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Let X ⊂ Pn be an irreducible hypersurface of degree d ≥ 3 with only isolated semi-

weighted homogeneous singularities, such that exp(2π i
k ) is a zero of its Alexander

polynomial. Then we show that the equianalytic deformation space of X is not T-smooth

except for a finite list of triples (n, d, k). This result captures the very classical examples

by B. Segre of families of degree 6m plane curves with 6m2, 7m2, 8m2, and 9m2 cusps,

where m ≥ 3. Moreover, we argue that many of the hypersurfaces with nontrivial

Alexander polynomial are limits of constructions of hypersurfaces with not T-smooth

deformation spaces. In many instances, this description can be used to find candidates

for Alexander-equivalent Zariski pairs.

1 Introduction

Let X ⊂ Pn be a hypersurface with isolated singularities, and let �X ∈ Z[t] be its

Alexander polynomial (cf. Definition 3.1).

The 1st example in the literature of a hypersurface with nonconstant Alexander

polynomial is a plane sextic with six cusps on a conic, due to Zariski [14]. One easily

checks that there exist sextic curves with six cusps such that these six cusps are not on

a conic. Such a sextic has a constant Alexander polynomial. Hence, we obtain a Zariski

pair, a pair of singular hypersurfaces X1, X2 ⊂ Pn with the same combinatorial data, but
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17246 R. Kloosterman

such that there is no homeomorphism between the pairs (Pn, X1) and (Pn, X2). One easily

checks that in this case both curves have a T-smooth equianalytic deformation space;

see [15, Section VIII.5].

B. Segre noted that one can easily generalise this example to higher degree and

considered two families of degree 6m curves with 6m2 cusps. For the 1st construction,

pick two sufficiently general homogenous polynomials f , g ∈ C[x0, x1, x2] of degree 2m

and 3m, respectively. Then the curve of degree 6m given by

f 3 + g2 = 0

has 6m2 cusps. Within the space of degree 6m curves the expected codimension of the

locus of curves with 6m2 cusps is 12m2; however, one easily shows that this family has

codimension 12m2 − 1
2 (m−1)(m−2). That is, for m > 2, this family has a larger equisin-

gular deformation space than expected. Similar examples are due to Segre for degree 6m

curves with either 7m2, 8m2, or 9m2 cusps. (For more on this, see [15, Section VIII.5].)

These examples have nonconstant Alexander polynomial and their equisingular defor-

mation spaces have larger dimension than expected. We will come back to these

examples in Example 4.1.

Take now a sextic curve C with six cusps not on a conic and pull this curve back

under a general self-map of P2 of degree m. Then the pullback of C has 6m2 cusps. One

easily checks that the saturation of the Jacobian ideal Jsat is 6m-regular, and therefore,

the equianalytic deformation space is T-smooth. For ordinary cusps, the equianalytic

and equisingular deformation space coincide; hence also the latter space is T-smooth.

Hence, for every m > 2, we have two ways to show that the space parametrizing curves

of degree 6m with 6m2 cusps is reducible, that is, we can detect this both by the

Alexander polynomial and by the dimension of the equisingular deformation space.

There have been more “recent” attempts to explain this excess dimension of the

deformation space (e.g., [12]). We will give an explanation different from those we were

able to locate in the literature. Our main result states that Segre’s construction is part

of a rather frequently occurring phenomenon.

Theorem 1.1. Let (n, d, k) be integers such that d ≥ 3, n ≥ 2, and k ≥ 1. Suppose

X ⊂ Pn is an irreducible hypersurface of degree d with isolated semi-weighted

homogeneous singularities (cf. Definition 2.8) such that exp(2π i/k) is a zero of its

Alexander polynomial of X.

Moreover, assume that we are not in one of the following cases:
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Alexander Polynomials and Deformations 17247

1. n = 2, d ∈ {6, 12}, and k = 6;

2. n ∈ {3, 4, 6}, d = 3, and k = 1;

3. n ∈ {3, 4, 5}, d = 3, and k = 3;

4. n = 3, d ∈ {4, 6}, and k = 2;

5. n = 3, d = k = 4;

6. n = 4, d = 4, and k = 1.

Then the equianalytic deformation space of X is not T-smooth.

If d = 1, then X is a hyperplane and therefore X is smooth. If d = 2 and X has

isolated singularities, then X is a quadric of rank one less than the maximal rank. In

this case, the deformation theory is very simple. For this reason, we considered only the

case d ≥ 3.

Unfortunately, our methods only show that the tangent space has dimension

larger than expected and our method can only be applied to the equianalytic deforma-

tion space. In particular, this result does not show that the equisingular deformation

space has dimension larger than expected, but it is strong evidence of it. More precisely,

let X be a hypersurface with nonconstant Alexander polynomial, and let X ′ be an

equisingular deformation of X. Then the Alexander polynomials of X and X ′ are the

same. Hence, the equianalytic deformation space of every equisingular deformation

of X is nowhere T-smooth, and therefore, each of these spaces is nonreduced or has

dimension larger than expected. In case there exists a further hypersurface X ′′ with

the same combinatorial data as X, but with a T-smooth equianalytic deformation

space, then the space of hypersurfaces with this combinatorial data has at least two

irreducible components.

In the final section, we will provide constructions of hypersurfaces with defor-

mation spaces with dimension larger than expected. These constructions depend on

choices of several parameters, each of which are integers, subject to several inequalities.

For most choices of parameters, the resulting hypersurface has constant Alexander

polynomial, but for a few choices of these parameters, the corresponding hypersurface

has nonconstant Alexander polynomial. Moreover, in the latter case, at least one of the

before-mentioned inequalities turns out to be an equality, that is, the examples with

nonconstant Alexander polynomials can be considered to be boundary cases or limit

cases. This strongly suggests that the Alexander polynomial is not an optimal invariant

to detect examples of reducible spaces parametrizing singular hypersurfaces with fixed

combinatorial data. The dimension of the equisingular deformation space seems a

better invariant. On the other hand, certain geometric phenomena (e.g., quasi-torus

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17245/6708485 by C
IS M

aldura user on 22 O
ctober 2024



17248 R. Kloosterman

structures, the relation with Mordell–Weil ranks of isotrivial fibrations) can only occur

for hypersurfaces with nonconstant Alexander polynomials; see [1, 8].

The assumption that all singularities are semi-weighted homogeneous is needed

in our proof, as we heavily use the fact that for each singular point the pole-order

filtration and the Hodge filtration on the cohomology of the Milnor fibre coincide.

If one could control the difference between these two filtrations for other types of

singularities, then one might be able to extend our approach to larger classes of

singularities.

The proof of the main result consists of two parts. In the 1st part, we reconsider

Dimca’s approach [3, 5] to calculate the Alexander polynomial of a hypersurface with

isolated semi-weighted homogenous singularities. This is done in Section 2. The upshot

of this method is that if exp(2π i/k) is a zero of its Alexander polynomial and J is the

Jacobian ideal of X, then its saturation Jsat has defect in every degree ≤ α(n, d, k)d −
n − 1. The rational number α(n, d, k) will be introduced in Section 3, but for the rest of

this introduction, it suffices to know that α(n, d, k) lies in the interval [n
2 , n+1

2 ].

In Section 3, we determine all values (n, d, k) for which α(n, d, k)d − n + 1 < d.

Except for the case n = 2, k = 1 (reducible plane curves) and d = 2 (quadric cones),

there are only finitely many triples (n, d, k) for which this inequality holds. This part

is a purely combinatorial exercise. It then easily follows that the tangent space of the

equisingular deformation space is larger than expected, except for these exceptional

values of (n, k, d).

In Section 4, we discuss some examples and explain some of the remarks made

above in more detail.

2 Calculation of Hn(X)

In this section, we discuss Dimca’s method to calculate the mixed Hodge structure on

the cohomology of hypersurfaces with isolated semi-weighted homogeneous singular-

ities; see [3] and [5, Section 6.3]. At certain instances, we differ slightly from Dimca’s

approach and for that reason we recall large part of the construction.

Notation 2.1. Let n ≥ 2, and let R = C[x0, . . . , xn] be the polynomial ring in n + 1

variables, with its natural grading. Let d ≥ 1 be an integer. For f ∈ Rd, let X = V(f ) ⊂ Pn

be the associated hypersurface. Let U = Pn \ X, and let X∗ = X \ S, where S = Xsing.

Assumption 2.2. For the rest of this section, we assume that f is chosen such that X

has isolated singularities, that is, that S is finite.
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Alexander Polynomials and Deformations 17249

Remark 2.3. Using the Lefschetz hyperplane theorem and a result by Kato-Matsumoto

[5, Theorems 5.2.6 and 5.2.11], we can determine Hj(X, C) for all j �= n − 1, n. In the rest

of this section, our focus will be on the case j = n, since this group is used to determine

the Alexander polynomial of X, as we will see in the next section. More precisely, we aim

to give an upper bound for the dimension of the graded pieces Grs
F(Hn(X)) of the Hodge

filtration F.

If n = 2, then H2(X) is of pure type (1, 1) and the dimension equals the number

of irreducible components of X. Hence, we may assume for the moment that n ≥ 3.

Notation 2.4. Denote with Hj(X)prim and Hj(X∗)prim the primitive cohomology as

defined in [3, Section 2].

By construction, the groups Hj(X)prim and Hj(X∗)prim are sub-Hodge structures of Hj(X)

and Hj(X∗), respectively. The following result can be found at [3, page 291].

Proposition 2.5. Let ι : X∗ → X be the inclusion map. Then, for all j �= 2n − 2, we

have that the kernel (respectively the cokernel) of ι∗ : Hj(X) → Hj(X∗) equals the kernel

(respectively the cokernel) of ι∗ : Hj(X)prim → Hj(X∗)prim.

Moreover, Hn(X∗)prim = 0.

Notation 2.6. For a proper subset W of X, denote with Hn
W(X) the cohomology of X with

support in W. If W = {p1, . . . , pl} is a finite set, then using excision, it follows easily that

Hn
W(X) = ⊕l

i=1Hn
pi

(X).

Let ϑ : Hn(U)(1) → Hn
S (X) be the composition of the following maps:

Hn(U)(1)
∼=−→ Hn−1(X∗)prim → Hn−1(X∗) δn−1−→ Hn(X, X∗)

∼=−→ Hn
S (X),

where the 1st map is the Poincaré residue map, the 2nd map is the natural inclusion,

the 3rd map is the connecting homomorphism of the sequence of the pair (X, X∗)

Hn−1(X, X∗) → Hn−1(X) → Hn−1(X∗) δn−1−→ Hn(X, X∗) → Hn(X) → Hn(X∗),

and the 4th map is the natural isomorphism Hn(X∗)prim → Hn
S (X).

Lemma 2.7. [3, Equation (2.3)] Suppose n ≥ 3. The map ϑ : Hn(U)(1) → Hn
S (X) is a

natural morphism of MHS. Moreover, coker(ϑ) ∼= Hn(X)prim as MHS.
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17250 R. Kloosterman

Proof. The Poincaré residue map Hn(U)(1)
∼=−→ Hn(X∗)prim is a morphism of MHS

[3, Lemma 2.2]. The inclusion Hn(X)prim → Hn(X) is a morphism of MHS. The exact

sequence of the pair (X, X∗) is an exact sequence of MHS; see [3, page 291] or [10].

Therefore also, δn−1 is a morphism of MHS. Hence, ϑ is a composition of morphisms

of MHS and is itself a morphism of MHS.

We have the following identifications:

Hn(X)prim = ker(Hn(X)prim → Hn(X∗)prim)

= ker(Hn(X) → Hn(X∗))

= im(Hn
S (X) → Hn(X))

∼= Hn
S (X)/im(δn−1)

= Hn
S (X)/im(δn−1

prim)

= Hn
S (X)/im(ϑ) = coker(ϑ).

The 1st equality holds since Hn(X∗)prim = 0, the 2nd follows from Proposition 2.5, the

3rd and 4th follow from the long exact sequence of the pair (X, X∗). The 5th equality

follows from Proposition 2.5 and the 6th follows from the fact that the Poincaré residue

map is an isomorphism (see [3, Lemma 2.2]). �

In order to determine the cokernel of ϑ , we start by identifying generators

for Hn(U)(1). This is relatively straightforward since U is affine, and therefore, its

cohomology is the cohomology of its algebraic de Rham complex. Let us define the

following n-form on Cn+1 \ {(0, 0, . . . , 0)}:

� =
⎛
⎝ n∏

j=0

xj

⎞
⎠ n∑

j=0

(−1)j dx0

x0
∧ · · · ∧ d̂xj

xj
∧ · · · ∧ dxn

xn
.

This form can be used to define n-forms on U. Let us consider Hn(U). Using that U is

affine, it is easy to show that Hn(U) is spanned by classes g
f s �, with g ∈ Rsd−n−1, s ∈ Z>0;

see [3, Equation 1.3]. We can filter Hn(U) by the order of the pole, by setting PsHn(U) to

be the subspace of classes that can be represented by elements of the form

g

f n−s �.

Let F• be the Hodge filtration on Hn(U). Deligne and Dimca [2] showed that F• ⊂ P•.
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Alexander Polynomials and Deformations 17251

On the local side, we can proceed similarly. Let p ∈ S. Let Vp ⊂ Cn be a

neighbourhood of p. Assume that we choose local coordinates z1, . . . , zn such that

p = (0, . . . , 0). Let fp = 0 be a local equation for X in a neighbourhood of p. Let

�p = dz1 ∧ · · · ∧ dzn. Let Up = Vp \ Z(fp). Then the n-forms on Up can be written as

g

f n−s
p

�p.

We can define analogously a pole order filtration on Hn(Up); see [3, page 288]. Again,

this is a decreasing filtration satisfying F• ⊂ P• [5, Proposition 6.1.39], and therefore,

we can always find a representative for a given cohomology class such that 0 ≤ s ≤ n.

There is a stronger result in the case of semi-weighted homogeneous singularities. First,

we recall the definition of semi-weighted homogeneous singularities.

Definition 2.8. Let g : (Cn, 0) → (C, 0) be an analytic function germ. Let

(Y, 0) = (g−1(0), 0) be the associated hypersurface singularity. We say that (Y, 0)

is a weighted homogeneous singularity if there exists a weighted homogeneous

polynomial h ∈ C[z1, . . . , zn] and an analytic isomorphism ϕ : (Cn, 0) → (Cn, 0) such

that (ϕ(h−1(0)), 0) = (X, 0).

We say that (Y, 0) is a semi-weighted homogeneous singularity if there exist

a polynomial h ∈ C[z1, . . . , zn], integers w1, . . . , wn and an analytic isomorphism

ϕ : (Cn, 0) → (Cn, 0) such that (ϕ(h−1(0)), 0) = (Y, 0) and such that we can write

h = h0 + h1 with

1. h0 has an isolated singularity at the origin;

2. h0 is a weighted homogeneous polynomial with respect to w1, . . . , wn;

3. each monomial in h1 has weighted degree strictly larger than the weighted

degree of h0.

Let X ⊂ Pn be a hypersurface. Then we say that a point p ∈ X is a weighted

homogeneous singularity, respectively a semi-weighted homogeneous singularity if

there exists an analytic neighbourhood V of p in Pn such that (V ∩ X, p) is a weighted

homogeneous singularity, respectively a semi-weighted homogeneous singularity.

Suppose now that Vp is chosen sufficiently small such that Z(fp) is con-

tractible. Then the local Poincaré residue map and the long exact sequence for the pair

(Z(fp), Z(fp) \ {p}) yield isomorphisms of MHS

Hn(Up)(1) → Hn−1((Z(fp) \ {p}) ∩ Vp) → Hn
p (X).
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17252 R. Kloosterman

We can use the above isomorphism to define the P-filtration on Hn
p (X); see [3, page 288].

If fp is semi-weighted homogeneous, then the filtrations F• and P• on Hn(Up) coincide

by [3, page 289].

Lemma 2.9. Suppose n ≥ 3. Suppose all singularities of X are semi-weighted

homogeneous. We have that Grs
FHn(X)prim is isomorphic with the cokernel of

Fsϑ : FsHn(U)(1) → ⊕p∈SGrs
PHn

p (X).

Proof. The morphism ϑ : Hn(U)(1) → ⊕p∈SHn
p (X) is strict for the Hodge filtration by

Lemma 2.7 and [5, Remark C16]. Hence, Grs
F of the cokernel equals the cokernel of

FsHn(U)(1) → ⊕p∈SGrs
FHn

p (X).

Since all singularities are semi-weighted homogeneous, we obtain that F• and P•

coincide on Hn
p (X) by [3, page 289]. �

We introduced a P-filtration on Hn
p (X). The direct sum of these filtrations yields

a P-filtration on Hn
S (X). We also introduced a P-filtration on Hn(U)(1). The following

lemma shows that the morphism of MHS ϑ : Hn(U)(1) → Hn
S (X) respects these

P-filtrations. However, ϑ is strict for the Hodge-filtration but does not need to be strict

for the P-filtration.

Lemma 2.10. Suppose n ≥ 3. The morphism ϑ : Hn(U)(1) → Hn
S (X) respects the

P-filtrations on Hn(U) and Hn
S (X).

Proof. Let p ∈ S. Without loss of generality, we may assume p = (1 : 0 : 0 : · · · : 0) and

that we have local coordinates zj = xj/x0, for j = 1, . . . n.

Consider now composition of ϑ with the natural projection map Hn
S (X) → Hn

p (X):

Hn(U)(1) → Hn
p (X).

We aim to make this map explicit. Consider the affine chart x0 �= 0. Let ω ∈ PsHn(U)(1).

Pick some representative g
f n−s � for ω. Let fp be a local equation for (X, p). Then, locally,

we can write this form as

gp

f n−s
p

dz1 ∧ dz2 ∧ . . . dzn.

Hence, Ps(Hn(U)(1)) ⊂ PsHn
p (X). �
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Alexander Polynomials and Deformations 17253

Proposition 2.11. Suppose n ≥ 3. We have that Grs
FHn(X)prim is isomorphic to the

cokernel of

Grs
PHn(U)(1) → ⊕p∈SGrs

PHn
p (X).

Proof. Let τ : Hn(U) → ⊕p∈SHn
p (X). From Lemma 2.9, it follows that Grs

FHn(X)prim

equals the cokernel of

τ : FsHn(U)(1) → ⊕p∈SGrs
PHn

p (X).

From Lemma 2.10, it follows that this map can be extended to PsHn(U)(1) ⊃ FsHn(U)(1),

that is, the map

τ : PsHn(U)(1) → ⊕p∈SGrs
PHn

p (X)

is well defined. It remains to show that the image of Ps is contained in the image of Fs.

From Lemma 2.10, it follows that

τ(PsHn(U)(1)) ⊂ PsHn
p (X) = FsHn

p (X).

Hence,

τ(PsHn(U)(1)) ⊂ Fsτ(Hn(U)).

Since τ is strict for F [5, Remark C16], we find

Fsτ(Hn(U)(1)) = τ(FsHn(U)(1))

and we are done. �

Notation 2.12. Let f ∈ R, then J(f ) ⊂ R is the ideal generated by the partials ∂f /∂xi

for i = 0, . . . , n and Jsat(f ) its saturation with respect to the irrelevant ideal (x0, . . . , xn).

If no confusion arises, then we will write J and Jsat for J(f ) and Jsat(f ), respectively.

Lemma 2.13. Suppose n ≥ 3 and s < n − 1. There is a natural surjective map

(R/J)(n−s)d−n−1 → Grs
PHn(U).

Proof. By the definition of the P•-filtration, there is a surjective map

R(n−s)d−n−1 → PsHn(U)
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17254 R. Kloosterman

for any s ∈ {0, . . . , n − 1}, sending g to g
f n−s �. Consider for i ∈ {0, . . . , n} the n − 1-form

g

f n−s−1

∑
j �=i

εxidx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

with ε = (−1)i+j+1 for i < j and (−1)i+j for i > j. Differentiating this form shows that

fgxi
− (n − 1 − s)gfxi

f n−s �

is zero in cohomology, in particular, the image of J(n−s)d−n−1 in PsHn(U)(1) is contained

in Ps−1. Therefore, there is a surjection

(R/J)(n−s)d−n−1 → Grs
PHn(U).

�

For p ∈ S, let Tp be the Tjurina algebra of X at p. Let fp and Up as above.

Lemma 2.14. Suppose n ≥ 3. There is a natural surjective map Tp → Grs
PHn

p (X).

Proof. Consider now the map C{z1, . . . , zn} → PsHn(Up) sending g to

g

f n−s
p

�p.

Obviously, the ideal generated by fp lands in Ps+1. Differentiating for j ∈ {1, . . . , n} the

(n − 1)-form

1

f n−s−1
p

dz1 ∧ dz2 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn

yields that J(fp) lands in Ps+1. Hence, we obtain a well-defined map from the Tjurina

algebra of X at p to Grs
PHn(Up). �

Remark 2.15. If fp is weighted homogeneous with weights wi and degree dp, then the

map

Tp → Grs
PHn

p (X)

has a natural section. This allows us to identify

Grs
PHn(Up)(1) with (Tp)(n−s)dp−∑

wi
.
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Alexander Polynomials and Deformations 17255

However, this latter fact is only used in the examples. For more details, see

[4, Example 3.6].

Proposition 2.16. Suppose n ≥ 3. Let s ∈ {0, . . . , n − 2}. The dimension of Grs
FHn(X) is

at most the defect of Jsat in degree (n − s)d − n − 1.

Proof. Recall that there is a natural map from the global coordinate ring to each of

the local rings. The Jacobian ideal of f is generated by the n + 1 partials of f , whereas

ideal defining the Tjurina algebra is generated by n partials of fp and fp itself. Assume

for the moment that p = (1 : 0 : · · · : 0). Let fi be the partial of f with respect to xi. Then

the global Jacobian ideal is generated by (f0, . . . , fn), whereas the ideal generating the

Tjurina algebra is generated by (f , f1, . . . , fn) where we substitute x0 = 1 and write in

local coordinates.

Writing the Euler relation df (x0, . . . , xn) = ∑
xifi in local coordinates, we obtain

that df (1, z1, . . . , zn) ≡ f0 mod (f1, . . . , fn) in C{z1, . . . , zn}. Therefore, there is a well-

defined natural map (R/J)(n−s)d−n−1 → Tp.

Consider now

Hn(U)(1) → Hn(Up) → Hn−1(X∗ ∩ Up) → Hn
p (X).

This map factors through the natural restriction map of forms Hn(U) → Hn(Up), which

respects the P-filtration; hence, we have a commutative diagram

Since both vertical maps are surjective, the cokernel of the bottom row is a quotient

of the cokernel of the top row. Moreover, in a neighbourhood of p, one can identify

Proj(R/J) with Spec(Tp). In particular, the scheme V(J) is just V(⊕Tp), and therefore, the

kernel of the map in the top row equals Jsat/J. Let ξ be the length of V(J) = V(Jsat),

the total Tjurina number of the singularities of X. Then the cokernel of the top row has

dimension

ξ − hJsat((n − s)d − n − 1),

that is, the defect of Jsat in degree (n − s)d − n − 1. �
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17256 R. Kloosterman

The above method calculates (or bounds) the dimension of Hn(X)prim for an n−1-

dimensional hypersurface. The latter dimension equals the vanishing order of 1 as a

zero of its Alexander polynomial. To find the other vanishing orders, one has to consider

the d-fold cover of Pn ramified along X, which is a hypersurface in Pn+1. (See also

[5, Remark 6.2.23].) At this stage, we will again include the case n = 2, that is, assume

now that n ≥ 2.

Let ζd = exp(2π i/d). We consider now the hypersurface X̃ ⊂ Pn+1 given by yd +
f = 0. Let Ũ = Pn+1 \ X̃. Let T be the map y �→ ζ−1

d y. Then T∗ acts on Hn(Ũ). Let S̃ = X̃sing.

We have that q = (x0 : · · · : xn : y) ∈ S̃ if and only if p = (x0 : · · · : xn) ∈ S and

y = 0. In particular, there is a natural bijection between S̃ and S. The fix locus of the

automorphism T contains S̃. Moreover, for q ∈ S, then the induced linear map T∗ acts on

C[x0, . . . , xn, y] and maps the Jacobian ideal of yd + fp to itself; hence, T∗ acts on Tq.

Proposition 2.17. Suppose k ∈ {1, . . . , d−1} and s ∈ {0, . . . , n−1}. Then the ζ k
d eigenspace

for T∗ acting on Grs
FHn+1(X̃)prim has dimension at most the defect of Jsat(f ) in degree

(n + 1 − s)d − n − 1 − k. The 1-eigenspace of T∗ acting on Hn+1(X̃)prim is zero.

Proof. Recall that yd−1 is in the Jacobian ideal both on the local and the global sides,

and all other partials do not involve y. Let q ∈ S̃, and let p be the corresponding point

in S, then Tq = ⊕d−2
r=0 yrTp as C-algebras. Recall that T∗ maps �q to ζ−1

d �q. Obviously,

T∗ acts on Hn(Ũ) and sends � to ζ−1
d �. Since yd−1 ∈ J(yd + f ), we can decompose the

Jacobian ring of X̃ as follows:

R[z]/J(yd + f ) ∼= ⊕d−2
r=0 yrR/J(f ).

Consider now

Hn+1(Ũ)(1) → Hn+1
q (X̃).

As above, we find a commutative diagram

Both vertical maps are surjective. Each of the above maps is equivariant for T∗.
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Alexander Polynomials and Deformations 17257

In particular, the eigenvalues of T∗ on Hn+1
q (X̃) are all d-th roots of unity, but

different from 1 and therefore the 1-eigenspace of T∗ acting on Hn+1(X̃)prim is zero.

From the above diagram, it follows that the cokernel of the bottom row is a

quotient of the cokernel of the top row. Moreover, the dimension of the ζ−k
d -eigenspace

is at most the cokernel of

τk : yk−1R/J(f )(n+1−s)d−n−2−(k−1) → ⊕p∈Syk−1Tp.

In a neighbourhood of p, one can identify Proj(R/J) with Spec(Tp). In particular,

the scheme V(J) is just V(⊕Tp). In particular, the kernel of the map of τ is just

(Jsat/J)(n+1−s)d−n−2. Let ξ be the length of V(J) = V(Jsat), the total Tjurina number of

the singularities. Then the cokernel of τk has dimension

ξ − hJsat((n − s)d − n − 1 − k),

which equals the defect of Jsat in degree (n + 1 − s)d − n − 1 − k, by definition. �

3 Calculation of Alexander Polynomial

In this section, we will use the results of the previous section to calculate the Alexander

polynomial to identify a range of degrees for which the ideal Jsat has defect.

Definition 3.1. [5, Definition 1.1.19] Let n ≥ 2. Let f ∈ R be a homogeneous polynomial

of degree d such that X = V(f ) ⊂ Pn has isolated singularities. Let F = Z(f + 1) ⊂ Cn+1

be the affine Milnor fibre of the singularity (f , 0). Then the Alexander polynomial of

X is the characteristic polynomial of the monodromy operator acting on Hn−1(F) and

denoted by �X(t).

Consider X̃ = Z(yd + f ) ⊂ Pn+1. Then the map (x0, . . . , xn) → (x0 : · · · : xn : 1)

maps F onto X̃ \ (X̃ ∩ Z(y)). The set X̃ ∩ Z(y) equals X. In this way, we find an exact

sequence

0 → Hn
c (X)prim → Hn+1

c (F) → Hn+1
c (X̃)prim → 0.

The map F → X̃ \ (X̃ ∩ Z(y)) is an isomorphism. Using Poincaré duality on F, we obtain

that

Hn−1(F) ∼= Hn+1
c (F)∗ ∼= Hn+1

c (X̃ \ (X̃ ∩ Z(y)))∗.

In particular, Hn−1(F) is an extension of Hn+1
prim(X̃)∗ by Hn(X)∗prim.
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17258 R. Kloosterman

As is shown in [5, Remark 6.2.23], we have that the monodromy operator on

Hn+1
c (F) is just the extension of the operator T on Hn+1(X̃)prim and the identity map on

Hn(X)prim. Therefore, the Alexander polynomial of X is (t − 1)aϕ(t) with a = hn(X)prim

and ϕ(t) the characteristic polynomial of T on Hn+1(X̃)prim. Since Td is the identity

operator, we have that all zeroes of the Alexander polynomial are d-th roots of unity,

and from Proposition 2.17, it follows that ϕ(1) �= 0.

In the case that all singularities of X are semi-weighted homogeneous, Hn(X) has

a pure weight n Hodge structure and Hn+1(X̃) has a pure weight n + 1 Hodge structure;

see [10].

Steenbrink [11] studied extensively the spectrum of polynomials with isolated

singularities. The polynomial f has a one-dimensional singular locus; hence, there are

two spectra: one associated with Hn(F) and one with Hn−1(F) (see [9, Section II.8.10]).

In the sequel, we will call the spectrum associated with Hn−1(F) the spectrum

of f . We will use the spectrum merely for bookkeeping reasons.

Definition 3.2. Let Z[Q] be the group of formal sums of rational numbers, that is, the

set of expressions of the form
∑

α∈Q nα[α], with nα ∈ Z for all α and such that the set

{α | nα �= 0} is finite. The group law on Z[Q] is the natural addition.

The spectrum sp(f ) of f is the element
∑

nα[α] of Z[Q] such that

1. If α �∈ [0, n] ∩ 1
dZ, then nα = 0.

2. If α is an integer, then nα = dim Grn−α
F Hn(X)prim.

3. If α is not an integer, but dα is integer, then let s = �α� and k = d(s−α). Then

nα equals the dimension of ζ−k
d eigenspace for T∗ acting on Grn+1−s

F Hn+1(X̃).

Lemma 3.3. We have nα = nn−α and
∑

α nα = deg(�X).

Proof. Suppose first that α is some integer. The Hodge structure on Hn(X) is pure of

weight n; see [10]. Hence, hα,n−α
prim = hn−α,α

prim . In particular, we find that nα = nn−α.

Suppose now that α is not an integer. Let s = �α� and k = d(s − α). Let

ζd = exp(2π i/d). The Hodge structure on Hn+1(X̃) is pure of weight n + 1 by [10].

Complex conjugation maps the ζ e
d-eigenspace to the ζd−e

d -eigenspace. In particular, the

ζ k
d-eigenspace on Hs,n+1−s and the ζd−k

d eigenspace of Hn+1−s,s have the same dimension,

hence ns− k
d

= nn+1−s− (d−k)
d

. Since we have

n + 1 − s − (d − k)

d
= n −

(
s − k

d

)
,

the statement follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17245/6708485 by C
IS M

aldura user on 22 O
ctober 2024



Alexander Polynomials and Deformations 17259

Since (T∗)d is the identity, it follows that T∗ is diagonalizable on Hn+1(X̃) and

all eigenvalues of T∗ are d-th roots of unity. Moreover, 1 is not an eigenvalue by

Proposition 2.17.

Hence, the sum of the dimensions of the eigenspaces of Hn(X)prim and of the

eigenspaces of Hn+1(X̃)prim equal the total dimension that in turn equals the degree of

the Alexander polynomial. Hence,

∑
α

nα = deg(�X).

�

Let J be the Jacobian ideal of f . Then Jsat is the ideal of the scheme V(J). Let ξ

be the length of this scheme. Propositions 2.16 and 2.17 imply the following result.

Proposition 3.4. Suppose α > 1. We have

nα ≤ ξ − hJsat(αd − n − 1).

Proof. Suppose first that α is an integer. Then,

nα = dim Grn−α
F Hn(X)prim

Proposition 2.16 implies that the latter is at most the defect of Jsat in degree (n − (n −
α))d − n − 1. Suppose now that α is not an integer, then write s = �α� and k = d(s − α).

Then nα equals the dimension of ζ−k
d eigenspace for T∗ acting on Grn+1−s

F Hn+1(X̃).

Proposition 2.17 implies that this at most the defect of Jsat in degree (n + 1 − (n +
1 − s))d − n − 1 − k = (s − k

d )d − n − 1. �

Lemma 3.5. Let � ⊂ Pn be a zero-dimensional scheme of length m. Then,

δ(k) := m − hI(�)(k)

is decreasing as a function in k.

Proof. Choose coordinates on Pn such that V(x0) ∩ � = ∅. The number δ(k) equals the

dimension of the cokernel of the evaluation map

ev : Rk → ⊕p∈�Ap,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/20/17245/6708485 by C
IS M

aldura user on 22 O
ctober 2024



17260 R. Kloosterman

where Ap is the affine coordinate ring of � in an affine neighbourhood of p, that is,

obtained by setting x0 = 1.

Let f1, . . . , fm be a basis for the image in degree k, and let F1, . . . , Fk be elements

such that ev(Fi) = fi.

Then in degree k + 1, we have that ev(x0Fi) = ev(Fi) = fi; hence, the dimension of

the image in degree k + 1 is at least the dimension of the image in degree k. �

Proposition 3.6. Suppose α > 1 and nα > 0. Then Jsat has defect in every degree

≤ αd − n − 1.

Proof. If nα > 0, then Proposition 3.4 implies that Jsat has defect in degree αd − n − 1.

However, Jsat is the ideal of a zero-dimensional projective scheme, and for such

a scheme, one has that the defect is a decreasing function in the degree by the previous

lemma; hence, Jsat has defect in every degree up to αd − n − 1. �

In order to show that Jsat has defect in degree d, we need to find an α such that

nα > 0 and αd − n − 1 ≥ d. Using the symmetry of the spectrum, we know that if for

some α, we have nα > 0, then we can find an α ≥ n
2 with nα > 0. However, for n = 2 and

for n ≥ 3 and d small this is insufficient to show that Jsat has defect in degree d. If we

take into account the k such that �X has a primitive k-th root of unity as a zero, then we

find a slightly larger α contained in the interval [n
2 , n+1

2 ]. To identify such an α, we use

the following notation.

Definition 3.7. Let k > 2 be an integer, such that k | d. Let ψ(k) be the largest integer

m such that gcd(m, k) = 1 and m < k
2 . Define

α(n, d, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n
2 if n is even and k = 1 or n is odd and k = 2

n+1
2 if n is even and k = 2 or n is odd and k = 1

n+1
2 − 1

k if n is odd and k > 2.
n
2 + ψ(k)

k if n is even and k > 2.

Note that α(n, d, k) ≥ n
2 .

For an integer k, let ζk := exp(2π i/k).

Proposition 3.8. Suppose ζk is a root of the Alexander polynomial, then nα is nonzero

for some α at least α(n, d, k).
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Alexander Polynomials and Deformations 17261

Proof. If k = 1, then by the symmetry property (Lemma 3.3) nα > 0 for some integer

α ≥ n
2 .

If k = 2, then by the symmetry property nα > 0 for some p + 1
2 with p an integer

p ≥ n−1
2 .

Suppose now k > 2. Since the Alexander polynomial is in Q[t], we have for each i

with 0 < i < k and gcd(i, k) = 1 that the sum

n∑
j=0

nj+ i
k

is independent of i. Using the symmetry, we find that there at least ϕ(k)/2 values of α

occurring in the spectrum, which are of the form n
2 + i

k with gcd(i, k) = 1 and i > 0.

Recall that there are precisely ϕ(k)/2 such values of α in the interval [n/2, (n +
1)/2]. The largest one equals n

2 + ψ(k)
k if n is even and n−1

2 + k−1
k if n is odd. �

We will now identify the values of (n, d, k) such that α(n, d, k)d − n − 1 ≥ d.

Lemma 3.9. Let n ≥ 3. Suppose that one of the following conditions hold:

1. d ≥ 8, n = 3;

2. d ≥ 5, n = 4;

3. d ≥ 4, n ≥ 5.

Then (α(n, d, k) − 1)d ≥ n + 1.

Proof. By definition, we have α(n, d, k) ≥ n
2 . Hence, we are fine if

d ≥ 2n+2
n−2 = 2 + 6

n−2 . �

Lemma 3.10. Suppose n = d = 4. If k �= 1, then (α(n, d, k) − 1)d ≥ n + 1.

Proof. Since k divides d and k �= 1, we know that k ∈ {2, 4}. The claim follows from

α(4, 4, 2) = 5
2 , α(4, 4, 4) = 9

4 . �

Lemma 3.11. Suppose n = 3 and either

1. k = 1 and d ≥ 4 or

2. k ≥ 3 and k �= d (then d ≥ 2k ≥ 6) or

3. k = d and d ≥ 5.

Then (α(n, d, k) − 1)d ≥ n + 1.
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17262 R. Kloosterman

Proof. Suppose that k = 1. Recall that α(3, d, 1) = 2. For d ≥ 4, we have (α(3, d, 1) −
1)d = d ≥ 4 = n + 1.

If k ≥ 3, then d = kj for some positive integer j. Recall that α(3, kj, j) = 2k−1
k .

Hence, (α − 1)d = (k − 1)j. This is at least 4 if j ≥ 2 or j = 1 and k ≥ 5. Hence, we have to

exclude the case k = d and k ∈ {3, 4}. �

Remark 3.12. Suppose now that n = 3 and k = 2 and that we have d = 2j for some

j ≥ 2 (since we excluded d = 2). Recall that α(3, 2j, 2) = 3
2 . Hence, (α(3, 2j, 2) − 1)d = j. In

particular, for j = 2, 3 (hence d = 4, 6), we have to exclude k = 2. These are the only even

values of d between 3 and 7.

Lemma 3.13. Suppose d = 3 and n ≥ 3. Moreover, suppose that

(n, k) �∈ {(3, 1), (4, 1), (6, 1), (3, 3), (4, 3), (5, 3)}.

Then (α(n, d, k) − 1)d ≥ n + 1.

Proof. Since k is a divisor d, we know k ∈ {1, 3}.
Suppose first that k = 1. If n is odd, then (α(n, d, k) − 1)d = 3(n−1)

2 . This is at

least n + 1 for n ≥ 5. If n is even, then (α(n, d, k) − 1)d = 3n−6
2 . This is at least n + 1 for

n ≥ 7.

Suppose now that k = 3. If n is odd, then (α(n, d, k) − 1)d = 3n−5
2 . This is at

least n + 1 for n ≥ 7. If n is even, then (α(n, d, k) − 1)d = 3n−4
2 . This is at least n + 1

for n ≥ 6. �

Lemma 3.14. Suppose n = 2, d ≥ 3. Suppose that k is not a pure prime power and that

(d, k) �∈ {(6, 6), (12, 6)}. Then (α(n, d, k) − 1)d ≥ n + 1.

Proof. Write d = kj. The smallest k that is a not a pure prime power is 6. In particular,

(α(2, d, k) − 1)d = jψ(k).

If ψ(k) = 1, then ϕ(k) = 2. The only k ≥ 6 for which this is possible is k = 6. If

k = 6, then d ≥ 18 and therefore j ≥ 3. If j = 1 and ψ(k) = 2, then ϕ(k) = 4 and k is odd.

In particular, k would be equal to 5, which we excluded. Hence, one of ψ(k) > 2, j > 2 or

ψ(k) = j = 2 holds and (α(2, d, k) − 1)d = jψ(k) ≥ 3. �

Proposition 3.15. Let (n, d, k) be integers such that d ≥ 3, n ≥ 2, and k ≥ 1 is a

divisor of d. Suppose X ⊂ Pn is an irreducible hypersurface of degree d with isolated
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Alexander Polynomials and Deformations 17263

semi-weighted homogeneous singularities such that ζk is a zero of the Alexander

polynomial of X.

Moreover, assume that we are not in one of the following cases:

1. n = 2, d ∈ {6, 12}, and k = 6;

2. n ∈ {3, 4, 6}, d = 3, and k = 1;

3. n ∈ {3, 4, 5}, d = 3, and k = 3;

4. n = 3, d ∈ {4, 6}, and k = 2;

5. n = 3, d = k = 4;

6. n = 4, d = 4, and k = 1.

Then Jsat has defect in degree d.

Proof. The main result of [13] implies that if n = 2, then �X(ζpr ) �= 0 for any

prime number p and nonnegative integer r. Hence, if n = 2, then k is not a prime

power.

Since ζk is a zero of the Alexander polynomial, we know by Propositions 3.6 and

3.8 that Jsat has defect in any degree up to α(n, d, k)d − n − 1. From Lemmata 3.9– 3.11,

3.13, and 3.14, it follows that α(n, d, k)d − n − 1 ≥ d. �

Theorem 3.16. Let (n, d, k) be integers such that d ≥ 3, n ≥ 2, and k ≥ 1 is a divisor

of d. Suppose X ⊂ Pn is an irreducible hypersurface of degree d with isolated semi-

weighted homogeneous singularities such that ζk is a zero of the Alexander polynomial

of X.

Moreover, assume that we are not in one of the cases (1)–(6) of the previous

proposition. Then the equianalytic deformation space of X is not T-smooth.

Proof. From [7, Section 1.1.4.1], it follows that the equianalytic deformation space is

T-smooth if and only if Jsat has no defect in degree d. �

4 Examples

We start with a general construction.

Example 4.1. Let f ∈ C[γ1, . . . , γn] be a weighted homogeneous polynomial, smooth

outside the origin, with rational weights w1, . . . , wn, such that deg(f ) = 1. Assume that

the Tjurina algebra is not trivial. Let v be the smallest positive integer such that vwi is

an integer for all i.
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17264 R. Kloosterman

Let m ≥ 1 be an integer, and let gi be a general form of degree mvwi. Then,

f (g1, . . . , gn)

is a homogeneous polynomial of degree d = mv. Let X = V(f (g1, . . . , gn)) ⊂ Pn.

Assume now that the gi are chosen such that g1, . . . , gn form a regular sequence.

Then the singular locus of X contains the complete intersection S0 = V(g1, . . . , gn).

Moreover, if the gi are sufficiently general, then at each point of S0 the local equation

for the singular point for some choice of coordinates is f = 0. Note that S0 consists of

(mv)n
∏

wi

points. We claim that the Alexander polynomial of X is nontrivial.

In Proposition 2.17, we showed that nα is at most the dimension of the cokernel

of

Rαd−n−1 → ⊕p∈STp.

However, if all singularities are weighted homogeneous, then Tp is a graded algebra.

We can use this to determine nα precisely. That is, Proposition 2.11 together with

Remark 2.15 yield that nα equals the dimension of the cokernel of

Rαd−n−1 → ⊕p∈S(Tp)α. (1)

The choice of local coordinates to obtain the correct grading on Tp is very tricky,

basically because one has to pick a particular part of a Taylor expansion and this is

very sensitive to coordinate changes. However, this is not an issue for the smallest

α occurring in the spectrum of the singularity f . For such an α, we have that

(Tp)α = Tp/mp, where mp is the maximal ideal of p. Changing coordinates would yield

an automorphism given by multiplication by a nonzero number.

The smallest number in the spectrum of the isolated singularity f = 0 is the sum

of the weights α = ∑
wi. We want to show that nα > 0 for this α. For each p ∈ S0 :=

Z(g1, . . . gn) we have (Tp)α = Tp/mp. Hence, the cokernel of (1) equals the cokernel of the

evaluation map

Rαd−n−1 → ⊕p∈S0
C.
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Alexander Polynomials and Deformations 17265

Hence,

nα =
(
(mv)n

∏
wi

)
− hI(S0)(αd − n − 1).

Since g1, . . . , gn define a scheme-theoretic complete intersection, the ideal generated by

them has the Koszul complex on g1, . . . , gn as its resolution. The highest degree of any

generator in the resolution is
∑

deg(gi) = d
∑

wi. Hence, the largest degree for which

there is defect equals (d
∑

wi) − n − 1, that is, we know that there is defect in degree

d
∑

wi − n − 1 = αd − n − 1.

Hence, nα > 0 and exp(2π i
∑

wi) is a zero of the Alexander polynomial. From nα > 0, for

α = ∑
wi, it follows that nα > 0 for α = n − ∑

wi by Lemma 3.3. Hence, Jsat has defect

in degree (n − ∑
wi)d − n − 1 = (n − ∑

wi)mv − n − 1.

If we additionally assume that all the weights wi are of the form 1/ki, with

ki ∈ Z, then the Tjurina number of each singularity is
∏

(ki − 1) = ∏ 1−wi
wi

. Hence, the

total Tjurina number equals

(mv)n
∏

i

(1 − wi) = dn
∏

i

(1 − wi).

This number is so large that it is not clear whether for fixed (n, k1, . . . , kn, m), there

exists a component of the space of degree mv-curves with (mv)n ∏
wi singularities

analytically equivalent with f = 0 and constant Alexander polynomial.

If we instead assume that n = 2, f = γ 2
1 + γ 3

2 , w1 = 1
2 , w2 = 1

3 , α = 5
6 , then we

recover the example of B. Segre of degree 6m curves with 6m2 cusps.

We will now give two examples to illustrate how the above construction is the

limit of known constructions of hypersurfaces with deformation space whose dimension

is larger than expected. The 1st example below is due to Greuel et al. [6, Proposition 3.4].

Example 4.2. Fix k ∈ Z>0. Let d = 6m, pick nonnegative integers a1, b1 ≤ 6m, such

that a1 and b1 are divisible by 2 and by 3, respectively. Let a2 = 3m − a1
2 , b2 = 2m − b1

3 .

Pick general homogeneous forms f1, f2, g1, g2 in x0, x1, x2 of degree a1, a2, b1, b2.

Consider the curve

f1f 2
2 + g1g3

2 = 0.
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17266 R. Kloosterman

Then Jsat ⊃ (f2, g2
2). The latter ideal is a complete intersection ideal. This ideal has defect

in degree d if and only if

a2 + 2b2 ≥ 6m + 3,

which happens if and only if

a1

2
+ 2b1

3
≤ m − 3.

If the forms are chosen sufficiently general, then the singular locus is

f2 = g2 = 0 and all singularities are ordinary cusps. The curve has nonconstant

Alexander polynomial if and only if (f2, g2) has defect in degree 5m − 3, that is, if

a2 + b2 ≥ 5m. However, a2 ≤ 3m, b2 ≤ 2m; therefore, we have a1 = b1 = 0.

Hence, for each choice of a1, b1 ≥ 0 satisfying

a1

2
+ 2b1

3
≤ m − 3,

we find examples with non-T-smooth deformation space, but only for a1 = b1 = 0, we

find examples with nonconstant Alexander polynomial.

We can apply the idea behind Example 4.2 to Example 4.1.

Example 4.3. Again, let f ∈ C[γ1, . . . , γn] be a weighted homogeneous polynomial,

smooth outside the origin, with weights w1, . . . , wn, such that deg(f ) = 1. Assume that

the Tjurina algebra is not trivial.

Write f = ∑s
i=1 Mi(γ1, . . . , γn), where each Mi is some C∗-multiple of a monomial

in γ1, . . . , γn. Consider

F(β1, . . . , βs; γ1, . . . , γn) :=
s∑

i=1

βiMi(γ1, . . . , γn).

Let v be the smallest positive integer such that vwi is an integer for all i.

Let m1 ≥ 1 be an integer, and let gi be a general form of degree m1vwi. Let

m2 be another integer, and let h1, . . . , hs be general forms of degree m2. Consider the

hypersurface

F(h1, . . . , hs; g1, . . . , gn) :=
s∑

i=1

hiMi(g1, . . . , gn).
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If the forms are sufficiently general, then one has singularities with local equation f = 0

along g1 = · · · = gn = 0 and no further singularities. In this case, Jsat has defect in

degree (
n −

∑
wi

)
m1v − n − 1.

The degree of the hypersurface equals m1v + m2. Hence, if

m2 ≤ (n − w − 1)m1v − n − 1,

then the deformation space is not T-smooth. For m2 = 0, we recover the example with a

nonconstant Alexander polynomial.

If we can separate variables in f , that is, suppose we can write

f =
s∑

j=1

fj(xij , xij+1, . . . , xij+kj
)

with ij+1 = ij + kj + 1, then we can apply this construction for each summand with

different choices of m2, under the condition that m1v + m2 is the same for each

summand.

In Example 4.2, we did this for f = γ 2
1 + γ 3

2 and we took f1 = γ 2
1 and f2 = γ 3

2 .

In the case of plane curves with A2-singularities, Segre considered a family

with 6m2 cusps on a curve of degree 6m. In this case, the expected dimension of the

deformation space equals

(6m + 1)(6m + 2)

2
− 1 − 12m2 = 6m2 + 9m,

which is definitely positive. However, in the case of mn ordinary r-fold points on a

degree rm hypersurface in Pn, we obtain that the expected dimension is

dr,n(m) =
(

mr + n

n

)
− mn(r − 1)n − 1.

The leading coefficient of dr,n(m) equals rn( 1
n! − 1). Hence, for m sufficiently large, we

have that the expected dimension is negative. Therefore, the mere existence is sufficient

to prove that the deformation space is not T-smooth. We will now give an example

of hypersurfaces with ordinary r-fold points, for which the Alexander polynomial is

nonconstant and the expected dimension is positive.
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Example 4.4. Fix integers �, r both at least 2. Let n=2�. Fix another positive integer m.

Fix t polynomials g1, . . . , g� of degree m such that g1, . . . , g�, x�+1, . . . , x2� define a

complete intersection, which, as a scheme, is reduced. Then this complete intersection

consists of m� points.

Pick now t generic forms h1, . . . , h� of degree m(r − 1) from the ideal

(g1, . . . , g�, x�+1, . . . , x2�)
r−1.

Consider now X = V(
∑�

i=1 xt+ihi). Then at each point in

Z(g1, . . . , g�, x�+1, . . . , x2�),

we have an r-fold point, and if the hi are chosen sufficiently general, then these points

are ordinary r-fold points.

In this way, we have m� points of order r. The Milnor number of an r-fold point

is (r − 1)2�; hence, the expected codimension equals m�(r − 1)2�, whereas the space of

polynomials of degree m(r−1)+1 has dimension
(
m(r−1)+1+2�2�

)
. The former polynomial

is a polynomial of degree � in m, whereas the latter polynomial is a polynomial of degree

2� in m with positive leading coefficient. Hence, for m sufficiently large, the expected

dimension

(
m(r − 1) + 1 + 2�

2�

)
− m�(r − 1)2� − 1

is positive.

In this case, we have that the �-plane x�+1 = · · · = x2� = 0 defines a nonzero

class of Hodge type (�, �) in H2�(X, C)prim. In particular, n� �= 0. For this reason, we have

that Jsat has defect in any degree ≤ �m(r − 1) − � − 1. The latter quantity is at least

d = m(r − 1) + 1.
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