus, it’s usually required to improve the original
solution by manually exploring the parameter space of all the
beam transport elements to achieve the best beam dynamic.
This operation is a labor-intensive task, which requires high
skills and experience. The more parameters are available,
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the harder it is to converge to a working solution, with no
guarantee of reaching the optimal one.

Machine Learning (ML) and Deep Learning (DL) models
are suitable candidates to solve this kind of tasks, charac-
terized by a big parameter space and an output function to
optimize. Furthermore, by learning from real-world data
these methods could overcome the limitations of the simula-
tions and reach a more accurate solution. For these reasons
there is now great interest on this field towards ML/DL so-
lutions [1]. For example, Ref. [2] presents multiple machine
learning applications to beam dynamics problems at CERN,
including a model for the beam commissioning procedure
to setup the collimators. In Ref. [3], a Reinforcement Learn-
ing (RL) agent is trained to optimize the beam intensity of
a linear accelerator. DL approaches have the condition of
having a priori tagged data, which is typically unfeasible in
many scenarios; RL approaches instead collect information
and training data by directly interact with the environment.

This paper proposes a novel approach based on a RL
model to tune online the control system parameters of a
particle accelerator and obtain the minimal beam emittance.
As a first demonstration of feasibility, the approach is tested
on the ADIGE MRMS beam line at INFN Legnaro National
Laboratories (LNL). This beam line includes an electrostatic
multipole with 48 independent voltage terminals, and thus
represents the perfect example of a beam transport element
which is hard to tune manually.

ADIGE MRMS
The Medium Resolution Mass Separator (MRMS) [4]

is installed on the ADIGE 1+ ion source beam line after a
charge breeder, to separate the contaminants introduced by

Figure 1: The MRMS platform [4].



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA100

MC5.D13: Machine Learning

2881

WEPA: Wednesday Poster Session: WEPA

WEPA100

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



the breeding stage. It is composed of a high voltage platform
operating at -150 kV with 4 electrostatic quadrupoles (up
to 12 kV), 2 bending dipoles and an electrostatic multipole
between them. This is a cylinder composed of 48 high volt-
age terminals operating at ±2.5 kV, so that it can be used
as a high order multipole. Finally, on the beam line after
the platform an Allison Scanner is available to measure the
beam emittance.

At the entrance of the platform the beam is defocused
on the horizontal axis before the dipoles to maximize their
resolving power. This amplifies the non-linear effects to the
beam passing through the dipoles, and increases the beam
emittance. The multipole is designed to compensate these
non-linear effects and maintain a good emittance value. By
having a large number of high voltage terminal it can be
easily reconfigured to act as a quadrupole, esapole, etc. or
with a generic configuration up to 48 poles. Thus it is able
to compensate higher order aberrations of the beam.

Finding the correct configuration of all the voltage values
of the multipole is not trivial, given its high parameter space
and its strong dependency on the details of the real machine.
For this reasons, this problem is used as a first demonstration
of the usage of RL models for beam commissioning. We
want thus to develop a model which, given the real machine,
is able to iteratively converge to the multipole configuration
which minimizes the beam emittance after the MRMS. This
model can be trained on a simulation but over time it can
be fine-tuned on the data from the real machine. The model
should be generic enough to be able to reach the correct
solution even when the optimal value changes: our goal is
for the model to not learn a single solution but to be able to
iteratively move towards the optimal solution.

PROPOSED METHOD
In this Section, we present our approach for the develop-

ment of a model able to find the optimal configuration of
the multipole high voltages setpoint. The multipole has 48
independent terminals, and thus in theory our configuration
should contain 48 parameters. In practice, we are not inter-
ested in generating a skewed field, and thus the terminals are
connected to 24 power supplies in a symmetric way over the
𝑦 axis. Furthermore, since the non-linear effects introduced
by the dipoles follow the order of 𝑥2, 𝑥3, 𝑥4, etc. where 𝑥
is the size of the beam envelope on the 𝑥 axis, we chose to
correct them by using a linear combination of the fields of
sextupole, octapole, decapole and dodecapole. This effec-
tively reduces the number of parameters to 4 and forces the
solution to follow the physics of the problem.

Then, with the following formula we can derive the voltage
value on all the terminals (see Fig. 2):

𝜙(𝜌, 𝜃) = ∑
𝑛∈[3,4,5,6]

𝐴𝑛𝜌𝑛 cos(𝑛𝜃),

where 𝜌 is the multipole cilinder radius, 𝜃 is the angle of
each high voltage terminal, and 𝐴𝑛 is the parameter to learn.
This acts as a weight for each of the basic configurations

Figure 2: Example configuration of the multipole voltages.

(sextupole, octapole, decapole and dodecapole), so that the
final solution is a linear combination of those.

Reinforcement Learning
Now we want to build a deep learning model to find the

optimal 𝐴𝑛 values. Since we don’t want to learn a single
solution, we build a RL model that learns to move the pa-
rameters towards the optimal solution. As can be see in
Figure 3, the RL paradigm is composed of an agent, who
receives an observation and decides to perform an action.
As input observation we are using the 𝑥, 𝑥′ beam emittance
graph image, while the actions correspond to an adjustment
of the 4 multipole parameters, which can be incremented or
decremented. The new voltage setpoints are thus computed
and a simulation with the new values is run, from which we
get a new emittance graph and the emittance value.

During training this value is compared to the one from the
previous simulation and, if the actions of the agent reduced
the emittance, then a positive reward is given, otherwise a
negative one. Hopefully, given enough episodes, the agent
should learn how to converge towards the minimal beam
emittance configuration. Finally, on the evaluation or de-
ployment phase the model is used to change the multipole
parameters according to its policy until it converges to a
minimal solution.

A physics simulator, TraceWin, is used to simulate the
beam dynamics of the line and obtain the beam emittance
after the MRMS. A python wrapper has been developed to
run the simulator from python code, enabling the integration
of the simulator into the RL loop. To train the model the
Stable-Baseline3 [5] library is used. This library implements

Figure 3: Reinforcement learning training and evaluation.
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several algorithms in PyTorch and exposes a unified user
interface for all the algorithms. The library works natively
on gym [6] environments but supports the creation of custom
environments which should implement the standard interface
of a gym environment. Thus an environment for a TraceWin
simulation of the multipole was developed. Initially, when
the environment is reset, the multipole parameters are set
randomly with a uniform distribution in their operating range.
Then, the TraceWin simulator is run and the results are
recorded. The new state, that is the observation to be used
as input of the agent, is computed as a 2D histogram of the
particle distribution in 𝑥 and 𝑥′ on the diagnostic box after
the MRMS. This returns normalized 36x36 vector, which
can be considered an image, corresponding to phase space
plot of the beam emittance. The resolution of such image
is intentionally kept low to reduce noise and the size of
the agent CNN network, thus reducing the training effort.
Instead the reward of the 𝑛-th iteration is calculated with the
following formula:

𝑟𝑛 = (𝜀𝑛−1
𝑥 − 𝜀𝑛

𝑥 +
𝐼𝑛−1
𝑙 − 𝐼𝑛

𝑙
𝑎 ) ∗ 𝑏,

where 𝜀𝑥 is the emittance value, 𝐼𝑙 is the number of lost
particles on the beam transport through the MRMS, 𝑎 is a
calibration factor which was set to 𝑎 = 10000 (number of
simulated particles) and 𝑏 = 10 is a gain used to amplify
the reward value. This rewards is higher the more the beam
emittance is reduced compared to the previous iteration and
the fewer particles are lost. This last term was introduces to
avoid a solution where the beam emittance reaches its mini-
mum due to heavy transmission losses. Finally, an episode
is concluded when the emittance reaches a low threshold or
when the number of iterations in the episode reach a limit
of 10.

The environment is configured with a Box action space,
that is a vector consisting of 4 real values between -1
and 1, which is then multiplied by a vector of coefficients
([200, 100, 50, 50]) to obtain the values to adjust the multi-
pole setpoints. These coefficients were chosen by dividing
the expected operating range of each parameter by the maxi-
mum number of iterations per episode.

As a first algorithm to demonstrate the feasibility of the
method, the Proximal Policy Optimization (PPO) [7] algo-
rithm was used due to its flexibility and popularity in the RL
community. Since the input is a 2D image, the policy net-
work was configured to use a Convolutional Neural Network
(CNN) with an architecture which satisfies the constraints
given by the input and output specifications.

RESULTS
The physics simulator is configured with a Sn19+ beam

at 0.76 MeV. To correctly simulate the beam distribution the
simulator calculates the complete dynamics of 10000 par-
ticles along the ADIGE beam line. This means that, even
a high performance server, a single simulation takes about
15 seconds to complete. GPU acceleration is used for the

neural network training, but the simulator does not support
it and the simulation step is responsible for most of the com-
puting time. This is obviously a big limiting factor on the
amount of simulations that can be performed and thus on
the complexity of our model.
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Figure 4: Mean reward and episode lenghts during training.

Given this setup, the agent is trained for a few days and
about 25k episodes. As can be seen in Figure 4 the mean
reward reaches a fairly constant positive value in relatively
few episodes. Instead, the average episode length requires
more episode to stabilize to a small value. This means that
the training is actually successful and the model is able to
reach the minimum beam emittance in few steps. Further-
more, by running the trained agent on new simulations we
observed that the model is able to converge to a minimun
97% of the times with an average of just 2.2 steps.

CONCLUSIONS
In this paper, we presented novel a method based on rein-

forcement learning to train an agent which is able to itera-
tively optimize the parameters of an electrostatic multipole
on the ADIGE beam line to minimize the beam emittance.
This demonstrates the feasibility of using reinforcement
learning models to automatically explore in a smart way
the parameter space of a complex beam line and converge
towards the optimal beam dynamics solution.

Nevertheless, the proposed method requires further re-
search to scale it to more parameters and evaluate its perfor-
mance with a greater environment variability. In particular,
it would be interesting to test how much a trained model is
able to adapt to a different input beam or slightly different
beam line, thus generalizing to different use cases. Finally,
data from the real machine could be used to further fine tune
its behaviour and actually learn the peculiarities of a specific
beam line.

REFERENCES
[1] D. Marcato et al., “Machine learning-based anomaly detection

for particle accelerators,” in 2021 IEEE Conference on Control
Technology and Applications (CCTA), 2021, pp. 240–246.
doi:10.1109/CCTA48906.2021.9658806



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA100

MC5.D13: Machine Learning

2883

WEPA: Wednesday Poster Session: WEPA

WEPA100

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



[2] P. Arpaia et al., “Machine learning for beam dynamics stud-
ies at the cern large hadron collider,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 985,
p. 164 652, 2021. doi:10.1016/j.nima.2020.164652

[3] N. Madysa, R. Alemany-Fernández, N. Biancacci, B. Goddard,
V. Kain, and F. M. Velotti, “Automated Intensity Optimisation
Using Reinforcement Learning at LEIR,” in Proc. IPAC’22,
Bangkok, Thailand, 2022, pp. 941–944.
doi:10.18429/JACoW-IPAC2022-TUPOST040

[4] A. Galatà et al., “Progresses in the installation of the spes-
charge breeder beam line,” J. Instrum., vol. 13, no. 12,

p. C12009, 2018.
doi:10.1088/1748-0221/13/12/C12009

[5] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learn-
ing implementations,” J. Mach. Learn. Res., vol. 22, no. 268,
pp. 1–8, 2021. http://jmlr.org/papers/v22/20-1364.
html

[6] G. Brockman et al., “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] J. Schulman et al., Proximal policy optimization algorithms,
2017.



14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA100

2884

MC5.D13: Machine Learning

WEPA100

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


