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Abstract

The main uncertainty of the Standard Model prediction of the muon g-2 originates from
its hadronic vacuum polarization (HVP) contribution, which cannot be reliably calculated
perturbatively in QCD and relies on experimental data as input to dispersion relations.
Traditionally, this contribution has been computed via a dispersive, or time-like, integral
using hadronic production cross-sections in low energy electron-positron annihilation. A
novel approach to determine the HVP contribution to the muon g-2 is desirable. In
the first part of this work we present simple analytic expressions to compute the HVP
contribution to the muon g-2 in the space-like region up to next-to-next-to-leading order.
After that, we derive approximations for the euclidean-time kernel obtained from the HVP
contributions in the space-like region up to next-to-leading order. The series expansions
presented in this work overcome the problems given by their asymptotic behaviour for
large value of the time. These results can be employed in lattice QCD calculations of this
contribution as well as in space-like determinations based on scattering data, like that
expected from the proposed MUonE experiment at CERN.

For the second part of this thesis, we focus on the constraints of the Yukawa couplings
of the first-generation quarks, which are notoriously challenging to determine due to their
small values within the framework of the Standard Model. We propose the utilization of
o�-shell Higgs production, where the Higgs boson decays into four leptons, as a method
to investigate the up- and down-quark Yukawa couplings. Employing kinematic discrim-
inants akin to those utilized in Higgs width measurements, we have found that the down
(up) Yukawa coupling can be constrained to approximately 156 (260) times its Standard
Model value, considering only experimental systematic uncertainties, in a high-luminosity
LHC scenario. This approach to o�-shell Higgs production demonstrates superior sensi-
tivity to the first-generation quark Yukawa couplings compared to other methods, such
as Higgs+jet or Higgs pair production.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics forms the basis of our understanding of
the fundamental interactions. More precisely, the SM is the quantum field theory (QFT)
that describes how the basic matter constituents (quarks and leptons) interact at the
microscopic level via weak, strong, and electromagnetic forces. While all data from earth-
based laboratory experiments agree with the SM predictions, there is indirect evidence,
derived from cosmological observations, that the model is not complete: this model does
not explain the baryon asymmetry of the universe, dark matter, and dark energy. These
are all phenomena that could naturally find their explanation in the domain of particle
physics or, more generally, within QFT. There are also theoretical concerns about the
SM itself, such as the strong sensitivity of the Higgs mass term to high-energy modes
in the renormalization procedure (the so-called hierarchy problem), the absence of an
explanation for the hierarchical structure of the fermion spectrum, and the lack of a
bridge to quantum gravity. Last but not least, non-vanishing neutrino masses cannot be
accounted for by the classical version of the SM, containing only left-handed neutrinos
and renormalizable interactions.

A long-standing discrepancy between SM predictions and observations concerns the
anomalous magnetic moment of the muon, aµ = (gµ ≠ 2)/2. Therefore, aµ plays an
important role in testing the SM of fundamental interactions. The Muon g-2 (E989)
experiment at Fermilab has recently presented its measurement of aµ [1, 2], confirming the
earlier results of the E821 experiment at Brookhaven [3]. By the end of its run, the E989
experiment is expected to achieve an unprecedented precision of 0.14 parts-per million
(ppm) for the muon anomalous magnetic moment. In addition, a completely new low-
energy approach to measuring the muon g-2 is being developed by the E34 collaboration
at J-PARC [4].

The present muon g-2 experimental average shows an intriguing 5.1‡ discrepancy
with the value of the SM aµ prediction quoted by the Muon g-2 Theory Initiative [5].
If confirmed with high significance, this discrepancy would be indirect evidence for new
physics beyond the SM.

On the theory side, the hadronic correction to the muon g-2 are under close scrutiny,
as they induce the leading uncertainty of the SM prediction of aSM

µ . The calculation
of the leading hadronic contribution to the muon g-2, aHLO

µ , traditionally relies on a
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Chapter 1. Introduction 2

dispersive, or time-like, integral using the hadronic production cross section in electron-
positron annihilation at low energies. The present time-like calculation of the hadronic
vacuum polarization contribution aHVP

µ includes the leading-order (LO), next-to-leading-
order (NLO) and next-to-next-to-leading-order (NNLO) terms [6]-[14]. The NNLO term
is comparable to the final uncertainty of the aµ measurement expected from the Muon
g-2 experiment at Fermilab.

Alternative evaluations of aHLO
µ can be obtained via lattice QCD [15]-[24]. In 2021

the BMW lattice QCD collaboration (BMWc) computed the leading order HVP contri-
bution aHLO

µ with a sub-percent precision, finding a value larger than that obtained by
the dispersive approach [25]. The so-called window quantities, derived by incorporating
weight functions into the Euclidean-time integral of the coordinate-space representation of
HVP [17], has emerged as a valuable tool, as the intermediate window is significantly less
susceptible to lattice systematics compared to the overall HVP contribution to aµ. The
BMWc value associated with this quantity exhibits a tension of 3.7‡ with the cross-section
data [27], and several lattice collaborations have now confirmed this result [28]-[31]. In
addition, a new preliminary measurement of e+e≠

æ fi+fi≠ cross section from the CMD-3
experiment [26] disagrees significantly with all other e+e≠ data used in [5].

Therefore a new and competitive determination of aHVP
µ , possibly at NNLO accuracy,

based on a method alternative to the time-like and lattice QCD ones, is desirable.
Recently, a new experiment, MUonE, has been proposed at CERN to determine the

leading order hadronic contribution to the muon g-2, measuring the e�ective electromag-
netic coupling in the space-like region via scattering data [32]-[34]. The elastic scattering
of high energy muons on atomic electrons has been identified as an ideal process for this
measurement. In order to reach a determination of the HVP contribution with a precision
below one percent, the shape of the µe di�erential cross section must be measured with
a systematic uncertainty of the order of 10 ppm or better. An analogous precision is
therefore required in the theoretical prediction [32], [35]-[54].

Goal of the first part of this thesis is to present analytic expressions to compute the
hadronic vacuum polarization contribution to the muon g-2 in the space-like region up
to NNLO. In Chapter 2 we introduce the anomalous magnetic moment of the muon and
the current status of the theoretical prediction. In Chapter 3 we discuss the MUonE
proposal focusing on the space-like kernels for the HVP. At LO, simple results are long
known and form the basis for present lattice QCD and future MUonE determinations of
aHVP

µ (LO). Our goal is to provide simple analytic expressions to extend the space-like
calculation of the aHVP

µ contribution to NNLO. Chapter 4 is dedicated to the evaluation
of the kernels functions in the time-momentum representation, often used in the lattice
QCD calculations.

In the relentless pursuit of understanding the fundamental laws governing the universe,
the discovery of the Higgs boson at the Large Hadron Collider (LHC) has represented a
significant milestone. The observation of a scalar resonance, with a mass approximately
125 GeV [55, 56], by ATLAS and CMS experiments, has marked the discovery of the
last missing ingredient of the SM [57]-[60] of particle physics. Notably, this observation
has provided substantial evidence supporting the mechanism of spontaneous Electro-Weak
Symmetry Breaking (EWSB) [61]-[66] as the theoretical framework for comprehending the
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3

origin of the masses of the SM particles. The Higgs sector of the SM consists of an SU(2)
doublet scalar field that acquires a non-zero vacuum expectation value (VEV), thereby
spontaneously breaking the SU(2) ◊ U(1) EW symmetry. Through the interactions be-
tween the Higgs field and the weak gauge bosons, as well as the fermions, their masses
can be accounted for in a manner consistent with the fundamental principle of gauge
symmetry. By measuring the Higgs mass through the LHC experiments and combining
it with the knowledge of the VEV obtained from muon decay, unambiguous predictions
within the framework of the SM can be made.

While the Higgs boson couplings to gauge bosons and to third-generation fermions
have been measured at the O(5 ≠ 20%) level [67, 68], little is known about the Higgs
boson couplings to first- and second-generation quarks and leptons, with the exception of
the Higgs coupling to muons [69, 70]. For the first- and second-generation quark Yukawa
couplings the current best limits are obtained from a global fit. It was found that the mod-
ification factor Ÿq = yq/ySM

q of the quark Yukawa coupling yq with respect to its Standard
Model (SM) value ySM

q can be constrained to Ÿu < 560, Ÿd < 260, Ÿs < 13 and Ÿc < 1.2
even at the HL-LHC [71]. This analysis is not completely model-independent; rather, it
relies on the assumption that the light-quark Yukawa couplings can be constrained from
the Higgs untagged branching ratio. A more direct way of constraining these couplings is
hence welcome.

In the second part of this thesis we study a direct probe of the first-generation quark
Yukawa couplings; more specifically, the measurement of an o�-shell Higgs boson decaying
to a Z boson pair that subsequently decays to leptons. A study of light quark Yukawa
couplings for the h æ ZZ final state has been presented in Ref. [72] for the 7 and 8
TeV runs of the LHC. In Chapter 5 we reconsider the idea of Ref. [72] in light of the
evidence for o�-shell production found by recent measurements [73, 74] and show that the
use of kinematic discriminants can significantly improve the projected limits on Ÿq at the
HL-LHC.

3
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Chapter 2

The Muon Anomalous Magnetic
Moment

In this chapter we will provide a brief review of the theoretical prediction for aµ in the
SM, analyzing the three contributions into which aSM

µ is usually split: QED, electroweak
(EW) and hadronic, contributions. We will follow Refs. [5, 75]

2.1 The Standard Model Prediction of the Muon g-2
The determination of the SM prediction for the anomalous magnetic moment of the
muon aµ has captivated physicists for more than seventy years. While the agreement
between the experimental results and the QED leading contribution for the anomalous
magnetic moment of the electron ae provided an early confirmation of this theory, ae is
relatively insensitive to strong and weak interactions, as well as unknown physics beyond
the Standard Model (BSM), especially at higher energy scales. On the other hand, aµ

serves as a comprehensive test of the entire Standard Model and is much more e�ective
in revealing or constraining the e�ects of “new physics”. For a lepton ¸, the contribution
to a¸ is generally proportional to m2

¸/�2, where m¸ is the mass of the lepton and � the
scale of “new physics”, thus leading to an (mµ/me)2

≥ 4 ◊ 104 relative enhancement of
the sensitivity of the muon versus the electron anomalous magnetic moment. However, it
might be worth noting that the situation is not as heavily skewed in favor of aµ. Currently,
the experimental precision of ae, 1.3 ◊ 10≠13 [76], is approximately 2 ◊ 103 times that of
aµ, 2.4◊10≠10, resulting in a sensitivity di�erence of approximately 20. For the future, we
expect an improvement of a factor of 10 in the sensitivity of ae [77], and together with the
results of the E989 experiment at Fermilab, this could potentially modify the sensitivity
ratio between them.

2.1.1 The QED contribution to aµ

The QED contribution to the anomalous magnetic moment of the muon arises from the
subset of SM diagrams containing only the interaction between leptons (e, µ, ·) and pho-

5



Chapter 2. The Muon Anomalous Magnetic Moment 6

Figure 2.1: Lowest-order QED contribution to aµ

tons. As a dimensionless quantity, it can be cast in the following general form

aQED
µ = A1 + A2(mµ/me) + A2(mµ/m· ) + A3(mµ/me, mµ/m· ) (2.1)

where me, mµ and m· are the masses of the electron, muon and tau, respectively. The
term A1, arising from diagrams containing only photons and muons, is mass independent.
In contrast, the terms A2 and A3 are functions of the indicated mass ratios, and are
generated by graphs containing also electrons and taus. The renormalizability of QED
guarantees that the functions Ai(i = 1, 2, 3) can be expanded as power series in –/fi and
computed order-by-order

Ai = A(2)
i

1–

fi

2
+ A(4)

i

1–

fi

22
+ A(6)

i

1–

fi

23
+ A(8)

i

1–

fi

24
+ A(10)

i

1–

fi

25
+ ... (2.2)

By 2018, all terms up to the eighth order have been obtained and cross-checked by multiple
groups using di�erent methods [78]-[82]. However, the complete calculation of the tenth-
order contribution has been carried out by only one group, employing numerical techniques
[83]. In the following sections, we summarize all perturbative coe�cients A(2n)

i up to the
tenth order.

A. One-Loop contribution

The evaluation of the lowest-order contribution involves only one diagram, depicted in
Fig. 2.1. This diagram is associated with the renowned result derived by Schwinger [84],
A(2)

1 = 1/2 (A(2)
2 = A(2)

3 = 0).

B. Higher-order QED contributions

The fourth order QED corrections to aµ are made up by nine diagrams depicted in Fig. 2.2.
Among them seven contribute to A(4)

1 , they are obtained attaching two virtual photons
to the muon lines and one is related to the insertion of a muon vacuum polarization.
The remaining two diagrams contribute to A(4)

2 (mµ/me) and A(4)
2 (mµ/m· ), thanks to the

insertion of an electron and a tau lepton vacuum polarization loop in the virtual photon
line.

The analytic result for the coe�cient A(4)
1 has been known for more sixty years [85, 86].

The closed analytic expression of A(4)
2 (x), for any mass ratio x, is also known [75] [87, 88].
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7 2.1. The Standard Model Prediction of the Muon g-2

γ

µ µ

γ

µ µ

γ

µ µ

γ

µ µµ

γ

µ µ
e, τ

γ

µ µ

Figure 2.2: The QED diagrams contributing to the muon g-2 in order –2. The mirror
reflections (not shown) of the third and fourth diagrams must be included as well.

One gets [5]

A(4)
1 = ≠0.328 478 965 579...

A(4)
2 (mµ/me) = 1.094 258 3093 (76)

A(4)
2 (mµ/m· ) = 0.000 078 076 (11),

(2.3)

where the standard uncertainties are only caused by the experimental uncertainties of the
lepton mass ratio. As there are no two-loop diagrams containing both virtual electrons
and taus, A(4)

3 (mµ/me, mµ/m· ) = 0. Those diagrams arise for the first time at sixth-order.
Summing up all the results in Eq. (2.3), one gets the two-loop QED coe�cient

C2 = A(4)
1 + A(4)

2 (mµ/me) + A(4)
2 (mµ/m· ) = 0.765 857 419 (13). (2.4)

The uncertainties in A(4)
2 (mµ/me) and A(4)

2 (mµ/m· ) have been added in quadrature. The
resulting error ”C2 = 1.3 ◊ 10≠8 leads to a tiny 0.05 ◊ 10≠12 uncertainty in aQED

µ .
The evaluation of the three-loop (sixth-order) QED contribution involves more than

one hundred diagrams. The coe�cient A(6)
1 arises from 72 diagrams, its calculation in

closed analytic form has been achieved by [89, 90]. The result reads [5]

A(6)
1 = 1.181 241 4566... (2.5)

The calculation of the exact expression for the coe�cient A(6)
2 (m/M), that for our analysis

m = mµ and M = me or m· , can be further split into two parts: the first one receives
contributions from 36 diagrams containing electron or · vacuum polarization loops [91],
meanwhile the second one is due to 12 light-by-light scattering diagrams with electron or
· loops [92]. The exact expression for A(6)

2 (m/M) in closed analytic form is complicated
as it contains hundreds of polylogarithmic functions up to fifth degree with complex
arguments. The result is [5]:

A(6)
2 (mµ/me) = 22.868 379 98 (20),

A(6)
2 (mµ/m· ) = 0.000 360 671 (94).

(2.6)

7



Chapter 2. The Muon Anomalous Magnetic Moment 8

The analytic result, for the three-loop diagrams with both electron and · loop insertion
in the photon propagator, yields the numerical value [5]

A(6)
3 (mµ/me, mµ/m· ) = 0.000 527 738 (75) (2.7)

providing a small 0.7◊10≠11 contribution to aQED
µ . The error is caused by the uncertainty

of the ratio mµ/m· . Combining the three-loop results presented above, one obtains the
sixth-order QED coe�cient

C3 = A(6)
1 + A(6)

2 (mµ/me) + A(6)
2 (mµ/m· ) + A(6)

3 (mµ/me, mµ/m· ) = 24.050 509 94 (23).
(2.8)

The error ”C3 = 2.3 ◊ 10≠7, due to the measurement uncertainties of the lepton masses,
induces a negligible O(10≠14) uncertainty in aQED

µ . In parallel to these analytic results,
numerical methods were also developed for the evaluation of the full set of three-loop
diagrams.

More than one thousand diagrams enter the evaluation of the four-loop QED contri-
bution to aµ. As only few of them are known analytically [93], this eighth-order term
has thus far been evaluated only numerically in Ref. [78, 79]. Recently, the eighth-order
mass-independent contribution A(8)

1 has been calculated in analytical form by Laporta
[80]. Since this eighth-order QED contribution is about six times larger than the present
experimental uncertainty of aµ, it is crucial for the comparison between the SM prediction
of aµ and its experimental determination. There are 891 four-loop diagrams contributing
to the mass-independent coe�cient, the updated result, obtained up to 1100 digits, is [80]

A(8)
1 = ≠1.912 245 764 926... (2.9)

The latest value of the coe�cient A(8)
2 (mµ/me), arising from 469 diagrams, is [5]

A(8)
2 (mµ/me) = 132.6823 (72). (2.10)

The eighth-order · -lepton contributions, A(8)
2 (mµ/m· ) and A(8)

3 (mµ/me, mµ/m· ), are
also independently checked. This is done in two ways, first by numerical calculation [83]
and second by use of asymptotic expansion [82],

A(8)
2 (mµ/m· ) = 0.042 4941 (53),

A(8)
3 (mµ/me, mµ/m· ) = 0.062 722 (10),

(2.11)

which provide a small O(10≠12) contribution to aQED
µ .

Summing up the four-loop results described above, we obtain the eighth-order QED
coe�cient

C4 ƒ A(8)
1 + A(8)

2 (mµ/me) + A(8)
2 (mµ/m· ) + A(8)

3 (mµ/me, mµ/m· ) = 130.876 170 (81).
(2.12)

At tenth order in QED there are more than ten thousand diagrams five-loop contribut-
ing to aµ. The numerical results for the sum of all diagrams with one or more fermion

8



9 2.1. The Standard Model Prediction of the Muon g-2

loops are given by [5]:

A(10)
1 = 6.737 (159),

A(10)
2 (mµ/me) = 742.32 (86),

A(10)
2 (mµ/m· ) = ≠0.0656 (45),

A(10)
3 (mµ/me, mµ/m· ) = 2.011 (10),

(2.13)

where all the uncertainties are attributed entirely to the statistical fluctuation in the
Monte-Carlo integration of Feynman amplitudes. Therefore, we obtain

C5 ƒ A(10)
1 + A(10)

2 (mµ/me) + A(10)
2 (mµ/m· ) + A(10)

3 (mµ/me, mµ/m· ) = 751.0024 (169).
(2.14)

C. The numerical value of aQED
µ

Adding up all the above contributions and using the latest recommended value for the
fine-structure constant, that comes from Cs atom-interferometry experiment [94],

–≠1 = 137.035 999 046 (27), (2.15)

the updated value for the QED contribution to the muon g-2 is [5]

aQED
µ = 116 584 718.931 (7) (17) (6) (100) (23) [104] ◊ 10≠11. (2.16)

Where the uncertainties are due to · -lepton mass m· , the eighth-order QED, the tenth-
order QED, the estimate of the twelfth-order QED, the fine structure constant –, and the
sum in quadrature of all of these.

2.1.2 The electroweak contribution
Contrary to the QED e�ects, the electroweak (EW) contribution to the anomalous mag-
netic moment of the muon is suppressed by a factor (m2

µ/M2
W ). The one-loop part was

computed in 1972 by several authors [95].

A. One-loop contribution

The one-loop EW contribution to aµ is characterized by the analytic expression

aEW(1)
µ =

5GF m2
µ

24
Ô

2fi2

5
1 + 1

5(1 ≠ 4 sin2 ◊w)2 + O
3 m2

µ

M2
Z,W,H

46
, (2.17)

where GF = 1.16637(1) ◊ 10≠5 GeV≠2 is the Fermi coupling constant, MZ , MW and MH

are the masses of the Z, W and Higgs boson, and ◊w is the weak mixing angle. Taking into
account the fact that the contribution of the Higgs boson to aEW(1)

µ is of order O(10≠14),
it can be safely neglected, obtaining [5]

aEW(1)
µ = 194.79 (1) ◊ 10≠11. (2.18)

9



Chapter 2. The Muon Anomalous Magnetic Moment 10

Figure 2.3: Sample fermionic two-loop Feynman diagrams contributing to aEW (2)
µ

µ µ Z µ

γ µ

µ
µ

γ

µ µ γ µ

Z µ

µ
µ

γ

µ µ νµ µ

H W

W
W

γ

Figure 2.4: Sample bosonic two-loop Feynman diagrams contributing to aEW (2)
µ

B. Higher-order contributions

The two-loop EW contribution to aµ was computed in 1995 by Czarnecki et al [96, 97].
Naively one would expect the two-loop EW contribution to be of order (–/fi) ◊ aEW(2)

µ ,
and thus negligible, but this turns out not to be. In fact, aEW(2)

µ is quite substantial
because of the appearance of terms enhanced by a factor of log(MZ,W /mf ), where mf is
a fermion mass scale much smaller than MW .

We can divide the two-loop contributions into fermionic and bosonic parts (Figs. 2.3
and 2.4 show examples of two-loop EW diagrams); the former includes all two-loop EW
corrections containing closed fermion loops, whereas all others are grouped into the latter.
The full two-loop calculation involves 1678 diagrams in the linear ’t Hooft-Feynman gauge
[98]. In particular, we can subdivide the fermionic two-loop contributions into:

aEW(2, fermionic)
µ = aEW(2)

µ (e, µ, u, c, d, s) + aEW(2)
µ (·, t, b) + aEW(2)

µ,H + aEW(2)
µ,rest . (2.19)

The last two diagrams in Fig. 2.3 contain loops of the light quarks u, d, s. A perturbative
evaluation produces large logarithms of light quark masses. Because of confinement, these
quark masses are not well defined and significant non-perturbative corrections to these
Feynman diagrams are expected. A non-perturbative evaluation of these diagrams, which
can replace the perturbative result, has been pioneered in Ref. [99] and improved in Refs.
[100, 101]. While, for the third generation fermions, one could proceed with a perturbative
evaluation. Therefore, the first two terms of the RHS of (2.19) yields respectively [100]

aEW(2)
µ (e, µ, u, c, d, s) = ≠6.91 (20) (30) ◊ 10≠11,

aEW(2)
µ (·, t, b) = ≠8.21 (10) ◊ 10≠11.

(2.20)

The uncertainties are obtained by varying respective input parameters of the hadronic
model and perturbative calculations. The hadronic uncertainties, above estimated to be

10



11 2.1. The Standard Model Prediction of the Muon g-2

≥ 2 ◊ 10≠11, arise from two types of two-loop diagrams: hadronic photon-Z mixing, and
quark triangle loops with the external photon, a virtual photon and a Z attached to
them. The tiny hadronic “ ≠ Z mixing terms can be evaluated either in the free quarks
approximation or via a dispersion relation using data from e+e≠ annihilation into hadrons.

The third term of (2.19) denotes the Higgs-dependent fermion loop diagrams, an exact
expression can be found in [102]

aEW(2)
µ,H = ≠1.51 (1) ◊ 10≠11, (2.21)

where the indicated uncertainty arises essentially from the uncertainty of the input pa-
rameters m· and MH . The fourth term of (2.19) collects all remaining fermionic two-loop
contributions, e.g. W boson exchange [102]

aEW(2)
µ,rest = ≠4.64 (10) ◊ 10≠11. (2.22)

The bosonic two-loop contributions aEW(2, boson)
µ are defined by two-loop and associated

counterterm diagrams without closed fermion loops, yielding [5, 103]

aEW(2, boson)
µ = ≠19.96 (1) ◊ 10≠11. (2.23)

The given theory error is the parametric uncertainty resulting from the experimental un-
certainty of the Higgs boson and W -boson masses, using the PDG value MH = 125.18(16) GeV
[104].

Summing up the quoted results, one obtains [5]

aEW
µ = 153.6 (1) ◊ 10≠11. (2.24)

There are very large logarithmically enhanced corrections to the one-loop result in Eq.
(2.18). These arise from diagrams like the second and third ones in Fig. 2.3, Fig. 2.4,
generally from two-loop diagrams that contain heavy particles and a photon. The resulting
large logarithms log(M2

z /m2
f ), where mf is one of the light fermions, partially compensate

the two-loop suppression. Numerically, these logarithmic two-loop e�ects reduce the one-
loop result by approximately 20%.

2.1.3 The hadronic contribution
In this section we will analyze the contribution to the muon g-2 which originates from
QED diagrams involving hadrons. Hadronic e�ects in two-loop EW contributions are
already included in aEW

µ in the previous section.
In particular, the most consistent hadronic e�ect is the O(–2) hadronic vacuum polar-

ization (HVP) insertion in the internal photon line of the one-loop muon vertex diagram.

A. Leading-order hadronic contribution

The leading hadronic contribution to the muon g-2 is due to the hadronic vacuum polariza-
tion insertion in the internal photon propagator of the one-loop diagram. The evaluation

11



Chapter 2. The Muon Anomalous Magnetic Moment 12

of this O(–2) diagram involves long-distance QCD for which perturbation theory can-
not be employed. However, Bouchiat and Michael [105], using analyticity and unitarity,
showed that this contribution can be computed from hadronic e+e≠ annihilation data via
the dispersion integral [105]-[111] 1

aHLO
µ © aHVP

µ (LO) = 1
4fi3

⁄ Œ

s0
ds K(2)(s/m2

µ) ‡(0)(s) = –2

3fi2

⁄ Œ

s0

ds

s
K(2)(s/m2

µ) R(s),
(2.25)

where s0 = m2
fi0 is the squared neutral pion mass, ‡(0)(s) is the experimental total cross

section for e+e≠ annihilation into any hadronic state, with extraneous QED radiative
corrections subtracted o�, and R(s) is the ratio of ‡(0)(s) and the high-energy limit of the
Born cross section for µ-pair production: R(s) = ‡(0)(s)/(4fi–2/3s). The kernel K(s) is
a well-known function

K(2)(s/m2
µ) =

⁄ 1

0
dx

x2(1 ≠ x)
x2 + (s/m2

µ)(1 ≠ x) . (2.26)

It decreases monotonically for increasing s, and for large s it behaves as m2
µ/3s to a

good approximation. For this reason the low-energy region of the dispersive integral is
enhanced by ≥ 1/s2.

Therefore (2.25) o�ers an approach to overcome long-distance QCD issues appearing
in the LO hadronic contribution to the aµ calculation. Since it makes use of hadronic
e+e≠ annihilation data, thus involving a positive squared momentum transfer, we will call
it time-like approach.

Detailed evaluations of the dispersive integral (2.25) have been carried out by several
authors. The hadronic contribution aHLO

µ is of order 7000 ◊ 10≠11 and, even if this is a
small fraction of the total SM prediction for aµ, it is very large compared to the current
experimental uncertainty ”aEXP

µ = 22 ◊ 10≠11. Here we only focus on the most recent
dispersive evaluation from the WP of the g-2 Theory Initiative [5],[6]-[13]

aHLO
µ = 6931 (40) ◊ 10≠11, (2.27)

where the error is due to the experimental measurement of hadronic e+e≠ annihilation. In
addition, a new preliminary measurement of e+e≠

æ fi+fi≠ cross section from the CMD-3
experiment [26] disagrees significantly with all other e+e≠ data used in [5].

Alternatively, the LO HVP contribution to aµ has been computed by BMW lattice
QCD collaboration, finding a value larger than that in Eq. (2.27), 7075 (55) ◊ 10≠11 [25].
In particular, The BMWc’s value for the window quantity, derived by incorporating weight
functions into the Euclidean-time integral of the coordinate-space representation of HVP
[17], exhibits a tension of 3.7‡ with the cross-section data [27], and several lattice collab-
orations have now confirmed this result [28]-[31].

1Details of dispersion integrals will be treated in Chapter 3.

12



13 2.2. The Standard Model prediction versus measurement

B. Higher-order hadronic contributions

We will now briefly discuss the higher order hadronic contribution to the muon g-2, aHHO
µ ,

which can be divided into several parts:

aHHO
µ = aHVP

µ (NLO) + aHVP
µ (NNLO) + aHlbl

µ (LO) + aHlbl
µ (NLO) . (2.28)

The first and second terms on the r.h.s. are the O(–3) and O(–4) contributions to aµ of
diagrams containing HVP insertion, while the third and the fourth terms are the hadronic
light-by-light contributions at LO and NLO. The term aHVP

µ (NLO) was computed in
[112, 113]. In recent years it was re-evaluated by Keshavarzi et al. [12]

aHVP
µ (NLO) = ≠98.3 (7) ◊ 10≠11, (2.29)

where the error is due to the experimental measure of hadronic e+e≠ annihilation data.
The term aHVP

µ (NNLO) was computed in [14]:

aHVP
µ (NNLO) = 12.4 (1) ◊ 10≠11. (2.30)

The latest value for aHlbl
µ (LO) was reported in [5]

aHlbl
µ (LO) = +92 (19) ◊ 10≠11. (2.31)

The error is about 20% and it is completely dominated by the model estimates of a
numerically subdominant part of the total. The NLO hadronic light-by-light contribution
has been estimated to be [5, 114]:

aHlbl
µ (NLO) = 2 (1) ◊ 10≠11. (2.32)

2.2 The Standard Model prediction versus measure-
ment

The WP 2020 Theory Initiative value for muon g-2 is:

aSM
µ = aQED

µ + aEW
µ + aHLO

µ + aHHO
µ = 116 591 810 (43) ◊ 10≠11. (2.33)

The measurement of the anomalous magnetic moment of negative muons by the ex-
periment E989 at Fermilab [1, 2] is

aFNAL
µ≠ = 116 592 055 (24) ◊ 10≠11 (0.20ppm). (2.34)

The BNL E821 and Fermilab E989 experimental average is:

aEXP
µ≠ = 116 592 059 (22) ◊ 10≠11 (0.19ppm). (2.35)

The comparison of the WP 2020 Theory Initiative value with the present experimental
average gives the discrepancy

aEXP
µ ≠ aSM

µ = 249 (48) ◊ 10≠11, (2.36)

13



Chapter 2. The Muon Anomalous Magnetic Moment 14

Figure 2.5: Experimental values of aµ from BNL E821 [3], FNAL Run-1 result [1], Run-2
and Run-3 measurement [2], the combined Fermilab result, and the new experimental av-
erage. The inner tick marks indicate the statistical contribution to the total uncertainties.
Figure taken from [2].

corresponding to a 5.1‡ discrepancy. However, the BMW lattice QCD result for the LO
HVP contribution to aµ reduces this discrepancy to less than 2‡ [25].

The E989 experiment is expected to reach a sensitivity four-times better than the
earlier E821 experiment at Brookhaven [3]. In addition, a completely new low-energy
approach to measuring the g-2 is being developed by the E34 collaboration at J-PARC
[4].

14



Chapter 3

Hadronic Vacuum Polarization
Contributions to the Muon g-2 in
the Space-Like Region

In the pursuit of new physics, low-energy high-precision measurements serve as a valuable
complement to the high-energy frontier of the LHC. Over the years, the persistent discrep-
ancy between the experimental value of the muon anomalous magnetic moment and the
prediction of the Standard Model (SM) has been regarded as one of the most intriguing
indications of physics beyond the SM. However, the precision of the SM prediction, which
stands at 43 ◊ 10≠11, is hindered by the presence of strong interaction e�ects that cannot
be reliably computed perturbatively at low energies. The persistent tension between the
lattice results and dispersive ones makes the determination of the HVP contribution to
aµ through alternative methods desirable. This will be the topic for this Chapter.

In recent times, a novel experiment known as MUonE has been proposed at CERN
with the objective of determining the leading-order hadronic contribution to the muon
g-2. This experiment aims to measure the e�ective electromagnetic coupling in the space-
like region through scattering data [32]-[34]. A comparison of experimental data with
perturbative calculations can be used to extract the hadronic contribution to the running
of the QED coupling –. The elastic scattering of high-energy muons on atomic electrons
has been identified as an ideal process for carrying out this measurement. The e�ects
of the HVP changes the di�erential cross section of µe scattering by up to O(10≠3),
depending on the scattering angle of the outgoing electron. To achieve a determination of
the HVP with a precision below one percent, it is imperative to measure the shape of the
µe di�erential cross section with a systematic uncertainty of the order of 10 ppm or better.
Consequently, an analogous level of precision is required in the theoretical prediction [32],
[35]-[54].

The precision expected at the MUonE experiment also raised the question whether
possible new physics (NP) could a�ect its measurement. The problem was addressed in
[106], studying possible NP signals in muon-electron scattering at MUonE due to heavy
or light mediators (depending on whether their mass is higher or lower than 1 GeV). The

15



Chapter 3. Hadronic Vacuum Polarization Contributions to the Muon g-2 in the
Space-Like Region 16

former were analysed through an e�ective field theory approach in a model-independent
way, while for the latter di�erent scenarios with light spin-0 and spin-1 bosons were
discussed. The authors showed that possible NP e�ects in muon-electron scattering are
expected to lie below MUonE’s sensitivity, hence concluding that it is very unlikely that
NP contributions will contaminate MUonE’s extraction of the HVP. Another research of
NP signals at MUonE was dealt with in [107], where the authors addressed the sensitivity
of the experiment to new light scalar or vector mediators, able to explain the muon g-
2 discrepancy. They concluded that the measurement of the HVP at MUonE is not
vulnerable to these NP scenarios. Therefore these two analysis reach similar conclusions
where they overlap. These results confirm and reinforce the physics case of the MUonE
experiment.

3.1 MUonE theoretical framework
In the previous chapter, we explored the computation of the leading-order (LO) hadronic
contribution to the muon g-2 using dispersion relations and the optical theorem. This
contribution is expressed by formula (2.25). It is important to note that R(s) represents
the ratio of the total cross section for e+e≠ annihilation into hadrons and the Born cross
section for e+e≠ annihilation into µ+µ≠. In the integrand of formula (2.25), this function
exhibits significant fluctuations at low energies due to the presence of hadronic resonances
and threshold e�ects. Typically, the dispersive integral in formula (2.25) is evaluated by
utilizing the experimental measurement of R(s) up to a certain value of s, combined with
perturbative QCD in the high-energy region [108]. This approach is referred to as the
time-like approach, but an alternative formula can also be exploited [32]. The optical
theorem relates the R(s) ratio with the imaginary part of the renormalized HVP function

R(s) = 3
–

Im�h(s), (3.1)

so that Eq. (2.25) can be written as

aHVP
µ (LO) = –

fi2

⁄ Œ

s0

ds

s
K(2)(s/m2) Im�h(s). (3.2)

Now, if we exchange the x and the s integration in the equation (3.2), we obtain

aHLO
µ = –

fi

⁄ 1

0
dx (x ≠ 1)�h[t(x)]

= –

fi

⁄ 1

0
dx (1 ≠ x)�–h[t(x)],

(3.3)

where �–h(t) = ≠�h(t) is the hadronic contribution to the running of the fine-structure
constant, evaluated at

t(x) =
x2m2

µ

x ≠ 1 < 0, (3.4)

16



17 3.2. Kinematics of µe scattering

the space-like squared four-momentum transfer. In contrast with the integrand function
of Eq. (2.25), the integrand in the Eq. (3.3) is smooth and free of resonances.

By measuring the running of –,

–(t) = –(0)
1 ≠ �–(t) , (3.5)

where t = q2 < 0 and –(0) = – is the fine-structure constant in the Thomson limit,
the hadronic contribution �–h(t) can be extracted by subtracting from �–(t) the purely
leptonic part �–¸(t), which can be calculated order-by-order in perturbation theory. Re-
cently, an alternative evaluation of the LO HVP contribution to aµ at MUonE as been
proposed in [115].

3.2 Kinematics of µe scattering
The MUonE experiment proposes to direct a 160 GeV muon beam towards a fixed target
made of Beryllium or Carbon. To ensure an adequate number of events for statistical
analysis and minimize the impact of multiple-scattering e�ects [109, 116], the target is
divided into numerous thin layers. The experiment aims to achieve a high level of precision
in measuring the scattering angles of the electrons ◊e and muons ◊µ in the laboratory
frame.

From an idealised point of view we consider

µ±(p1)e≠(p2) æ µ±(p3)e≠(p4) + X (3.6)

where the initial electron is at rest and X stands for any further radiation. Since the
energy of the incoming muon is set to E1 = 160 GeV, the center-of-mass energy is fixed
as s = m2

e + m2
µ + 2meE1 ƒ (400 MeV)2, where me and mµ denote the electron and muon

mass, respectively. The momentum transfer t ranges from tmin ƒ ≠(391 MeV)2 to zero.
Therefore, there are two widely di�erent scales entering the process with m2

e π Q2, where
Q2 stands for the large scales m2

µ ≥ s ≥ |t|. The resulting large logarithms log(m2
e/Q2)

will have to be properly accounted for the theoretical treatment of the process.
In a fixed-target experiment, where the electron is initially at rest, the Mandelstam

variables s and t are given by

s = m2
µ + m2

e + 2meE1,

t = 2m2
e ≠ 2meE4,

tmin = ≠
⁄(s, m2

µ, m2
e)

s
Æ t Æ 0.

(3.7)

Here E1 is the energy of the incident muon, E4 is the electron recoil energy and

⁄(a, b, c) = a2 + b2 + c2
≠ 2ab ≠ 2ac ≠ 2bc (3.8)

is the Källén function. The third Mandelstam variable u is related to s and t in the usual
way as s + t + u = 2m2

µ + 2m2
e. It is also convenient to define the variable x that is related

17
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Figure 3.1: The elasticity curve, i.e. the relation between the muon and the electron
scattering angles for 150 GeV incident muon beam momentum [40].

to t as

x(t) =
3

1 ≠

Û

1 ≠
4m2

µ

t

4
t

2mµ
. (3.9)

With tmin ƒ ≠(391 MeV)2 the range of x is 0 Æ x . 0.936 and x = 0 corresponds to
t = 0. Given the incoming muon energy E1, in a fixed target experiment the variable t is
also related to the energy of the scattered electron E4 or its angle ◊e:

E4 = m
1 + r2c2

e

1 ≠ r2c2
e

, ◊e = arccos
31

r

Û
E4 ≠ me

E4 + me

4
, (3.10)

where

r ©

Ò
E2

1 ≠ m2
µ

E1 + me
, ce © cos ◊e. (3.11)

The angles of the scattered electron and muon are correlated as shown in Fig. 3.1.
The mentioned constraint plays a crucial role in the selection of elastic scattering events,
enabling the rejection of background events stemming from radiative or inelastic processes.
It also serves to minimize systematic e�ects when determining the scattering variable,
denoted as t. It is important to note that for scattering angles within the range of
(2 ≠ 3) mrad, an ambiguity arises between the outgoing electron and muon due to their
similar angles and momenta. This ambiguity can be resolved through the use of µ ≠ e
discrimination.

The MUonE experiment is expected to extract �–h(t) from the shape of the di�erential
µe scattering cross section by a template fit method [34]. The basic idea is that �–h(t) can
be obtained measuring, bin by bin, the ratio Ni/Nn, where Ni is the number of scattering
events in a specific t-bin, labelled by the index i, and Nn is the number of events in the
normalization t-bin corresponding to x(t) ≥ 0.3 (for this value of x, �–h(t) is comparable

18



19 3.3. The HVP contribution at leading order

to the experimental sensitivity expected at MUonE and its error is negligible). Therefore,
this measurement will not rely on the absolute knowledge of the luminosity. To extract
the leading hadronic correction to the µe scattering cross section in the t-bin i, one can
split the theoretical prediction into

‡th,i = ‡(0)
i [1 + 2�–h,i + ”i + ”NP,i], (3.12)

where ‡(0)
i is the LO QED prediction integrated in the t-bin i, 2�–h,i is the leading

hadronic correction, ”i is the reminder of the SM corrections, and ”NP,i is a possible NP
contribution. The experimentally measured ratio Ni/Nn can then be equated with the
ratio of the theoretical predictions,

Ni

Nn
= ‡th,i

‡th,n
ƒ

‡(0)
i

‡0
n

[1 + 2(�–h,i ≠ �–h,n) + (”i ≠ ”n) + (”NP,i ≠ ”NP,n)]. (3.13)

As �–h,n is known with a negligible error, if (”i ≠”n) is computed with su�cient precision,
one can extract

2�–h,i + (”NP,i ≠ ”NP,n), (3.14)
bin by bin, from Ni/Nn. Equation (3.13) shows that the impact of the SM corrections on
this extractions can only be established after subtracting their value in the normalization
region, and that, as we underlined before, the MUonE experiment will not be sensitive
to a NP signal constant in t relative to the LO QED one, i.e. such that ”NP,i = ”NP,n

[106]. In any case, as already discussed, possible NP e�ects in muon-electron scattering
are expected to lie below MUonE’s sensitivity.

3.3 The HVP contribution at leading order
Following [46], we now present simple analytic expressions to compute the hadronic vac-
uum polarization contribution to the muon g-2 in the space-like region up to next-to-
next-to-leading order. These results can be employed in lattice QCD calculations of this
contribution as well as in space-like determinations based on scattering data, like that
expected from the proposed MUonE experiment at CERN.

3.3.1 Time-like method
Consider the hadronic component of the vacuum polarization (VP) tensor with four-
momentum q,

i�µ‹
h (q) = i�h(q2)

1
gµ‹q2

≠ qµq‹
2

=
⁄

d4x eiqx
È0|T {jµ

em(x)j‹
em(0)} |0Í, (3.15)

where jµ
em(x) is the electromagnetic hadronic current and �h(q2) is the renormalized

hadronic vacuum polarization function satisfying the condition �h(0) = 0. The func-
tion �h(q2) cannot be computed using perturbation theory due to the non-perturbative
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µµ

Figure 3.2: The leading, O(–2), hadronic contribution to the muon g-2. The red blob
indicates the HVP insertion.

behaviour of strong interactions at low energy. Yet, the optical theorem
Im�h(s) = (–/3)R(s), (3.16)

where – is the fine-structure constant and the R-ratio is

R(s) = ‡(e+e≠
æ hadrons)

4fi–2/(3s) (3.17)

allows to express the imaginary part of the hadronic vacuum polarization in terms of
the measured cross section of the process e+e≠

æ hadrons as a function of the positive
squared four-momentum transfer s. This result forms the basis for the time-like method.

The LO hadronic contribution to the muon g-2, due to the O(–2) diagram in Fig.
3.2, can be calculated integrating experimental time-like (i.e. q2 > 0) data using the
well-known formula [105]-[111]

aHVP
µ (LO) = –

fi2

⁄ Œ

s0

ds

s
K(2)(s/m2) Im�h(s), (3.18)

where m is the muon mass and s0 = m2
fi0 is the squared neutral pion mass. Defining

z = q2

m2 (3.19)

and the rationalizing variable

y(z) =
z ≠

Ò
z(z ≠ 4)

z +
Ò

z(z ≠ 4)
, (3.20)

the second-order function K(2)(z) is

K(2)(z) = 1
2 ≠ z +

A
z2

2 ≠ z

B

ln z

+ ln y(z)
Ò

z(z ≠ 4)

A

z ≠ 2z2 + z3

2

B

. (3.21)

For z Ø 0, K(2)(z) is real, positive and monotonic (it has no cut for 0 Æ z Æ 4). At
z = 0, K(2)(0) = 1/2, while for z æ +Œ the asymptotic behaviour of the kernel function
is K(2)(z) æ 1/(3z), therefore vanishing at infinity.
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21 3.3. The HVP contribution at leading order

3.3.2 Space-like method
The time-like expression for aHVP

µ (LO) provided by (3.18) can be rewritten using the
dispersion relation satisfied by K(2)(z) [117],

K(2)(z) = 1
fi

⁄ 0

≠Œ
dzÕ ImK(2)(zÕ)

zÕ ≠ z
, z > 0. (3.22)

Indeed, replacing K(2)(s/m2) in (3.18) with (3.22) and integrating over s via the sub-
tracted dispersion relation satisfied by �h(q2),

�h(q2)
q2 = 1

fi

⁄ Œ

s0

ds

s

Im�h(s)
s ≠ q2 , q2 < 0, (3.23)

we obtain the space-like expression

aHVP
µ (LO) = ≠

–

fi2

⁄ 0

≠Œ

dt

t
�h(t) ImK(2)(t/m2). (3.24)

The function K(2)(z), real for any z Ø 0, has a cut along the negative real axis z < 0
with the imaginary part

ImK(2)(z + i‘) = fi ◊(≠z)
S

Uz2

2 ≠ z + z ≠ 2z2 + z3/2
Ò

z(z ≠ 4)

T

V

= fi ◊(≠z) F (2)(1/y(z)), (3.25)

where
F (2)(u) = u + 1

u ≠ 1 u2. (3.26)

The i‘ prescription, with ‘ > 0, indicates that, in correspondence of the cut, the function
ImK(2)(z) is evaluated approaching the real axis from above.

If in Eq. (3.24) one uses the explicit expression for ImK(2)(t/m2) of Eq. (3.25) and
changes the integration variable from t to x = 1 + y via the substitution

t(x) = m2x2

x ≠ 1 , (3.27)

obtained from (3.20), one finds [118]

aHVP
µ (LO) = –

fi

⁄ 1

0
dx Ÿ(2)(x) �–h(t(x)), (3.28)

where the space-like kernel is remarkably simple,

Ÿ(2)(x) = 1 ≠ x (3.29)

and �–h(t) = ≠�h(t) is the (five-flavor) hadronic contribution to the running of the
e�ective fine-structure constant in the space-like region.
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4a 4b

e, τ

4c 4d

Figure 3.3: LO and sample NLO diagrams contributing to the HVP correction to the
muon g-2.

Equation (3.28) (or forms equivalent to it) is used in lattice QCD calculations of
aHVP

µ (LO) (see e.g. [119] and a discussion in [5]). It also forms the basis for the MUonE
proposal to determine aHVP

µ (LO) via muon-electron scattering data [32]-[40], as we have
seen in Section 3.1.

We note that, in Fig. 3.2 a virtual photon can be emitted and reabsorbed by the HVP
insertion of the LO diagram. These represent irreducible hadronic contributions of higher
order in –, that are normally incorporated into the time-like determinations of aHVP

µ (LO)
by including corrections for final-state radiation in the R-ratio (see e.g. [5, 6])1. For a
meaningful comparison, space-like evaluations of aHVP

µ (LO) should also incorporate these
higher-order corrections. This can be accomplished by including them in the expression
for �–h(t) in Eq. (3.28). In this regard, the fully inclusive measurement of �–h(t)
from the MUonE experiment is particularly advantageous [39]. By incorporating these
higher-order corrections, the MUonE experiment provides an ideal platform for obtaining
a comprehensive understanding of the hadronic vacuum polarization contribution in the
space-like region.

3.4 The HVP contribution at NLO

The hadronic vacuum polarization contribution to the muon g-2 at NLO, aHVP
µ (NLO) has

been studied as early as in Ref. [112]. This contribution arises from O(–3) diagrams,
which can be categorized as follows (see Fig. 3.3). Class (4a) comprises diagrams where
a single HVP insertion appears in one of the photon lines of the two-loop QED diagrams

1Note that, consistently, the lower limit of integration in Eq. (3.18) has been chosen to be s0 = m
2
fi0 ,

the threshold of the fi0“ cross section.

22



23 3.4. The HVP contribution at NLO

contributing to the muon g-2, without any VP insertion due to electron or tau loops2.
Class (4b) contains diagrams with one HVP and one additional VP due to an electron or
tau loop. Class (4c) consists of the single diagram with two HVPs. Class (4d) diagrams
contain internal radiative corrections to the HVP. As mentioned in the previous section, it
is important to note that the contribution belonging to Class (4d) is not considered as part
of aHVP

µ (NLO), even though of the same order in –, because it is already incorporated
into aHVP

µ (LO). Similarly, the contributions at O(–4), which arise by adding a virtual
photon emitted and reabsorbed by an HVP insertion to the diagrams of classes (4a), (4b),
and (4c), should be included in aHVP

µ (NLO). Although these contributions are of higher
order in –, they need to be accounted for either via the R-ratio method in the time-like
approach or via �–h(t) in the space-like approach. If a second virtual photon is attached
to the HVP insertion of class (4d), the resulting contribution should be incorporated into
aHVP

µ (LO) (See also Section 3.5).
Numerically, class (4a) yields the largest (negative) contribution, class (4b) partially

cancels it, and the contribution of class (4c) is small, as expected. Their sum

aHVP
µ (NLO) = a(4a)

µ + a(4b)
µ + a(4c)

µ (3.30)

is negative and of the order O(10≠9).

3.4.1 Class (4a)
The NLO HVP contribution of class (4a) to the muon g-2 can be written in the time-like
form [117]

a(4a)
µ = –2

fi3

⁄ Œ

s0

ds

s
2K(4)(s/m2) Im�h(s). (3.31)

The fourth-order function K(4)(z) was first computed by Barbieri and Remiddi in [117].3
Its lengthy expression is reported in their Eq. (3.21) for z > 0, where it is real and
negative. An approximate series expansion for K(4)(s/m2) in the parameter m2/s, with
terms up to fourth order, can be found in [113]. Like K(2)(z), the function K(4)(z) is real
for any z Ø 0, has a cut for z < 0, and satisfies the dispersion relation

K(4)(z) = 1
fi

⁄ 0

≠Œ
dzÕ ImK(4)(zÕ)

zÕ ≠ z
, z > 0. (3.32)

Just as we did for aHVP
µ (LO), using the dispersion relations (3.23) and (3.32) the NLO

hadronic contribution of class (4a) can be cast in the space-like form

a(4a)
µ = ≠

–2

fi3

⁄ 0

≠Œ

dt

t
�h(t) 2ImK(4)(t/m2). (3.33)

2This class comprises also the contribution given by the diagram with one HVP and one additional
VP due to muon loop in the same photon line

3Note the coe�cient 2 in front of the function K
(4)(z) due to the original normalization chosen in

Ref. [117].
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The function ImK(4)(t/m2) can be calculated from K(4)(z) expression of Ref. [117]. Taking
the imaginary parts of the polylogarithms of order 1, 2, and 3, we obtain4 [46]

ImK(4)(z + i‘) = fi ◊(≠z) F (4)(1/y(z)), (3.34)
where

F (4)(u) = R1(u) + R2(u) ln(≠u)
+ R3(u) ln(1 + u) + R4(u) ln(1 ≠ u)
+ R5(u)

Ë
4Li2(u) + 2Li2(≠u)

+ ln(≠u) ln
1
(1 ≠ u)2(1 + u)

2È
, (3.35)

and the rational functions Ri(u) (u = 1, . . . , 5) are

R1 =23u6
≠37u5+124u4

≠86u3
≠57u2+99u+78

72(u ≠ 1)2u(u + 1) ,

R2 =12u8
≠11u7

≠78u6+21u5+4u4
≠15u3+13u+6

12(u ≠ 1)3u(u + 1)2 ,

R3 =(u + 1) (≠u3 + 7u2 + 8u + 6)
12u2 ,

R4 =≠7u4
≠ 8u3 + 8u + 7

12u2 ,

R5 = ≠
3u4 + 5u3 + 7u2 + 5u + 3

6u2 . (3.36)

The dilogarithm is Li2(u) = ≠
s u

0 (dv/v) ln(1 ≠ v).
Using the explicit expression for ImK(4)(t/m2) of (3.34), (3.33) can be conveniently

expressed in terms of the variable x = 1 + y. We obtain

a(4a)
µ =

3
–

fi

42⁄ 1

0
dx Ÿ(4)(x) �–h(t(x)), (3.37)

where, for 0 Æ x < 1,
Ÿ(4)(x) = 2 ≠ x

x (x ≠ 1) 2F (4)(x ≠ 1). (3.38)

Equation (3.37) is the analogue of (3.28) for the NLO contribution of class (4a).
Figure 3.4 shows the space-like functions Ÿ(2)(x) and Ÿ(4)(x) entering the aHVP

µ (LO)
and a(4a)

µ expressions, respectively. We note that the function Ÿ(4)(x) provides a stronger
weight to �–h(q2) at large negative values of q2 than Ÿ(2)(x). In particular, for q2

æ

≠Œ, Ÿ(2)(1) = 0, whereas Ÿ(4)(1) = ≠23/18. Figure 3.5 shows the LO integrand
(–/fi)Ÿ(2)(x)�–h(t(x)) of (3.28) and the NLO integrand (–/fi)2Ÿ(4)(x)�–h(t(x)) of (3.37),
multiplied by 107 and ≠108, respectively. The Fortran libraries KNT18VP [8], [108], [122]-
[125] were used for the numerical implementation of �–h(t(x)) in the space-like region.
The LO integrand has a peak at x ≥ 0.914, where t ≥ ≠(0.33GeV)2. On the other hand,
the NLO integrand of class (4a) increases monotonically with x æ 1 (i.e. with t æ ≠Œ)
like ≥ ln(1 ≠ x).

4After presenting our ImK
(4)(z) result, Eqs. (3.34–3.36), in [120] (see also [121]), we were informed

by Alexander Nesterenko that he has independently derived it in [45].
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Figure 3.4: The space-like functions Ÿ(2)(x) (blue), Ÿ(4)(x) (orange) and Ÿ̃(4)(x) (green).
Figure taken from [46].
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Figure 3.5: The integrands (–/fi)Ÿ(2)(x)�–h(t(x)) (blue) and (–/fi)2Ÿ(4)(x)�–h(t(x)) (or-
ange) of Eqs.(3.28) and (3.37), multiplied by 107 and ≠108, respectively. Figure taken
from [46].
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In Ref. [24], an approximate expression for the space-like formula in Eq. (3.37) was
derived. The authors obtained this approximation by considering the fourth-order series
expansion of the time-like function K(4)(s/m2) from Ref. [113], which is valid for small
values of the parameter r = m2/s. This series expansion only contains powers rn of degree
n = 1, 2, 3, 4, multiplied by constants, ln r, and (ln r)2 terms. Then, as suggested in [126],
they exploited generating integral representations to fit the rn and rnln r terms of the
approximate fourth-order series expansion for K(4)(1/r), but not the rn(ln r)2 ones, and
used the usual dispersion relation satisfied by �h(q2) to perform the integral over s. By
making simple changes of variables, their approximation can be compared with our exact
function Ÿ(4)(x). We repeated the analysis of Ref. [24] confirming their approximate result
(in particular, their Eqs. (A1,A2)) which, translated in our notation, will be called here
Ÿ̃(4)(x).

The approximate function Ÿ̃(4)(x) is shown in Fig. 3.4 (indicated by the green line).
While the exact function Ÿ(4)(x) exhibits a smooth variation across the entire range of
0 Æ x Æ 1, Ÿ̃(4)(x) displays strong oscillations. This oscillatory behavior can lead to
significant numerical cancellations when Ÿ̃(4)(x) is used in the integral of Eq. (3.37) instead
of the exact function Ÿ(4)(x). Using the Fortran libraries KNT18VP [8], [108], [122]-[125]
for the numerical implementation of �–h(t(x)) in the space-like region, we computed two
numerical values for a(4a)

µ in Eq. (3.37): one obtained using the exact function Ÿ(4)(x) and
a second one obtained replacing Ÿ(4)(x) with the approximate Ÿ̃(4)(x). The two values
di�er by about 3%. Adding to a(4a)

µ the contributions a(4b)
µ and a(4c)

µ (discussed later), the
total aHVP

µ (NLO) contribution computed using the Ÿ̃(4)(x) approximation di�ers from the
one computed via our exact function Ÿ(4)(x) by about 6%.

It is interesting to investigate the source of the above ≥ 6% discrepancy. To im-
prove the Ÿ̃(4)(x) approximation, we proceeded in two directions. Firstly, we repeated the
analysis of Ref. [24], starting however from higher-order series expansions for the exact
K(4)(s/m2) function of Barbieri and Remiddi [117] (we considered n up to nmax = 24),
rather than from the fourth-order (i.e. nmax = 4) series expansion for K(4)(s/m2) of
Ref. [113]. Secondly, we improved the approximation by incorporating generating inte-
gral representations to fit not only the rn and rnln r terms but also the rn(ln r)2 terms,
which were omitted in the previous analysis. The inclusion of these additional terms sig-
nificantly improved the Ÿ(4)(x) approximations, even without increasing the order nmax
of the series expansion for K(4)(s/m2) beyond four. Calling Ÿ̄(4)(x, nmax) our improved
approximation to Ÿ(4)(x), obtained including rn(ln r)2 terms and starting from the series
expansion for K(4)(s/m2) up to order nmax, we verified that the total aHVP

µ (NLO) con-
tribution computed using our Ÿ̄(4)(x, 4) di�ers by less than one per mille from the one
computed via our exact function Ÿ(4)(x). Even better agreements were reached increasing
the order nmax.

In Ref. [24], the authors added an O(10%) uncertainty to their final result to account
for the error arising from neglecting the rn(ln r)2 terms in their approximation. This
uncertainty, which dominates the error of their final result, can be eliminated using the
exact formula for Ÿ(4)(x) provided above.
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27 3.5. The HVP contribution at NNLO

3.4.2 Classes (4b) and (4c)
The space-like expressions for the contributions of classes (4b) and (4c) to the muon g-2
are [6, 24]

a(4b)
µ = –

fi

⁄ 1

0
dx Ÿ(2)(x) �–h(t(x))

◊ 2
Ë
�–(2)

e (t(x)) + �–(2)
· (t(x))

È
, (3.39)

a(4c)
µ = –

fi

⁄ 1

0
dx Ÿ(2)(x) [�–h(t(x))]2 , (3.40)

where �(2)
¸ (t) = ≠�–(2)

¸ (t) is the renormalized one-loop QED vacuum polarization func-
tion in the space-like region, with a lepton ¸ = e, · in the loop,

�(2)
¸ (t) = –

fi

C
8
9 ≠

—2
¸

3 + —¸

A
1
2 ≠

—2
¸

6

B

ln —¸ ≠ 1
—¸ + 1

D

(3.41)

and —¸ =
Ò

1 ≠ 4m2
¸/t. Equations (3.39,3.40) can be immediately obtained from the time-

like formulae of Ref. [113] using the usual dispersion relation satisfied by �h(t) and �(2)
¸ (t)

to perform the integrals over s [24, 118].
Figure 3.6 shows the NLO integrands of Eqs. (3.37), (3.39), and (3.40), multiplied by

≠108, 108, and 108, respectively. Once again, the Fortran libraries KNT18VP [8], [108],
[122]-[125] were used for �–h(t(x)).

3.5 The HVP contribution at NNLO
The hadronic vacuum polarization contribution to the muon g-2 at NNLO, aHVP

µ (NNLO),
is due to several diagrams of order O(–4). We divide them into following classes (see
Fig. 3.7)5: class (6a) contains diagrams with one HVP insertion and up to two photons
added to the LO QED Feynman graph; it also includes diagrams with one or two muon VP
loops and the light-by-light graph with a muon loop. Class (6b) comprises diagrams with
one HVP insertion and one or two electron VP loops and additional photonic or muon VP
corrections; it also includes diagrams with one electron VP loop with an HVP insertion
inside it. Class (6bll) diagrams have one HVP insertion and light-by-light graphs with an
electron loop; in these diagrams, the external photon couples to the electron. Class (6c)
contains diagrams with two HVP insertions and additional photonic corrections and/or
electron or muon VP loops. Class (6d) consists of the diagram with three HVP insertions.
All of these classes were studied in Ref. [14] in the time-like approach.

Class (6e) diagrams are obtained by adding to those of classes (4a), (4b) and (4c) a
virtual photon emitted and reabsorbed by an HVP insertion. As discussed in the previous
section, their contribution should not be considered as part of aHVP

µ (NNLO), although of
the same order in –, because it is already incorporated into aHVP

µ (NLO) via the R-ratio
5At NNLO we neglect the contribution of tau loops as it is estimated to be smaller than O(10≠12)

[14]
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Figure 3.6: The NLO integrands of Eqs. (3.37) (blue), (3.39) (orange), and (3.40) (green),
multiplied by ≠108, 108, and 108, respectively. Figure taken from [46].

(in the time-like approach) or via �–h(t) (in the space-like one). The impact of class (6e)
can be roughly estimated considering the corresponding class of diagrams where the HVP
insertion is replaced by a muon VP; that four-loop QED contribution to the muon g-2
is ≠1.63 ◊ 10≠12 [80]. The e�ect of class (6e) can thus be estimated to be of O(10≠12).
Similarly, the corrections of class (6f), where two photons are emitted and reabsorbed
by the HVP insertion of the LO diagram, should be already included in aHVP

µ (LO). Once
again, this contribution can be estimated replacing the HVP insertion by a muon VP:
1.44 ◊ 10≠12 [80]. Also the e�ect of class (6f) can thus be estimated to be of O(10≠12).
The contribution of class (6g1) was recently studied in Ref. [127], where it was estimated
to be . 1 ◊ 10≠11. The impact of classes (6g2) and (6h) can be estimated, once more, via
the four-loop QED contribution obtained replacing the HVPs by muon VPs: 3.24 ◊ 10≠13

[80]. Classes (6f), (6g1), (6g2) and (6h) should be incorporated into aHVP
µ (LO).

The sum of the NNLO contributions is, therefore,

aHVP
µ (NNLO) = a(6a)

µ + a(6b)
µ + a(6bll)

µ + a(6c)
µ + a(6d)

µ . (3.42)

It is positive and of O(10≠10) [14].

3.5.1 Class (6a)
The contribution of class (6a) can be written in the time-like form [14]

a(6a)
µ = –3

fi4

⁄ Œ

s0

ds

s
K(6a)(s/m2) Im�h(s). (3.43)
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Figure 3.7: Sample O(–4) diagrams contributing to the HVP correction to the muon g-2.

In the study presented in [14], an approximated series expansion of the sixth-order function
K(6a)(z) in terms of the parameter r = m2/s was computed. This expansion includes
terms up to fourth order, involving powers rn with n = 1, 2, 3, 4, multiplied by constants,
ln r, (ln r)2 and (ln r)3 terms. Following a procedure similar to that described at NLO, we
exploited generating integral representations to fit all the rn, rnln r, rn(ln r)2, and rn(ln r)3

terms of the K(6a)(s/m2) expansion,

K(6a)
1
s/m2

2
= r

⁄ 1

0
d›

C
L(6a)(›)
› + r

+ P (6a)(›)
1 + r›

D

(3.44)

where

L(6a)(›) = G(6a)(›) + H(6a)(›) ln › + J (6a)(›) ln2 › (3.45)

and

G(6a)(›) = g(6a)
0 + g(6a)

1 › + g(6a)
2 ›2 + g(6a)

3 ›3, (3.46)
H(6a)(›) = h(6a)

0 + h(6a)
1 › + h(6a)

2 ›2 + h(6a)
3 ›3, (3.47)

J (6a)(›) = j(6a)
0 + j(6a)

1 › + j(6a)
2 ›2 + j(6a)

3 ›3, (3.48)
P (6a)(›) = p(6a)

0 + p(6a)
1 › + p(6a)

2 ›2 + p(6a)
3 ›3, (3.49)

Obtaining the coe�cients g(6a)
i ,h(6a)

i , j(6a)
i and p(6a)

i (i = 0, 1, 2, 3) are reported in Table
A.1 (from [46]) in Appendix A.
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Inserting the integral representation of Eq. (3.44) in Eq. (3.43) and using the dispersion
relation satisfied by �h(q2), one can perform the integral over s. With simple changes of
variables we obtain [46]

a(6a)
µ =

3
–

fi

43⁄ 1

0
dx Ÿ̄(6a)(x) �–h(t(x)), (3.50)

where, for 0 < x < xµ = (
Ô

5 ≠ 1)/2 = 0.618...,

Ÿ̄(6a)(x) = 2 ≠ x

x (1 ≠ x) P (6a)
A

x2

1 ≠ x

B

, (3.51)

whereas, for xµ < x < 1,

Ÿ̄(6a)(x) = 2 ≠ x

x3 L(6a)
31 ≠ x

x2

4
. (3.52)

We note that for x = xµ, t = ≠m2. The uncertainty of Eq. (3.50) due to the series
approximation of K(6a) is estimated to be less than O(10≠12).

3.5.2 Classes (6b) and (6bll)
The contributions of classes (6b) and (6bll) can be calculated using a similar approach
as class (6a). Indeed, in the time-like region, a(6b)

µ and a(6bll)
µ can be computed via Eq.

(3.43) replacing K(6a) with K(6b) and K(6bll), respectively. For these sixth-order kernel
functions, approximate series expansions in the parameters r = m2/s and fl = me/m
were computed in [14]. The highest order expansion terms provided are of O(fl2r4). By
following a similar procedure as described in Subsection 3.5.1, the expansions were fitted
to obtain integral representations analogous to that of Eq. (3.44) with the coe�cients g(6b)

i ,
h(6b)

i , j(6b)
i , p(6b)

i and g(6bll)
i , h(6bll)

i , j(6bll)
i , p(6bll)

i reported in Table A.2 and A.3, respectively
(from [46]). Using these integral representations, the contributions a(6b)

µ and a(6bll)
µ can be

calculated in the space-like region, following the equations (3.50)-(3.52) with appropriate
modifications already given above. The estimated uncertainties of these contributions,
due to the series approximations, are reported to be less than O(10≠12).

3.5.3 Class (6c)
The contribution of class (6c) in the time-like region is given by [14]

a(6c)
µ = –2

fi4

⁄ Œ

s0

ds

s

dsÕ

sÕ K(6c)
1
s/m2, sÕ/m2

2
Im �h(s) Im �h (sÕ) . (3.53)

In the case of class (6c) diagrams, which involve two HVP insertions, the time-like formula
(3.53) for a(6c)

µ requires two dispersive integrations of Im �h(s). In Ref. [14], asymptotic
expansions were provided for the function K(6c) (s/m2, sÕ/m2) in the limits sÕ

¥ s ∫ m2

and sÕ
∫ s ∫ m2. These expansions allow for an approximation of K(6c) (s/m2, sÕ/m2)

that is valid for all values of sÕ and s that are much larger than m2.
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31 3.5. The HVP contribution at NNLO

In the time-like approach, the number of dispersive integrations of Im �h(s) needed
to calculate the contribution of a diagram to the muon g-2 is determined by the number
of HVP insertions in the diagram. On the other hand, the required dimension of the
space-like integral of �–h(t) (or powers of it) equals the number of photon lines with
di�erent momenta containing HVP insertions. To obtain a space-like formula for a(6c)

µ ,
it is therefore convenient to separate the diagrams of class (6c) into the following four
sub-classes (6c1), (6c2), (6c3), and (6c4) (see Fig. 3.7).

The diagrams of subclass (6c1) contain two HVP insertions in the same photon line
and no other electron or muon loop. The exact space-like expression for their contribution
to the muon g-2 is therefore given by the one-dimensional integral [46]

a(6c1)
µ =

3
–

fi

42 ⁄ 1

0
dx⁄(4)(x) [�–h(t(x))]2 (3.54)

where the kernel function is

⁄(4)(x) = Ÿ(4)(x) ≠
2fi

–
Ÿ(2)(x)�–(2)

µ (t(x)) (3.55)

Ÿ(4)(x) is the exact fourth-order space-like kernel of Eq. (3.38) and Ÿ(2)(x) is the lowest-
order one of Eq. (3.29). In Eq. (3.54), the use of the subtracted kernel ⁄(4)(x) instead of
Ÿ(4)(x) guarantees the subtraction of the contribution, induced by Ÿ(4)(x), of two diagrams
containing two HVP and one muon VP in the same photon line.

The contribution of the three diagrams of subclass (6c3), containing two HVP and
one electron VP insertion in the same photon line, can be cast in the exact space-like
one-dimensional integral form [46]

a(6c3)
µ = 3–

fi

⁄ 1

0
dx Ÿ(2)(x) [�–h(t(x))]2 �–(2)

e (t(x)). (3.56)

Analogously, the exact contribution of subclass (6c4), comprising three diagrams with two
HVP and one muon VP insertion in the same photon, can be simply obtained replacing
�–(2)

e (t) with �–(2)
µ (t) in Eq. (3.56).

Subclass (6c2) includes diagrams with two HVP insertions in two di�erent photon
lines. Unlike the simple one-dimensional integral form seen in the previous expres-
sions for the contributions to the muon g-2, the presence of two di�erent photon lines
with HVP insertions in (6c2) necessitates a double space-like integration. In [46] we
therefore proceeded in two steps. First, we computed the approximate time-like kernel
K(6c2) (s/m2, sÕ/m2) for the subclass (6c2). This was obtained by calculating the exact
time-like kernels K(6c1) (s/m2, sÕ/m2), K(6c3) (s/m2, sÕ/m2) and K(6c4) (s/m2, sÕ/m2) from
the exact space-like expressions of Eqs. (3.54, 3.56), computing the series expansion of
these kernels in the limits sÕ

¥ s ∫ m2 and sÕ
∫ s ∫ m2. The obtained results from

these series expansions were then subtracted from the K(6c) (s/m2, sÕ/m2) approximation
available in Ref. [14]. In the second step, we performed a matching process where we com-
pared the LO terms of the approximate time-like kernel K(6c2) (s/m2, sÕ/m2) with those
obtained from a series expansion of a two-dimensional generating integral representation,
generalising to two-dimensions the method used earlier to fit the K(6a) (s/m2) expansion.
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Our result for the space-like expression of the contribution of subclass (6c2) to the muon
g-2 is [46]

a(6c2)
µ =

3
–

fi

42 ⁄ 1

xµ

dx
⁄ 1

xµ

dxÕ Ÿ̄(6c2) (x, xÕ) �–h(t(x))�–h (t (xÕ)) , (3.57)

where for xµ < {x, xÕ
} < 1,

Ÿ̄(6c2) (x, xÕ) = 2 ≠ x

x3
2 ≠ xÕ

xÕ3 G(6c2)
A

1 ≠ x

x2 ,
1 ≠ xÕ

xÕ2

B

(3.58)

and
G(6c2) (›, ›Õ) = 1

4 (32fi2 ≠ 315)◊

◊

C1
1855 ≠ 188fi2

2 min (›, ›Õ)
max (›, ›Õ)2 +

+
1
988fi2

≠ 9765
2 min (›, ›Õ)2

max (›, ›Õ)3 +

+24
1
435 ≠ 44fi2

2 min (›, ›Õ)3

max (›, ›Õ)4

D

.

(3.59)

This contribution is of O(10≠12). We note that the limits of integration in Eq. (3.57) are
xµ and 1, corresponding to values of t between ≠m2 and ≠Œ, respectively.

Equation (3.57) completes the list of space-like expressions for the contributions of
class (6c),

a(6c)
µ = a(6c1)

µ + a(6c2)
µ + a(6c3)

µ + a(6c4)
µ . (3.60)

The uncertainty of Eq. (3.60) due to the approximations of subclass (6c2) is less than
O(10≠12).

3.5.4 Class (6d)
The correction due to the single diagram of class (6d) can be written in the time-like form
[14]

a(6d)
µ = –

fi4

⁄ Œ

s0

ds

s

dsÕ

sÕ
dsÕÕ

sÕÕ K(6d) (s, sÕ, sÕÕ) Im �h(s) Im �h (sÕ) Im �h (sÕÕ) . (3.61)

The kernel K(6d) (s, sÕ, sÕÕ) for the triple hadronic insertion is given in integral form in [14].
On the other hand, the space-like expression for a(6d)

µ can be expressed in a simple exact
form, as provided in Ref. [6].

a(6d)
µ = –

fi

⁄ 1

0
dx Ÿ(2)(x) [�–h(t(x))]3 . (3.62)

It is worth noting that to compute a(6d)
µ in the time-like approach, three dispersive inte-

grations of Im �h (s) are required, while in the space-like approach, as given in Eq. (3.62),
only a one-dimensional integral is involved. Numerically, a(6d)

µ is very small, of O(10≠13).
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Chapter 4

Time-kernel for Lattice
Determinations of Computing
Hadronic Vacuum Polarization
Contributions to the Muon g-2

In this Chapter, following [128], we present approximations for the euclidean-time kernels
obtained from the HVP contributions to the muon g-2 in the space-like region up to next-
to-leading order. The series expansions presented overcome the problems given by their
asymptotic behaviour for large value of the time. These results can be employed in lattice
QCD determination of the HVP contribution to the muon g-2 up to NLO.

4.1 The time-kernel at LO
In the so-called time-momentum representation (TMR) discussed in [129]-[131] the sub-
tracted hadronic vacuum polarization function �̂h (Ê2) is directly obtained from the spa-
tially summed two-point correlator G(t) of the electromagnetic current, i.e.

�̂h
1
Ê2

2
= ≠

fi

–
�h

1
≠Ê2

2
= 4fi2

⁄ Œ

0
dt G(t)

5
t2

≠
4
Ê2 sin2

3
tÊ

2

46
, (4.1)

with
G(t)”kl = ≠

⁄
d3x ÈJk(x)Jl(0)Í, (4.2)

where Jµ(x) is the electromagnetic current, Ê2 is the Euclidean momentum and t is the
Euclidean time (note that in this Chapter t in not the Mandelstam variable). Therefore,
according to [132], the hadronic vacuum polarization aHVP

µ at LO is given by

aHVP
µ (LO) =

3
–

fi

42 ⁄ Œ

0
dt G(t) K̃(2)(t, mµ) , (4.3)

33



Chapter 4. Time-kernel for Lattice Determinations of Computing Hadronic Vacuum
Polarization Contributions to the Muon g-2 34

where K̃(2)(t, mµ) is the leading order time-kernel. The t-dependent kernel function is
obtained by performing the integral

K̃(2)(t, mµ) = f̃2(t) = 8fi2
⁄ Œ

0

dÊ

Ê
f2(Ê2)g(Êt), (4.4)

where
g(w) = w2

≠ 4 sin2
3

w

2

4
. (4.5)

In the following, we will use extensively the adimensional momentum and time

Ê̂ = Ê

mµ
, t̂ = mµt. (4.6)

The function f2(Ê2) can be written by using the space-like kernel F (2)(1/y(z)) from Eq.
(3.26)

f2(Ê2) = 1
m2

µ

F (2)(1/y(≠Ê̂2))
≠Ê̂2 , (4.7)

where y(z) is rationalizing variable

y(z) =
z ≠

Ò
z(z ≠ 4)

z +
Ò

z(z ≠ 4)
. (4.8)

Therefore, substituting the expression of F (2)(1/y(z)) from Eq. (3.26) one obtains

f2(Ê2) = 1
m2

µ

1
y(≠Ê̂2)(1 ≠ y2(≠Ê̂2)) . (4.9)

The integration over Ê is complicated and reported in Ref. [132], the result contains a
Miejer G-function and a modified Bessel function:

m2
µ

8fi2 f̃2(t) = 1
4G2,1

1,3

A 3
2

0, 1, 1
2

| t̂2
B

+ t̂2

4 + 1
t̂2 + 2 ln(t̂) ≠

2
t̂
K1(2t̂) + 2“ ≠

1
2 . (4.10)

This expression can be also written in terms of integrals of the Bessel functions instead of
the Meijer G-function (see a similar integral in Ref. [133]). This can be done by applying
to Eq. (4.10) the identity

G2,1
1,3

A 3
2

0, 1, 1
2

| t̂2
B

= ≠2 + 8
⁄ t̂

0
dv(v ≠ t̂)K0(2v)

= ≠4t̂K1(2t̂) ≠ 4fit̂2
1
K0(2t̂)L≠1(2t̂) + K1(2t̂)L0(2t̂)

2
,

(4.11)

where L≠1 and L0 are Struve functions.
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4.2 The time-kernel at NLO
Similarly to the LO, the hadronic vacuum polarization contribution at NLO (4a) in the
TMR can be written as follows

aHVP
µ (NLO) =

3
–

fi

43 ⁄ Œ

0
dt G(t) K̃(4)(t, mµ), (4.12)

where K̃(4)(t, mµ) is the NLO time-kernel. The t-dependent kernel function is obtained
by performing the integral

K̃(4)(t, mµ) = f̃4(t) = 8fi2
⁄ Œ

0

dÊ

Ê
f4(Ê2)g(Êt). (4.13)

For convenience we define an adimensional f̂4(Ê̂2):

f4(Ê2) = 1
m2

µ

f̂4(Ê̂2). (4.14)

As in the previous section, the function f̂4(Ê̂2) is related to the NLO space-like kernel
F (4)(1/y(z)) from Eq. (3.35)

f̂4(Ê̂2) = 2F (4)(1/y(≠Ê̂2))
≠Ê̂2 . (4.15)

In order to simplify the computation, by splitting the function g(Êt), we divided the
integral (4.13) into two parts

f̃4(t) = f̃ (a)
4 (t) + f̃ (b)

4 (t). (4.16)

The first part is
m2

µ

8fi2 f̃ (a)
4 (t) =

⁄ Œ

0

dÊ̂

Ê̂
f̂4(Ê̂2)(Ê̂2t̂2). (4.17)

This integral can be calculated in an analytical form. In fact, by substituting the expres-
sion given in Eq. (4.15), changing the variable Ê̂2

æ y, taking into account that F (4)(z)
represents the imaginary part of the time-like kernel function K(4)(z) as in Eq. (3.34) and
employing the dispersive integral for K(4)(z), we arrived at the following result [128]:

m2
µ

16fi2 f̃ (a)
4 (t) = t̂2

2

⁄ 0

≠Œ

dz

z
F (4)(1/y(z))

= t̂2

2

⁄ 0

≠Œ

dz

z

1
fi

Im K(4)(z) = t̂2

2 K(4)(0)

= t̂2

2

A
197
144 + fi2

12 ≠
1
2fi2 ln 2 + 3

4’(3)
B

.

(4.18)

In the above expression K(4)(0) is the value of the two-loop QED contribution to g-2 [5].
Notice that we have incorporated the factor 2 from Eq. (4.15) in the denominator 16fi2.
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The second part of the Eq. (4.16) is

m2
µ

8fi2 f̃ (b)
4 (t) =

⁄ Œ

0

dÊ̂

Ê̂
f̂4(Ê̂2)

A

≠4 sin2
A

Ê̂t̂

2

BB

. (4.19)

Substituting the expression (4.15) in Eq. (4.19), it becomes apparent that the inte-
grand involves terms like ln (y), ln (1 ± y), Li2(±y). While we could integrate analytically
individual logarithmic terms and products of logarithms, yielding intricate expressions
involving various Bessel functions, exponential integrals, and Meijer G-functions, we en-
countered challenges in analytically calculating the integrals involving dilogarithms of y.
As an alternative, in the next sections we will work out some series expansions for f̃4(t).

4.3 Expansion for small t̂

In this section we will work out the expansion of the NLO time-kernel (4.13) for t̂ π 1.
We splitted the interval of integration using an intermediate point Ê̂0(t̂):

⁄ Œ

0

dÊ̂

Ê̂
f̂4(Ê̂2)g(Ê̂t̂) =

⁄ Ê̂0(t̂)

0

dÊ̂

Ê̂
f̂4(Ê̂2)g(Ê̂t̂) +

⁄ Œ

Ê̂0(t̂)

dÊ̂

Ê̂
f̂4(Ê̂2)g(Ê̂t̂). (4.20)

Since the value of the integral is independent of the point of splitting Ê̂0(t̂), a convenient
choice is

Ê̂0(t̂) = 1 ≠ t̂
Ô

t̂
∫ 1. (4.21)

For the first integral, we expanded in series g(Ê̂t̂) for t̂ π 1, then we made the convenient
change of variable Ê̂ æ y = y(≠Ê̂2) (see Eq. (4.15)) and we integrated over the interval
≠1 Æ y Æ y(≠Ê̂2

0) = ≠t̂. In the second integral, we expanded in series f̂4(Ê̂2) for Ê̂ ∫ 1
and integrated over Ê̂. The whole f̃4(t) is obtained summing up the results of the two
integrals. The expansion has the form

m2
µ

16fi2 f̃4(t) =
ÿ

nØ4
n even

t̂n

n!

3
an + bnfi2 + cn

1
ln (t̂) + “

2
+ dn

1
ln (t̂) + “

22
4

. (4.22)

The coe�cients an, bn, cn and dn of the expansion up to t̂30 are available in Table B.1 in
Appendix B (from [128]).

4.4 Asymptotic expansions for large t̂

According to the di�erent behaviour of the function f̃ (b)
4 for t æ Œ, we decomposed it

into two parts:
f̃ (b)

4 (t) = f̃ (b;1)
4 (t) + f̃ (b;2)

4 (t). (4.23)
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4.4.1 Main contribution

The dominant contribution is the non-exponential part f̃ (b;1)
4 , and its asymptotic expansion

contains power of 1/t̂

f̃ (b;1)
4 (t) = A0 + A1t̂ + B0 ln (t̂) + B2

ln (t̂)
t̂2 +

Œÿ

n=1

Cn

t̂n
. (4.24)

Using the relation sin (u)2 = 1
2 (1 ≠ cos (2u)), we splitted the integrand of Eq. (4.19)

m2
µ

8fi2 f̃ (b;1)
4 (t) = 2 lim

‘æ0

C⁄ Œ

‘

dÊ̂

Ê̂
f̂4(Ê̂2) ≠

⁄ Œ

‘

dÊ̂

Ê̂
f̂4(Ê̂2) cos (Ê̂t̂)

D

, (4.25)

where ‘ serves as a regulator for the divergence in Ê̂ = 0. The coe�cients An, Bn, Cn can
be obtained by expanding in series f̂4(Ê̂2) around Ê̂ = 0,

f̂4(Ê̂2) = 1
8Ê̂

≠
1
2 +

A
ln(Ê̂)

2 + 251
2880 + ln 2

B

Ê̂ + . . . , (4.26)

substituting it in the second integral of Eq. (4.25) and formally integrating term by term
over Ê̂ using ⁄

dÊ̂ Ê̂n cos(Ê̂ t̂) = ≠n! sin (nfi/2) t̂≠1≠n . (4.27)

The first terms of the asymptotic expansion are [128]:

m2
µ

16fi2 f̃ (b;1)
4 (t) = ≠

fit̂

8 + ln t̂ ≠
7’(3)

4 + 7
6fi2 ln(2) ≠

127fi2

144 + “+

+ 653
216 ≠

5(ln t̂ + “)
12t̂2 ≠

fi

2t̂
+ 209

180t̂2 + 277fi

360t̂3 + O
3 1

t̂4

4
.

(4.28)

4.4.2 Exponentially suppressed contribution

The contribution exponentially suppressed is denoted by f̃ (b;2)
4 . Indeed, its asymptotic

expansion contains the factor e≠2t̂

f̃ (b;2)
4 (t) = e≠2t̂

Œÿ

n=0

A

Dn + En ln(t̂) + Fn
Ô

t̂

B
1
t̂n

, (4.29)

where Dn, En and Fn are constants.
The function f̃ (b;2)

4 (t) could also be represented as the integral over the contour C

shown in Fig. 4.1:
m2

µ

8fi2 f̃ (b;2)
4 (t) =

⁄

C

dÊ̂

Ê̂
f̂4(Ê̂2)2 cos

1
Ê̂t̂

2
. (4.30)

The appearance of the exponential factor is due to the singularities of the integrand
in Ê̂ = ±2i, which come from the terms containing

Ô
Ê̂2 + 4 in f̂4(Ê̂).
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Figure 4.1: In red, the path of integration around the discontinuities (in blue) giving the
exponentially suppressed contribution.

Since the coe�cients of the expansions (4.24) and (4.29) grows factorially, for a given
value of t̂, one needs to truncate the series, nevertheless the error due to the truncation
of the first series is of the same order of magnitude of the value of the second series. This
means that the asymptotic expansions (4.24) and (4.29) have a limited use for numerical
evaluations.

Due to this fact, in the next sections we will explore a di�erent approach, able to find
expansions around a finite point t̂ = t̂0 converging for t̂ æ Œ.

4.5 w-Integral representation for f̂ (b)
4

We started from the definition (4.19), adding and subtracting to the integrand f̂4(Ê̂2)/Ê̂
a piece h0(Ê̂), which contains the terms non-integrable in Ê̂ = 0 or Ê̂ = ±2i,

h0(Ê̂) = 1
8Ê̂2 + Ê̂fi

16(4 + Ê̂2)3/2 ≠
fi

2(4 + Ê̂2) . (4.31)

Defining

gb(Ê̂) = f̂4(Ê̂2)
Ê̂

≠ h0(Ê̂), (4.32)

38
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4

and
h̃0(t̂) =

⁄ Œ

0
2

1
cos(Ê̂t̂) ≠ 1

2
h0(Ê̂) dÊ̂

= fit̂

16 + fi2

8
1
e≠2t̂

≠ 1
2

+ 1
32fi2t̂

1
K0(2t̂) ≠ L0(2t̂)

2
,

(4.33)

we wrote
m2

µ

16fi2 f̃ (b)
4 (t) = h̃0(t̂) +

⁄ Œ

0
dÊ̂ 2

1
cos(Ê̂t̂) ≠ 1

2
gb(Ê̂). (4.34)

At this point we focused only on the integral with the cosine, decomposing the cosine in
exponentials

⁄ Œ

0
dÊ̂ gb(Ê̂) cos (Ê̂t̂) =

⁄ Œ

0
dÊ̂ gb(Ê̂)eiÊ̂t̂ + e≠iÊ̂t̂

2 , (4.35)

then splitting the integral. For the first exponential we rotated of fi/2 the integration
path in the complex-Ê̂ plane and made the change of variable Ê̂ æ iw. Similarly, for the
second one, we rotated of ≠fi/2 the integration path and made the change Ê̂ æ ≠iw.
Therefore:

⁄ iŒ

0
dÊ̂ gb(Ê̂)eiÊ̂t̂

2 +
⁄ ≠iŒ

0
dÊ̂ gb(Ê̂)e≠iÊ̂t̂

2 =
⁄ Œ

0
dw F0Œ(w)e≠wt̂, (4.36)

where F0Œ(w) is
F0Œ(w) = i

2 lim
‘æ0+

(gb(‘ + iw) ≠ gb(‘ ≠ iw)) ; (4.37)

in which we have introduced the regulator ‘ to make sure that the integration path remain
in the half-plane Ÿ(Ê̂) > 0. Due to the presence of the discontinuity, the limit is di�erent
if 0 < w < 2 or w > 2

F0Œ(w) =
I

F02(w), if 0 < w < 2
F2Œ(w), if w > 2

(4.38)

For this reason the total integral becomes [128]

m2
µ

16fi2 f̃ (b)
4 (t) = h̃0(t̂) +

⁄ 2

0
dw F02(w)2(e≠wt̂

≠ 1) +
⁄ Œ

2
dw F2Œ(w)2(e≠wt̂

≠ 1), (4.39)

where
F02(w) = 4

3w3 + w

16 (w2 ≠ 4)

+ fi
Ô

4 ≠ w2

A
w

16 (w2 ≠ 4)2 ≠
1

8w2 + 7
48

B

+
C
Ô

4 ≠ w2

A

≠
4

3w4 ≠
17

48w2 ≠
5

16 (w2 ≠ 4)

≠
1

4 (w2 ≠ 4)2 + 1
8

B

+ fi
3 1

2w3 + w

2 ≠
7

6w

4D

◊

arcsin
3

w

2

4
+ 23w

144 ≠
37

144w
+ 5

24w ln(w),

(4.40)
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and
F2Œ(w) = 4

3w3 + w

16 (w2 ≠ 4)

+
3 7

24 ≠
1

4w2

4 Ô
w2 ≠ 4 ln

1
w

1
w2

≠ 4
22

+
Ô

w2 ≠ 4
A

≠
1

3w4 + 115
144w2 + 23

144 (w2 ≠ 4) ≠
23
144

B

+
C

≠
4

3w5 + 7
6w3 + w

2 (w2 ≠ 4) ≠
29w

24 + 47
12w

≠
Ô

w2 ≠ 4
A

≠
4

3w4 ≠
17

48w2 ≠
5

16 (w2 ≠ 4)

≠
1

4 (w2 ≠ 4)2 + 1
8

BD
ln(y(w))

2 + 23w

144 ≠
37

144w

+ 5
24w ln(w) ≠

3 1
w3 + w ≠

7
3w

4
L(y(w)),

(4.41)

with
L(x) = Li2(≠x) + 2Li2(x) + 1

2 ln(x) (ln(1 + x) + 2 ln(1 ≠ x)) ; (4.42)

the function y(z) was defined in Eq. (4.8).
In order to integrate analytically over w the terms of Eq. (4.39), not containing the

exponential, we had to add and subtract the pole term of the Laurent expansion of F02(w)
in w = 0

F02(w) = ≠
1

2w
+ O(1), (4.43)

obtaining [128]

m2
µ

16fi2 f̃ (b)
4 (t) = c0+h̃0(t̂)+h̃3(t̂)+

⁄ 2

0
dw 2(F02(w)+ 1

2w
)e≠wt̂+

⁄ 2

0
dw 2F2Œ(w)e≠wt̂, (4.44)

where
c0 = ≠2

⁄ 2

0
dw

3
F02(w) + 1

2w

4
≠ 2

⁄ Œ

2
dw F2Œ(w)

= 653
216 + fi

16 ≠ ln(2) ≠
163
144fi2 + 7

6fi2 ln(2) ≠
7’(3)

4 ,

(4.45)

and
h̃3(t̂) =

⁄ 2

0
dw

1 ≠ e≠wt̂

w
= ≠Ei(≠2t̂) + ln(2t̂) + “. (4.46)

4.6 w-integral for exponentially suppressed contribu-
tion f̃ (b;2)

4 (t)
For the exponentially suppressed contribution f̃ (b;2)

4 (t), we proceed similarly to the previ-
ous section. Starting from the equation (4.30), we added and subtracted the pole term
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4 (t)

h2(Ê̂) of the Laurent expansion of f̂4(Ê̂2)/Ê̂ in Ê̂ = ±2i, obtaining

m2
µ

16fi2 f̃ (b;2)
4 (t) = h̃2(t̂) +

⁄

C
dÊ̂ g5(Ê̂)2 cos(Ê̂t̂), (4.47)

with

g5(Ê̂) = f̂4(Ê̂2)
Ê̂

≠ h2(Ê̂) , (4.48)

h2(Ê̂) = ≠
fi

2(4 + Ê̂2) , (4.49)

h̃2(t̂) =
⁄ Œ

0
dÊ̂ 2 cos(Ê̂t̂)h2(Ê̂) = ≠

fi2

4 e≠2t̂ . (4.50)

Considering a path C infinitesimally near the cuts (see Fig. 4.1), we decomposed the
cosine and made a suitable change of variables in order to parameterize C with the same
w. In particular, we needed to take the di�erence between the values of g5 between the
two cuts, and on the left and the right of each cut:

F5(w) = i

2

5
lim

‘æ0+
g5(‘ + iw) ≠ lim

‘æ0≠
g5(‘ + iw) ≠ lim

‘æ0+
g5(‘ ≠ iw) + lim

‘æ0≠
g5(‘ ≠ iw)

6
.

(4.51)
Finally, we obtained [128]

m2
µ

16fi2 f̃ (b;2)
4 (t) = h̃2(t̂) +

⁄ 2

0
dw F5(w)2e≠wt̂, (4.52)

where

F5(w) = ≠23w6 + 230w4
≠ 508w2 + 192

144w4
Ô

w2 ≠ 4

≠
≠29w8 + 222w6

≠ 348w4
≠ 144w2 + 128

48w5 (w2 ≠ 4) ln
1
y

1
w2

22

≠

3 1
w3 + w ≠

7
3w

4 A

L
1
y

1
w2

22
+ fi2

4

B

+
3 7

24 ≠
1

4w2

4 Ô
w2 ≠ 4 ln

1
w

1
w2

≠ 4
22

.

(4.53)

The asymptotic expansion of Eq. (4.29) could also be obtained from the integral rep-
resentation of Eq. (4.52), by expanding F5(w) and e≠wt̂ in w = 2 and by integrating
term-by-term over w. Additionally, we noted that F2Œ(w) also generates all the exponen-
tially suppressed contributions generated by F5(w). In fact, we checked that the di�erence
F2Œ(w) ≠ F5(w) is a function regular in w = 21.

1Not all the parts of f̂4(Ê̂2)/Ê̂, which have a discontinuity for Ê̂
2

< ≠4, once integrated over Ê̂, give
contributions whose asymptotic behaviour contains e

≠2t̂ terms. An example comes from second term of
h0(Ê̂), its asymptotic expansion

s Œ
0 dÊ̂

2Ê̂ cos(Ê̂t̂)
(Ê̂2+4)3/2 = ≠

1
4t̂2 ≠

9
16t̂4 ≠

225
64t̂6 + O

1
1
t̂8

2
does not contain e

≠2t̂.
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4.7 Further subdivisions of f (b)
4 (t)

In the previous sections we obtained the w-integral representation for f (b)
4 (t) = f (b;1)

4 (t) +
f (b;2)

4 (t) in Eq. (4.44) and for the exponentially suppressed part of f (b;2)
4 (t) in Eq. (4.52).

In particular, in Eq. (4.24) and (4.29) we have shown also the general form of their
asymptotic expansions. Each of these expressions contains contributions with slightly
di�erent behaviour. In order to obtain numerically e�cient expansions around finite t̂,
we have to introduce further splitting, separating even and odd powers in f (b;1)

4 (t) and
integer, half-integer powers, and logarithms in f (b;2)

4 (t). Therefore, we subdivided f (b;1)
4 (t)

and f (b;2)
4 (t) in three parts, according their asymptotic behaviour:

f̃ (b;1)
4 (t) = f̃ (b;1;1)

4 (t) + f̃ (b;1;2)
4 (t) + f̃ (b;1;3)

4 (t)
f̃ (b;2)

4 (t) = f̃ (b;2;1)
4 (t) + f̃ (b;2;2)

4 (t) + f̃ (b;2;3)
4 (t)

(4.54)

where
m2

µ

16fi2 f̃ (b;1;1)
4 (t) ≥

1
t̂

+ O
3 1

t̂3

4
,

m2
µ

16fi2 f̃ (b;1;2)
4 (t) ≥

1
t̂2 + O

3 1
t̂4

4
,

m2
µ

16fi2 f̃ (b;2;1)
4 (t) ≥ e≠2t̂

5
1 + O

3 1
t̂2

46
,

m2
µ

16fi2 f̃ (b;2;2)
4 (t) ≥ e≠2t̂ ln(t̂)

Ô

t̂

5
1 + O

31
t̂

46
,

m2
µ

16fi2 f̃ (b;2;3)
4 (t) ≥ e≠2t̂ 1

Ô

t̂

5
1 + O

31
t̂

46
.

(4.55)

The remain function f̃ (b;1;3)
4 (t) contains the part not included in the above asymptotic

expansions:

m2
µ

16fi2 f̃ (b;1;3)
4 (t) = 653

216 ≠
127fi2

144 ≠
7’(3)

4 + 7
6fi2 ln(2) +

1
ln t̂ + “

2 3
1 ≠

5
12t̂2

4
≠

fit̂

8 . (4.56)

4.7.1 Subdivision of the exponentially suppressed contribution
Analyzing the asymptotic expansions due to each term of F5(w), it is possible to isolate
and regroup the terms with same asymptotic behaviour. We found that [128]

m2
µ

16fi2 f̃ (b;2;1)
4 (t) = h̃2(t̂) +

⁄ Œ

2
dw 2F (1)

5 (w)e≠wt̂ , (4.57)

m2
µ

16fi2 f̃ (b;2;2)
4 (t) = ln(t̂)

⁄ Œ

2
dw 2F (2)

5 (w)e≠wt̂ , (4.58)

m2
µ

16fi2 f̃ (b;2;3)
4 (t) =

⁄ Œ

2
dw 2F (3)

5 (w)e≠wt̂ , (4.59)
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where

F (1)
5 (w) = fi2

4

3
+ 7

3w
≠ w ≠

1
w3

4
, (4.60)

F (2)
5 (w) = 1

2

3Ô
w2 ≠ 4

3 1
4w2 ≠

7
24

4
≠

1
2

3 1
w3 + w ≠

7
3w

4
ln(y(w2))

4
, (4.61)

F (3)
5 (w) = F5(w) ≠ F (1)

5 (w) ≠ F (2)
5 (w) ln t̂ . (4.62)

4.7.2 Subdivision of the main asymptotic contribution
As before, we were able to separate the parts of F02(w) and F2Œ(w) which generate the
contributions containing the odd and the even powers of 1/t̂, f̃ (b;1;1)

4 (t) and f̃ (b;1;2)
4 (t).

Remembering that the odd powers have a factor fi (see Eq. (4.28)), we obtained [128]

m2
µ

16fi2 f̃ (b;1;1)
4 (t) =

⁄ 2

0
dw 2F odd

02 (w)e≠wt̂ +
⁄ Œ

2
dw 2F odd

2Œ (w)e≠wt̂ , (4.63)

where

F odd
02 (w) = fi

2

3Ô
4 ≠ w2

3 7
24 ≠

1
4w2

4
+

3 1
w3 + w ≠

7
3w

4
arcsin

3
w

2

44
, (4.64)

F odd
2Œ (w) = fi2

4

3 1
w3 + w ≠

7
3w

4
. (4.65)

The part with even powers of 1/t̂ can be found subtracting everything from the whole
integral

m2
µ

16fi2 f̃ (b;1;2)
4 (t) = c0 ≠ f̂ (b;1;3)

4 (t) ≠ h̃2(t̂) + h̃0(t̂) + h̃3(t̂)

+
⁄ 2

0
dw 2

3
F02(w) + 1

2w
≠ F odd

02 (w)
4

e≠wt̂

+
⁄ Œ

2
dw 2

1
F2Œ(w) ≠ F5(w) ≠ F odd

2Œ (w)
2

e≠wt̂ .

(4.66)

4.8 Expansion in a finite point t̂ = t̂0

First, we started defining the series removed of any leading factor,

f̄ (b;2;1)
4 (t) = f̃ (b;2;1)

4 (t) e2t̂ , (4.67)

f̄ (b;2;2)
4 (t) = f̃ (b;2;2)

4 (t) e2t̂
Ò

t̂/ ln t̂ , (4.68)

f̄ (b;2;3)
4 (t) = f̃ (b;2;3)

4 (t) e2t̂
Ò

t̂ , (4.69)
f̄ (b;1;1)

4 (t) = f̃ (b;1;1)
4 (t) t̂ , (4.70)

f̄ (b;1;2)
4 (t) = f̃ (b;1;2)

4 (t) t̂2 . (4.71)

43



Chapter 4. Time-kernel for Lattice Determinations of Computing Hadronic Vacuum
Polarization Contributions to the Muon g-2 44

Figure 4.2: Absolute value of the di�erence between the approximate value of f̃4(t) ob-
tained from the series expansions and the value obtained by direct numerical integration.

Then, we expanded around a finite point t̂ = t̂0 by substituting t with t̂0/(1 + v)1/2 in
f̂ (b;1;x)

4 (t) and with t̂0/(1 + v) in f̂ (b;2;x)
4 (t), and expanding in v

m2
µ

16fi2 f̄ (b;1;1)
4

A
t̂0

Ô
1 + v

B

=
Œÿ

n=0
a(b;1;1)

n vn, (4.72)

m2
µ

16fi2 f̄ (b;1;2)
4

A
t̂0

Ô
1 + v

B

=
Œÿ

n=0
a(b;1;2)

n vn, (4.73)

m2
µ

16fi2 f̄ (b;2;1)
4

A
t̂0

1 + v

B

=
Œÿ

n=0
a(b;2;1)

n vn, (4.74)

m2
µ

16fi2 f̄ (b;2;2)
4

A
t̂0

1 + v

B

=
Œÿ

n=0
a(b;2;2)

n vn, (4.75)

m2
µ

16fi2 f̄ (b;2;3)
4

A
t̂0

1 + v

B

=
Œÿ

n=0
a(b;2;3)

n vn. (4.76)

These particular substitutions t̂ æ v are chosen to improve the convergence of the series
in v for t̂ æ Œ, corresponding to v æ ≠1. The series converge if |v| Æ 1 corresponding
to t̂ Ø t̂0/2.

The coe�cients a(b;x;y)
n can be obtained from the w-integral representations (4.63),

(4.66), (4.57), (4.58), (4.59), by expanding the integrands in v and integrating numerically
term by term in w. Finally, we derived f̃ (b)

4 (t) summing up all the six contributions, and
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the whole time-kernel f̃4(t) is recovered adding also f̃ (a)
4 (t):

m2
µ

16fi2 f̃4(t) =
m2

µ

16fi2 f̃ (a)
4 (t) +
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4 (t)
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Œÿ
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Œÿ
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≠ 1
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+ e≠2t̂

Ô
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A
t̂0
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+ e≠2t̂

Ô

t̂

t̂ÿ

n=0
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A
t̂0

t̂
≠ 1

Bn

.

(4.77)

At this point we could use the expansions for small and for large t̂ to derive the values
of f̃4(t) for any value of t̂.

We chose a point of separation t̂ = t̂s. In the region t̂ Æ t̂s we computed f̃4(t) from
the small-t expansion (4.22). In the region t̂ > t̂s, we chose a suitable value of t̂0 and
used (4.77) to compute f̃4(t).

The choice of the optimal t̂s, t̂0, and the numbers of terms of the expansion depend
on the level of precision required. We selected t̂s = 3.82 and t̂0 = 5. In table B.2 (from
[128]) in appendix B we list the coe�cients of the expansion (4.77) up to n = 12. These
values allow to obtain f̃4(t) with a precision < 3 ◊ 10≠8 for any value of t̂ Ø 0. In Fig.4.2
we show the error of this approximation.
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Chapter 5

Light-quark Yukawa couplings from
o�-shell Higgs production

In this chapter, we address the challenge of constraining the Yukawa couplings of the first
quark generation, which are notoriously di�cult to determine due to their small values
within the Standard Model. To overcome this di�culty, we propose a novel approach
using Higgs o�-shell production, where the Higgs boson decays into four leptons.

5.1 The Higgs boson in the Standard Model
The discovery of the Higgs boson in 2012 [55, 56] marked a significant milestone in particle
physics. Its existence had been predicted decades earlier, and its discovery confirmed the
Standard Model (SM) of particle physics as a remarkably successful theory in describing
the fundamental building blocks of our universe. The ATLAS and CMS experiments
extensively studied the Higgs characterization including its general properties [134]-[141],
cross-sections [142]-[145], and couplings to electroweak and heavier fermions [146, 147].

The SM is a gauge theory characterized by a local SU(3)C ◊ SU(2)L ◊ U(1)Y gauge
group [57]-[60]. The SU(3)C symmetry governs Quantum Chromodynamics (QCD), giving
rise to gluons as the associated gauge bosons. On the other hand, the electroweak (EW)
gauge group SU(2)L ◊ U(1)Y unifies the weak and electromagnetic forces. The theoretical
foundation of the SM involves the construction of a Lagrangian based on fundamental
symmetry principles. For instance gauge invariance forbids explicit mass terms for gauge
bosons. Experimental observations have though confirmed that three of the electroweak
gauge bosons acquire mass, despite being theoretical forbidden. The solution lies in
the Higgs mechanism, which introduces a complex SU(2)L doublet „ characterized by a
potential expressed as follows:

≠V = µ2„†„ ≠ ⁄
1
„†„

22
. (5.1)

A non-zero minimum of the potential can occur at È„†„Í = v2/2 = µ2/ (2⁄) for ⁄ > 0
and µ2 > 0. The VEV, denoted as v, induces spontaneous symmetry breaking within the
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framework of SU(2)L ◊ U(1)Y symmetry to the U(1)em symmetry of quantum electrody-
namics (QED). The VEV v, can be intentionally oriented in a manner that permits the
expansion of the Higgs doublet „, and this expansion can be expressed as follows

„ =
A

◊2 + i◊1
1Ô
2(v + h) ≠ i◊3

B

= ei◊a
·a
v

1
Ô

2

A
0

v + h

B

, (5.2)

where ◊1, ◊2, ◊3 and h denote four real fields and ·a are the SU(2)L generators. The
three degrees of freedom ◊a with a = 1, ..., 3 play the role of Goldstone bosons and can be
reabsorbed by an unitary transformation. In the unitary gauge, they will correspond to
the longitudinal degrees of freedom of the massive gauge bosons. Thus, the field becomes

„ = 1
Ô

2

A
0

v + h

B

. (5.3)

Only one physical degree of freedom is left over: the Higgs boson h. In the unitary gauge,
the Higgs Lagrangian is

Lh = (Dµ„)† (Dµ„) ≠ V, (5.4)

where
Dµ„ =

3
ˆµ ≠ ig2W

a
µ ·a

≠ i
1
2g1Bµ

4
„, (5.5)

which is characterized by the U(1)Y gauge field Bµ and the SU(2)L gauge fields W a
µ with

a = 1, ..., 3. The corresponding gauge couplings are denoted by g1 and g2, respectively.
Substituting „ with the expression from Eq. (5.3) in Lh, we observe the emergence of
bilinear terms in the gauge fields. These terms are characterized by coe�cients corre-
sponding to the gauge boson mass squared. Furthermore, in Eq. (5.4), interaction terms
between vector bosons and Higgs bosons become apparent. These interaction terms are
directly proportional to the mass of the gauge boson.

Explicit mass terms for the fermions in the Lagrangian can be generated by Yukawa
couplings

Ly = ≠yu
ijQ̄

i
L„̃uj

R ≠ yd
ijQ̄

i
L„dj

R ≠ ye
ijL̄

i
L„ej

R + h.c. , (5.6)

once „ acquires a non-zero VEV. The SU(2)L quark doublet is referred to as QL, the
SU(2)L lepton doublet as LL, the right-handed up-type fermions as uR, the down-type
fermions as dR, and the right-handed leptons as eR. The Higgs boson h itself possesses
mass, and its mass is uniquely related to the parameter ⁄ of the Higgs potential through
the equation M2

h = 2⁄v2. Consequently, by measuring Mh, all previously unknown param-
eters of the SM Higgs potential become determined. Presently, the ATLAS collaboration
has measured the Higgs boson mass as 125.5±0.2±0.6 GeV [148], and CMS has reported
a mass of 125.7 ± 0.3 ± 0.3 GeV [149].

One decade after the discovery of the Higgs boson, several challenges must still be
addressed in order to fully understand the properties of this particle. As we already said
in Chapter 1, the measurements of the couplings between the Higgs boson and vector
boson, or third generation fermions, are in a good agreement with their SM prediction.
This is not the case for the Yukawa couplings to the first and second generation quarks.
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49 5.1. The Higgs boson in the Standard Model

We have seen that the determination of the light-quark Yukawa couplings is based on a
model-dependent global fit on the Higgs untagged branching ratio [71].

There exist various proposals on how to constrain the light Yukawa couplings from
measurements of specific processes. For instance, the Higgs boson coupling to the charm
quark has been constrained to be smaller than 8.5 times its SM value [150, 151] by looking
at associated V h production1 with subsequent decay of the Higgs boson to charm quarks
[153]. Also exclusive Higgs decays to vector mesons [154]-[157] have been used to constrain
the charm Yukawa coupling [158, 159]. Other proposals include Higgs+charm production
[160], using the change in the Higgs pT -spectrum from enhanced charm-quark loops [161]
or V V cj production [162]. Constraining the strange Yukawa coupling is extremely chal-
lenging, but at a future e+e≠ collider one might reach SM sensitivity if strange tagging is
employed [163].

These ideas are mostly based on the Higgs decays. Since Higgs decays to light quarks
cannot be measured directly, for the first quark generation one needs to proceed in a
di�erent manner. For enhanced light quark Yukawa couplings we can use the fact that
a significant contribution of Higgs production can come from diagrams where the Higgs
boson couples directly to the quark content of the parton distributions. Interesting pro-
cesses that can be used to constrain the light quark Yukawa couplings in this way are
Higgs+photon [164], Higgs+jet [165, 166], Higgs pair production [167, 168], tri-vector
boson production in the high-energy limit [160, 169] and the charge asymmetry in W ±h
[170, 171].

A direct determination of the Higgs total width [172]-[174] is not possible at the LHC,
therefore, as a probe, the o�-shell Higgs measurement is usually considered in combination
with an on-shell measurement. In particular, the Higgs width can be indirectly constrained
by the ratio of on- and o�-shell signal strengths

µon ©
‡h ◊ BR(h æ ZZ æ 4¸)

[‡h ◊ BR(h æ ZZ æ 4¸)]SM
≥

Ÿ2
gghŸ2

hZZ

�h/�SM
h

µo� ©
d‡̄h

[ d‡̄h]SM
≥ Ÿ2

ggh(ŝ)Ÿ2
hZZ(ŝ)

(5.7)

µon

µo�
Ã

Ÿ2
ggh(mh)Ÿ2

hZZ(mh)
�h/�SM

h

1
Ÿ2

ggh(m4¸)Ÿ2
hZZ(m4¸)

, (5.8)

where Ÿi with i = ggh, hZZ are the coupling modifiers with respect to the SM value
and �h is the Higgs width. The invariant mass of the four-lepton pair is denoted by m4¸,
the Higgs mass by mh. Under the limitation that, the e�ective coupling of the Higgs to
gluons and the coupling of the Higgs to Z bosons at di�erent energy scales are correlated
in a predictable way [175, 176], the Higgs width can be extracted. The CMS collaboration
has recently measured �h to be 3.2+2.4

≠1.7 MeV [73] employing this method; ATLAS obtained
4.5+3.3

≠2.5 MeV [74]. Both measurements are in agreement with the SM value.
In the presence of enhanced light-quark Yukawa couplings, the previous method of

constraining the Higgs width becomes more complicated. The enhanced couplings lead
1
V h production followed by the Higgs decay to two jets has been studied as a probe of light Yukawa

couplings in Ref. [152].
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to an increase in the Higgs total width, and an additional factor needs to be considered:
the production of a Higgs boson directly from light-quark fusion. The introduction of
this extra production channel raises questions about the assumption made in the ratio of
the on- and o�-shell signal strengths in Eq. (5.8), and hence its interpretation in terms
of a measurement of the Higgs total width. In this work, we will instead make use of the
kinematic properties of the o�-shell Higgs measurement to set bounds on the light-quark
Yukawa couplings.

5.2 Light Yukawa couplings in E�ective Field Theory
The Higgs couplings to quarks in the SM are described by the Lagrangian in Eq. (5.6).
New physics beyond the SM may be hidden in the experimental errors of measurements
that are becoming increasingly accurate at the LHC. Such phenomena can be parametrized
in terms of the so-called SM E�ective Field Theory (SMEFT) [177]-[179], where, assuming
� to be the typical energy scale of the SM extension, the observable e�ects are suppressed
by powers of the expansion parameter v/� and the Higgs field transforms as a SM doublet.
A complete basis of higher-dimensional operators has been given in Refs. [180, 181]. In
this work we are interested only in an enhancement of the light-quark Yukawa couplings.
We hence do not consider operators that require a redefinition of the Higgs field and
that lead to a general shift of the Higgs couplings, as they cannot render the light-quark
Yukawa couplings su�ciently larger and at the same time obey the limits on other Higgs
couplings.

In the SMEFT, new flavour structures can be introduced through dimension-six op-
erators that contain flavour indices. Especially, the couplings of the quarks are modified
by the operator

�Ly = „†„

�2

1
(Cu„)ijQ̄

i
L„̃uj

R + (Cd„)ijQ̄
i
L„dj

R + h.c.
2

, (5.9)

with i, j = 1, ..., 3 and � denotes the cut-o� of the e�ective field theory (EFT). Here u
and d refer to the up- and down-type sectors respectively, and not the quarks themselves.
Therefore the mass matrices of the up-type and down-type quarks obtained from the
Yukawa and the new SMEFT couplings are

Mu
ij = v

Ô
2

A

yu
ij ≠

1
2(Cu„)ij

v2

�2

B

,

Md
ij = v

Ô
2

A

yd
ij ≠

1
2(Cd„)ij

v2

�2

B

.

(5.10)

Due to the modification of the mass matrix, the rotation matrices transforming quark
wavefunctions to the mass eigenbasis will be modified with respect to the SM ones. Mass
matrices are diagonalized by a new set of bi-unitary transformations

mqi =
31

V u/d
L

2†
Mu/dV u/d

R

4

ii
, (5.11)
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in which the CKM matrix is defined as VCKM = (V u
L )† V d

L . We can rewrite (Cq„)ij in terms
of (C̃q„)ij which are now in the mass eigenbasis

(C̃q„)ij = (V q
L )ú

ni (Cq„)nm (V q
R)mj , with q = u, d . (5.12)

Therefore the Lagrangian containing the couplings of the Higgs boson to quarks is

L ∏ ghqiq̄j q̄jqih + ghhqiq̄j q̄jqih
2 + ghhhqiq̄j q̄jqih

3 (5.13)

with

ghqiq̄j = mq

v
”ij≠

1
Ô

2
v2

�2 (C̃q„)ij , ghhqiq̄j = ≠
3

2
Ô

2
v

�2 (C̃q„)ij , ghhhqiq̄j = ≠
1

2
Ô

2
1

�2 (C̃q„)ij ,

(5.14)
where i, j = 1, . . . , 3 are generation indices. An important feature of this parametrisation
is that the NP e�ects encoded in (C̃q„)ij are kept separate from the contribution due to
the quark mass in the first of Eqs. (5.14). Therefore, the coupling of the Higgs boson to
quarks can receive large enhancements even if the quark kinetic masses are small. For
later use, we give also the coupling of quarks to two neutral Goldstone bosons

gG0G0qiq̄j = ≠
1

2
Ô

2
v

�2 (C̃q„)ij . (5.15)

As we will see later, employing the Goldstone boson equivalence theorem for the o�-
shell Higgs measurement we can observe a similar behaviour as in Higgs pair production
[167, 168], which motivates the study of light Yukawa couplings in this context.

Finally, we introduce here another convenient notation for the coupling of the Higgs
boson to quarks, based on the “kappa"-framework (see e.g. [71]). This notation is valid
only for the diagonal couplings and does not allow for new Lorentz structures with respect
to the SM ones:

ghqq̄ = Ÿq
mq

v
. (5.16)

We define the reference mass values mu = 2.2 MeV and md = 4.7 MeV as constant,
i.e. not running, values. In the rest of the work, we will often use Ÿ values when quoting
sensitivity limits, as this is often more intuitive with respect to the theoretically well-
defined SMEFT approach. The given values need though always to be understood with
respect to the reference mass values. We remark that the limits on Ÿq values can be
directly translated to limits on the SMEFT coe�cients C̃q„/�2 (q = u, d) using Eq. (5.14)
and Eq. (5.16), and that the two notations that we have introduced are equivalent.

We finally shortly comment on models that can achieve large deviations in the light-
quark Yukawa couplings. Large deviations can be implemented using an aligned flavour
assumption, as new sources of flavour violation are constrained to the level |(C̃u„/d„)12| <
10≠5�2/v2

|(C̃u„/d„)13| < 10≠4�2/v2 by �F = 2 transitions [182, 183]. From an EFT
perspective there is no inherent reason to prohibit the implementation of an aligned fla-
vor structure. The renormalization group flow in EFT can introduce flavor-changing
couplings, but these are typically suppressed by several mass insertions, making them
strongly suppressed for the first generation of particles [184]. The possibility of imple-
menting an aligned flavor assumption mainly depends on the specific ultraviolet (UV)
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model that is being considered. In some concrete UV models, large deviations in the
light-quark Yukawa couplings at the electroweak scale can be realized while still preserv-
ing the aligned flavor structure. In a simplified model approach, an e�ective |„|

2Q̄L„dR

or |„|
2Q̄L„̃uR operator can be generated by various fields, e.g. vector-like fermions, new

scalars and new vector bosons and combinations thereof. Concrete models have been pre-
sented in Refs. [185]-[187]. In the subsequent analysis, we will refrain from using concrete
models but note that those models will at the same time generate other e�ective operators,
which possibly can be constrained better than the light-quark Yukawa couplings.

5.3 The on-shell Higgs
As stated in the introduction of this chapter, an indirect determination of the total decay
width of the Higgs boson can be extracted from a comparison of o�-shell and on-shell
measurements. In this section, we will briefly examine the impact of enhanced light
Yukawa couplings on the on-shell Higgs production, with a specific focus on the subsequent
decay of the Higgs boson into a pair of Z bosons. To simplify the analysis, we will
disregard the treatment of the leptonic decays of the Z bosons since these decays are not
influenced by the contributions from NP that we are studying. In the case of on-shell
Higgs production, we use the narrow width approximation to express the cross section as
the product of the Higgs cross section and the h æ ZZ branching ratio

‡(pp æ h æ ZZ) = ‡(pp æ h) · BRZZ , (5.17)

and we consider the e�ects of modified light-quark Yukawa couplings in each contribution
of the r.h.s. of Eq. (5.17).

In the SM, the dominant partonic channel for Higgs boson production at the LHC is
the gluon fusion (ggF) process, primarily mediated through quarks of the third genera-
tion (the top/bottom interference amounts to about 10%). However, when we allow the
light-quark Yukawa couplings to exceed their SM values (as is the case in scenarios with
enhanced light-quark Yukawa couplings), new relevant contributions can arise via loops
involving first- and second-generation quarks. In addition, a new partonic channel must
be considered for Higgs production, namely qq̄ annihilation, qq̄ æ h. In our study we
computed the ggF cross section at leading order (LO) and we used a K-factor to account
for the N3LO QCD corrections [188, 189] by rescaling the LO result. We observed that
the e�ects of modified first-generation Yukawa couplings, stemming from the top and
light-quark interference, are below the level of 0.1% for |Ÿd| . 1200 and |Ÿu| . 4500,
therefore we consider them negligible2, both in this section and in the following one.

On the other hand, the qq̄ æ h production channel gains increasing significance when
dealing with enhanced first-generation Yukawa couplings. In such scenarios, the partonic
cross section experiences a quadratic enhancement with a factor Ÿq. This enhancement
can e�ectively counterbalance the suppression originating from the lower quark luminosi-
ties compared to the ggF channel. By examining Figure 5.1a, it becomes evident that

2The modification of the strange Yukawa coupling can reach an e�ect of 3% on the ggF cross section
for |Ÿs| = 200, while an enhancement of the charm Yukawa coupling by |Ÿc| = 20 leads to a change of
about 18%.

52



53 5.3. The on-shell Higgs

κu

κd

0 500 1000 1500 2000 2500

0.5

1

5

10

50

100

|κq|

σ
q

q
h
(κ

q
)
[p

b
]

s =13 TeV

ggFSM

(a)

κu

κd

500 1000 1500 2000 2500

0.000

0.005

0.010

0.015

0.020

0.025

|κq|

B
R

Z
Z
(κ

q
)

(b)

Figure 5.1: (a) Modification of the cross section for resonant qq̄ æ h production, as a
function of the light-Yukawa coupling modifier Ÿq. The cross section for the gluon-fusion
channel in the SM [188] is shown as a black dashed line. (b) Branching ratio for the
h æ ZZ decay as a function of Ÿq for the first quark generation. Figure taken from [190].

for values of Ÿd (Ÿu) that exceed around 1400 (2500), the qq̄ æ h mode becomes the
predominant mechanism for Higgs production at the 13 TeV LHC. Parallel to the ggF
production, we employed a K-factor to adjust the LO cross section in order to incorpo-
rate the NLO QCD corrections. The specific value of KNLO

qq̄h = 1.4 was obtained for qq̄h

production by adapting the QCD correction calculation applied to bb̄ æ h, as outlined in
Refs. [191]-[193].

Lastly, the final component to be incorporated into our on-shell prediction is the
modified ZZ branching ratio, denoted as BRZZ(Ÿq). Since in our scenario we will not
consider electroweak corrections, we used HDECAY [194, 195] to verify that the impact of
large values of Ÿq on the partial width �(h æ ZZ) due to higher-order corrections is
negligible. Simultaneously, when considering large values of Ÿq, the total decay width,
�BSM

h (Ÿq), experiences a significant increase. This e�ect is particularly pronounced in the
case of an enhanced Ÿq coupling, as the Higgs decay channels involving the first-generation
quarks become more relevant. The partial width of these decay channels can be expressed
simply by scaling the corresponding SM width by a factor of Ÿ2

q. We then have

�BSM
h (Ÿq) = �SM

h + Ÿ2
q �SM(h æ qq̄) (q = u, d), (5.18)

with �SM
h = 4.1 MeV [196]. As a direct outcome of the Eq. (5.18), the branching ratio

of h æ ZZ experiences a reduction as the value of Ÿq increases. In Figure 5.1b, we
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Figure 5.2: Signal strengths for resonant Higgs production as a function of Ÿq. The current
measurement from ATLAS [197] is shown as a reference (black line), including the 1 and
2 ‡ uncertainty bands. Figure taken from [190].

present the variations in the BRZZ(Ÿq) branching ratio. The modifications are depicted
separately for the enhancement of the down-type Yukawa couplings (illustrated in red)
and the up-type Yukawa couplings (depicted in blue).

We can now study the e�ect of the combination of all the ingredients discussed above
for on-shell production, and we compare them to the SM case in fig. 5.2, where we plot
the signal strength

µ(Ÿq) = [‡(gg æ h)(Ÿq) + ‡(qq̄ æ h)(Ÿq)] · BRZZ(Ÿq)
‡(gg æ h)SM · BRZZ SM

(5.19)

defined as the ratio of the NP on-shell production cross section, multiplied by the mod-
ified h æ ZZ branching ratio, over the SM prediction (in which we omit the negligible
qq̄-initiated contribution). Assuming that the only modification arising from NP is the
individual enhancement of the down-type (up-type) Yukawa coupling, we can draw impor-
tant conclusions from a comparison with the most recent ATLAS on-shell measurement
[197]. Specifically, the analysis enables us to exclude certain parameter values. In this
case, considering a 2‡ confidence level, we find that values of Ÿd & 850 (Ÿu & 1850) are ex-
cluded. It’s noteworthy that these constraints are approximately a factor of three weaker
compared to the projected limits that can be anticipated from a global fit at a HL-LHC
[71]. Furthermore, as the enhancement via Ÿq has an impact both on the production
cross section and on the decay width of the Higgs boson, the interplay of the two e�ects
spoils the interpretation of Eq. (5.8) as an indirect measurement of �h. In conclusion, it
is important to highlight that on-shell measurements present limitations when it comes
to serving as a model-independent tool for probing the Yukawa couplings of the first-
generation quarks. The limits obtained from on-shell measurements are predicated on a
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Figure 5.3: Feynman diagrams contributing to qq̄ æ ZZ: (a) Higgs-mediated process,
with the red dot indicating a modified light Yukawa coupling; (b) t̂-channel diagram for
the dominant production mode.

robust assumption of modifications solely in the light-quark Yukawa couplings. However,
any alterations, such as shifts in the Higgs coupling to Z bosons, would introduce com-
plexities that undermine the straightforward interpretation of the on-shell measurements.
Therefore in the rest of this work we move our attention to o�-shell production.

5.4 The o�-shell Higgs
In the context of o�-shell Higgs production, the utilization of the narrow width approxi-
mation, as employed in Eq. (5.17), is no longer applicable. Therefore, in this section, we
need to reevaluate the theoretical prediction for the process pp æ ZZ without relying
on the narrow width approximation. Additionally, we will explore how this prediction is
influenced by an enhancement of the first-generation Yukawa couplings.

References [167, 168] have highlighted the possibility of constraining light-quark Yukawa
couplings through the process of Higgs pair production. In this case, the constraint pri-
marily arises from the e�ective coupling between the light quarks and two Higgs bosons,
which emerges from the presence of operators characterized by Wilson coe�cients Cu„

or Cd„, corresponding to up-type and down-type quarks respectively. Via the Goldstone
boson equivalence theorem, the production of longitudinal Z boson pairs will be driven by
an e�ective coupling of two Goldstone bosons to two fermions, in the same way that the
e�ective interaction between the light quarks and two Higgs bosons is relevant for di-Higgs
production. This holds especially in the o�-shell region. The partonic di�erential cross
section for the production of two neutral Goldstone bosons in the limit of large partonic
centre-of-mass energy ŝ is given by

d‡̂qiq̄j

dt̂
= 1

16fi

1
3ŝ

g2
G0G0qiqj

. (5.20)

The cross section governing quark-initiated o�-shell Higgs production is expected to serve
as a promising avenue for investigating light-quark Yukawa couplings. This cross section
exhibits a behavior analogous to that observed in the Higgs pair production process. This
intriguing similarity motivates an exploration of the implications of light-quark Yukawa
couplings within the context of o�-shell Higgs measurements. Furthermore, we make use
of the di�erences in the kinematics of the process with respect to the SM one.
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Figure 5.4: The two topologies for the Feynman diagrams occuring in the LO contribution
to gg æ ZZ: (a) triangles associated to the Higgs-mediated process; (b) boxes associated
to continuum production.

Parallel to the observations made in the preceding section, the enhancement of the
light Yukawa couplings implies that the quark-fusion channel mediated by the Higgs boson
(as depicted in Fig. 5.3a) becomes a significant factor to consider in the context of o�-shell
Higgs production. The LO partonic di�erential cross section for qq̄ æ hú

æ ZZ is given
by

d‡̂qiq̄j

dt̂
= g2

hqiq̄j

1
16fi

1
12ŝ

1
v2

1
(ŝ ≠ m2

h)2

C

12m4
Z ≠ 4m2

Z ŝ + ŝ2
D

, (5.21)

which in the limit of large ŝ corresponds to Eq. (5.20). From this the hadronic cross
section can be obtained by

‡hadronic =
⁄ 1

·0
d·

⁄ t̂+

t̂≠
dt̂

ÿ

i,j

dL
qiq̄j

d·

d‡̂qiq̄j

dt̂
, (5.22)

with ·0 = 4 m2
Z/s, ŝ = ·s and

t̂± = m2
Z ≠

ŝ(1 û —)
2 and — =

Û

1 ≠
4m2

Z

ŝ
. (5.23)

The parton luminosity is given by

dL
qiq̄j

d·
=

⁄ 1

·

dx

x

Ë
fqi(·/x, µ2

F )fq̄j (x, µ2
F ) + fq̄j (·/x, µ2

F )fqi(x, µ2
F )

È
. (5.24)

We neglected all the kinematical masses of the light quarks, while the coupling of the
Higgs boson to the light quarks (for flavour diagonal couplings) is given by Eq. (5.14) or
Eq. (5.16).

Within the SM an o�-shell Higgs boson is produced by gluon fusion, where a loop of
third-generation quarks3 couples to an o�-shell Higgs boson, as in Fig. 5.4a. This process
has large interference with box diagrams from continuum production, gg æ ZZ, see
Fig. 5.4b. Using FeynArts [198], we computed the form factors for the gluon-fusion cross
section at LO, checking the results with Ref. [199], to implement a Monte Carlo simulation

3We recall that we are neglecting the e�ect of a modified Ÿq on the gluon-fusion channel.
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with VEGAS algorithm [200] by which we derive the distribution in the invariant mass mZZ

of gg æ ZZ at LO, including the Higgs-mediated, the continuum and the interference
contributions.

Finally, the main background to o�-shell Higgs production is qq̄ æ ZZ production,
occurring via diagrams as shown in Fig. 5.3b. We computed the leading-order (LO) cross
section for this background process and confirmed its consistency with the findings of
Reference [201]. We note that there is no signal – background interference between the
amplitudes for qq̄ æ hú

æ ZZ and qq̄ æ ZZ. In particular, using the spinor-helicity
formalism, one can observe that the qq̄ æ hú

æ ZZ amplitude receives a non-zero
contribution only when the (massless) fermions in the initial state have the same helicities,
whereas for qq̄ æ ZZ the initial fermions must have opposite helicities. For this reason
the signal and the background processes are related to di�erent helicity amplitudes, and
cannot interfere. We remark that this helicity selection rule holds at higher perturbative
orders, and that it is insensitive to the polarisation of the Z bosons in the final state, so
that the interference cannot be resurrected e.g. by looking at the decay leptons of the Z
bosons [202, 203]. However, the above reasoning does not automatically imply that, in the
perturbative expansion of the SMEFT, we are considering purely BSM, O(1/�4), e�ects.
Indeed, the BSM/SM interference is already contained in the square of ghqiq̄j in Eq. (5.21),
which in fact includes both O(1/�2) and O(1/�4) contributions (see Eq. (5.14)). Still,
the O(1/�2) interference is very small because of the smallness of the light quark masses
in the SM, and in the rest of this work we will neglect it. We note that the fact that
our bound is dominated by O(1/�4) e�ects does not invalidate the analysis given that a
potential contribution of a dimension-8 operator would again be suppressed by the small
quark masses.

5.5 Phenomenological analysis
In the following we analyse the sensitivity of the HL-LHC on the light-quark Yukawa cou-
pling modifications from measurements of o�-shell Higgs production. We consider specific
signal processes: dd̄ æ hú

æ ZZ æ 4¸ and uū æ hú
æ ZZ æ 4¸, where the enhanced

Yukawa couplings for down-type and up-type quarks are respectively applied. As for back-
ground processes, we incorporate contributions from gluon fusion and the quark-induced
ZZ production. Throughout our study, we focus on the scenario involving on-shell Z
bosons, which accurately represents the process when the invariant mass of the Z boson
pair significantly exceeds the kinematic threshold [204]. To ensure the reliability of this
description, we implement a selection criterion by imposing a cut of mZZ > 250 GeV. In
order to account for the impact of fundamental selection requirements, such as minimum
transverse momentum (pT ¸) and pseudorapidity (|÷¸|) thresholds on the leptons, we uti-
lize e�ciency factors. These factors are computed using MadGraph_aMC@NLO [205] and are
employed to reproduce the e�ects of the cuts pT ¸ > 10 GeV and |÷¸| < 2.5.

In our analysis, we employ the LO matrix elements introduced in Sec. 5.4 as a start-
ing point, but we improve them by incorporating K-factors. Currently, the background
process involving four-lepton production through quark-antiquark (qq̄) annihilation has
been calculated at next-to-next-to-leading order (NNLO) [206]-[208]. To incorporate these
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higher-order corrections, we introduce a K-factor, defined as K = ‡NNLO/‡LO = 1.6. For
the signal processes, the NLO QCD corrections can be inferred from bb̄h production [191]-
[193]. We find Ku = 1.47 and Kd = 1.63 for the up- and down-initiated channels for a
scale choice of µR = µF = MZZ/2. The gluon-fusion contribution is fully known only
at LO [209, 210]. The NLO QCD corrections to the Higgs-mediated diagrams [211]-[213]
and to the continuum production via loops of massless quarks [214, 215] are known in
analytic form; the two-loop diagrams mediated by top-quark loops have been computed
numerically in Refs. [216, 217] but they are still not included in a full NLO prediction. We
use a K = 1.83 for the gluon fusion background following the estimate in Refs. [218, 219].
We use the NNPDF40_lo_as_01180 parton distribution functions [220] and

Ô
s = 14 TeV.

In Fig. 5.5, we present the distribution of invariant masses for both signal and back-
ground processes. For the signal, we have chosen specific values of Ÿu = Ÿd = 1000, which
correspond to modified couplings C̃u„ = 0.21 and C̃d„ = 0.45, assuming a NP scale fixed
at � = 1 TeV. While the qq̄ background is about two orders of magnitude larger than the
signal, we can see that the latter contribution wins relative importance over the gluon-
fusion background in the high invariant mass bins. This phenomenon is a consequence
of both the Ÿq enhancement and the distinct manner in which the quark parton distri-
bution functions (PDFs) fall in comparison to the gluon one. Furthermore, the presence
of destructive interference between the amplitudes associated with Higgs-mediated and
continuum processes in ggF at elevated invariant masses contributes to an enhancement
of the qq̄ signal in relation to the ggF background. A direct comparison of Figs. 5.5a and
5.5b illustrates this e�ect.

In the pursuit of measuring the Higgs boson’s width, kinematic discriminants rooted
in the matrix element method have proven to be very powerful [73, 174, 221]. While the
matrix element method is usually complicated by the fact that it requires the knowledge
of a transfer function that describes the transfer of an event with parton-level momentum
to an event with smeared detector-level momentum, for the o�-shell Higgs analysis these
terms cancel for the clean four-lepton final state when employing discriminants based on
ratios of signal and background matrix elements. We define the weighted probability for
an event initiated by the partons i, j, and with a fixed set v of kinematic variables, as

Pij(v) = 1
‡ijæ4¸

⁄
dx1dx2”(x1x2E

2
CMS ≠ m2

4¸)fi(x1)fj(x2)‡̂ij(x1, x2, v) , (5.25)

where fi and fj are the parton distribution functions, ECMS is the collider energy and
‡ijæ4¸ is the hadronic cross section for the process initiated by i and j. We can then
define the kinematic discriminants

Dd
s = log10

Q

a P sig
dd̄

P back
qq̄ + P back

gg

R

b and Du
s = log10

A
P sig

uū

P back
qq̄ + P back

gg

B

. (5.26)

We note that the dependence on the enhanced light-quark Yukawa couplings drops out
in the respective definitions of P sig

qq̄ .

5.5.1 Results based on Dd
s

In this section we will show our results for Dd
s . In Figure 5.6, we present the normalized
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Figure 5.5: Distribution in the invariant mass mZZ for the various ZZ production chan-
nels. (a) The qq̄ æ ZZ SM background (violet), the gg æ ZZ background (black) and
the signal dd̄ æ hú

æ ZZ (light blue) for a value Ÿd = 1000, which corresponds to
C̃d„/(1 TeV2) = 0.45. (b) Comparison of the gg æ hú

æ ZZ (triangle) contribution to
the background with the dd̄ æ hú

æ ZZ signal (light blue) and the uū æ hú
æ ZZ

(dark blue) for Ÿu = 1000 which corresponds to C̃u„/(1 TeV2) = 0.21. Figure taken from
[190].
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shows the ratio to the SM. Taken from [190].

distribution of the signal processes dd̄ æ hú
æ ZZ depicted as a blue line, and uū æ

hú
æ ZZ shown as a pink dashed line. Additionally, the gg æ ZZ background is

displayed in black, while the qq̄ æ ZZ background is illustrated in light blue. This visual
representation clearly highlights the discriminating power of the Dd

s variable, primarily
observed in bins where Dd

s > 2. This conclusion is reinforced by Fig. 5.7, where we
compare the projected Dd

s distributions for the pp æ ZZ æ 4¸ cross section in both the
SM and the NP scenarios with Ÿd = 200 and Ÿu = 300. The dd̄- and uū-induced signals
show instead very similar Dd

s distributions. Therefore, this process might not inherently
di�erentiate between an amplified up or down Yukawa hypothesis. However, it’s worth
noting that this could be done in a global fit, using for instance also limits from h“ where
the up- and down-Yukawa contributions are distinguished due to the di�erent quark
charges [164]. We also explored the utilization of a kinematic discriminant as defined in
the analysis presented in Ref. [222]4, and found that while it leads to slightly worse limits
on the light-quark Yukawa couplings compared to our definition of Ds, it still shows very
good discriminating power. The experimental analyses might hence be sensitive to similar
order of magnitude modifications of light-quark Yukawa couplings compared to what we
find in our study, without implementing a dedicated analysis.

To establish constraints on the light-quark Yukawa couplings, we undertake a shape
analysis involving the Dd

s distributions. While we could in principle also include the mZZ

4While we find the same quantitative and qualitative behaviour of the thus defined Ds we find a shift
on the x axis that we attribute to a di�erent normalisation.
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Figure 5.8: Dependence of the sensitivity bounds on Ÿd (C̃d„) in the left panel and Ÿu

(C̃u„) in the right panel on the assumption made on the size of �bi . Figure taken from
[190].

distribution in the analysis we found no di�erence doing so. To determine the significance
within each bin, we calculate a Poisson ratio of likelihoods, which takes into account
background uncertainties using the Asimov approximation [223]

Zi =
ı̂ıÙ2

C

(si + bi) ln
(si + bi)(bi + ‡2

bi
)

b2
i + (si + bi)‡2

bi

≠
b2

i

‡2
bi

ln
A

1 +
si‡2

bi

bi(bi + ‡2
bi

)

BD

, (5.27)

where si and bi are respectively the number of signal and background events in the i-
th bin. ‡bi = �bibi denotes the standard deviation that characterises the (experimental
and theoretical) uncertainties of the associated background in the bin. We assume a flat
uncertainty and show in Fig. 5.8 the dependence of the sensitivity limit on Ÿd and Ÿu

(C̃d„ and C̃u„) in dependence of �bi . Concerning our choice for the range of the plot, the
lower limit is based on the total experimental systematic uncertainties expected for the
gg æ hú

æ ZZ signal strength, amounting to 5.0% and 3.9% in the baseline scenarios
S1 and S2, respectively, as given by the ATLAS Collaboration [224]. The corresponding
uncertainties of the CMS Collaboration are 7.3% and 4.1% [225]. Instead the upper
limit �bi = 0.3 corresponds to the approach advocated in Ref. [218], motivated by the
observation that the scale uncertainties do not capture the di�erence between LO and
K-factor improved prediction for pp æ ZZ. For this reason Ref. [218] proposed to take
instead half of the di�erence between LO and K-factor improved prediction. Compared
to the combination of scale and PDF+–s uncertainty this approach leads to a much larger
uncertainty and can hence be considered as very conservative.

We find that, assuming the optimistic scenario of �bi = 0.04 at the HL-LHC, it is
possible to obtain the following constraints

|C̃d„|/(1 TeV)2 < 0.069/TeV2 (Ÿd < 156),
|C̃u„|/(1 TeV)2 < 0.054/TeV2 (Ÿu < 260).

In Fig. 5.9, we portray the dependence of the sensitivity limit on Ÿd and Ÿu on an upper
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Figure 5.9: The projected sensitivity on Ÿd (blue line) and Ÿu (pink dashed line) as a
function of an upper cut mZZ < mcut

ZZ using �bi = 0.04. Figure taken from [190].

cut on the invariant ZZ mass, hence imposing mZZ < mcut
ZZ , in order to check the validity

of our EFT approach. This procedure of providing limits in terms of an upper cut on
the energy probed, termed clipping, was suggested in Ref. [226]. We must underscore,
particularly given the negligible impact of SM first-generation Yukawa couplings, that
the sensitivity in our analysis on the coe�cients C̃u„ or C̃d„ (or Ÿd and Ÿu) originates
solely from the squared terms of the dimension-six contributions. Regarding Fig. 5.9,
our assessment leads to the conclusion that the sensitivity of our analysis does not stem
only from bins of high invariant mass, hence the utilization of the EFT approach appears
well-justified.

5.5.2 Results based on Du
s

In this section, we present the outcomes of our analysis incorporating the discriminant
Du

s , as defined in Eq.(5.26), as an alternative to Dd
s . In Fig. 5.10 we show the distribution

of signal and background in Du
s . Analogous to the Dd

s scenario, we observe that the
signal distribution exhibits a peak at higher values compared to the background. This
observation underscores the discriminating power of the Ds variable in distinguishing
between the signal and the background. However, it’s noteworthy that when employing
Du

s as the discriminating parameter, the degree of overlap between the signal and the
gg-initiated background is larger than what is observed with the Dd

s variable. We find,
assuming the optimistic scenario of only systematic error, �bi = 0.04, that we can restrict

|C̃d„|/(1 TeV)2 < 0.073/TeV2 (Ÿd < 165),
|C̃u„|/(1 TeV)2 < 0.057/TeV2 (Ÿu < 275)
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at the HL-LHC. These results are slightly worse than those obtained using the Dd
s variable.

In Fig. 5.11 we finally show the dependence of the Ÿd and Ÿu sensitivity bounds on �bi
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Figure 5.10: Normalised di�erential distributions with respect to Dd
s for signal (blue and

pink dashed) and background (light blue and black) processes. Figure taken from [190].

using the Du
s variable. Again, we observe some worsening of the sensitivity in comparison

with the analysis based on the Dd
s variable.
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Figure 5.11: Dependence of the sensitivity bounds on Ÿd (C̃d„) in the left panel and Ÿu

(C̃u„) in the right panel on the assumption made on the size of �bi using Du
s . Taken from

[190].

Finally, we would like to emphasise that the o�-shell Higgs measurement so far seems
to provide the most sensitive probe of both the up- and the down-quark Yukawa couplings.
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Figure 5.12: Comparison of projected constraints on C̃d„ (blue) and C̃u„ (pink) at 95%
confidence level for the HL-LHC with 6 ab≠1 luminosity, as estimated in this thesis and
previous analyses [168, 165, 71]. The constraints are interpreted in terms of the NP scale
� that can be probed via the measurement of the Wilson coe�cients. The corresponding
bounds on Ÿq are included in parentheses. Figure taken from [190].

In Fig. 5.12 we compare our results with the ones obtained from alternative probes of the
light-quark Yukawa couplings, cf. the summary plot of Ref. [168]. Even the constraints
obtained in the conservative scenario assuming �bi = 0.3 are still competitive with those
found in Ref. [165].
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Chapter 6

Conclusions

The E989 experiment at Fermilab, that gives us the most precise determination of the
anomalous magnetic moment of the muon with a precision of 0.20 ppm, finds a discrepancy
between the results from Run-1/2/3, aFNAL

µ , and the 2020 SM prediction of the muon g-2
Theory Initiative (Ref. [5]) at 5‡ [1, 2]. In [5], the leading-order hadronic contribution
was obtained using e+e≠

æ hadrons cross-section measurements performed by multiple
experiments. However, a recent lattice calculation of the LO HVP contribution to aµ by
the BMW Collaboration [25] shows significant tension with the e+e≠ result. In addition,
a new preliminary measurement of the e+e≠

æ fi+fi≠ cross section from the CMD-3
experiment [26] disagrees significantly with all other e+e≠ data used in [5]. A new and
competitive determination of LO hadronic vacuum polarization contribution is therefore
desirable. This may be provided by the proposed MUonE experiment at CERN.

In the framework of this thesis, we presented simple analytic expressions to calculate
the HVP contributions to the muon g-2 in the space-like region up to NNLO. These
results can be employed in lattice QCD computations of aHVP

µ as well as in determinations
based on scattering data, like those expected from the proposed MUonE experiment at
CERN. In Chapter 3, following the derivation of the space-like formulation for the LO
HVP contribution, obtained through the dispersion relation governed by the LO time-like
kernel K(2)(z), I proceeded to present precise and comprehensive analytic expressions,
extending the calculation of aHVP

µ to the NLO. The shapes of the space-like integrands
of the aHVP

µ (NLO) contributions were found to di�er significantly from the LO one. In
particular, the exact NLO space-like kernel Ÿ(4)(x) provides a stronger weight to �–h(q2)
at large negative values of q2 than the LO kernel Ÿ(2)(x). These di�erent weights may help
to shed light on the present tension between the lattice QCD determination of aHVP

µ (LO)
by the BMW collaboration and the time-like data-driven ones.

The NNLO HVP contribution to the muon g-2 is comparable to the final uncertainty
expected from the Muon g-2 experiment at Fermilab. In this work, I presented straight-
forward analytical expressions in the space-like region for all classes of diagrams that
account for these corrections. Specifically, I derived exact space-like integral formulas
for diagrams featuring one- or two-loop QED vertices and two or more HVP insertions
in the same photon line. For diagrams involving genuine three-loop QED vertices, such
as electron or muon light-by-light graphs, I exploited generating integral representations

65



Chapter 6. Conclusions 66

to fit the large-s approximate series expansions of the time-like kernels provided by Ref.
[14], finding very good approximations to the space-like kernels. The uncertainty associ-
ated with these approximations of the kernels for aHVP

µ (NNLO) is assessed to be less than
O(10≠12).

In the space-like approach, the minimum required dimension of the space-like integral
of �–h(t) (or powers of it) to calculate a diagram’s contribution to the muon g-2 is deter-
mined by the number of photon lines with distinct momenta containing HVP insertions.
Consequently, to compute aHVP

µ at LO and NLO, one-dimensional space-like kernels are
su�cient. This principle extends to NNLO, except for the specific class of diagrams fea-
turing two HVP insertions in distinct photon lines, which necessitates a two-dimensional
kernel. Generalising to two dimensions the one-dimensional method used earlier, we de-
rived a good approximate two-dimensional space-like kernel matching the approximate
time-like kernel with the series expansion of a two-dimensional generating integral rep-
resentation. Once again, the uncertainty due to the kernel approximation is less than
O(10≠12).

The precise calculation of higher-order HVP corrections to the muon g-2 necessitates
a meticulous treatment of QED radiative corrections to the HVP function. Their leading
e�ect, involving the emission and reabsorption of a photon by the HVP insertion, is
normally incorporated into the time-like approach via the inclusion of final-state radiation
corrections in the R-ratio. This is a notoriously delicate issue, because of the experimental
cuts imposed by the analyses. On the other hand, the fully inclusive measurement of
�–h(t) expected from MUonE will naturally include these leading corrections in the
space-like approach.

In conclusion, the results presented in Chapter 3 mark a significant milestone by
facilitating the comparison between time-like and space-like calculations of aHVP

µ at NNLO
accuracy. These eagerly anticipated comparisons will strengthen the SM prediction of the
muon g-2 enhancing its potential to unveil new physics.

Since the time-momentum representation is often used in lattice QCD calculation, in
Chapter 4 we derived a series expansion for the euclidian-time kernels up to the NLO.
In particular, I obtained the analytical coe�cients for the series expansion of the NLO
time-kernel, on the regime of small t̂. Additionally, we have derived representations of all
components of the NLO time-kernel as Laplace integrals. From these representations we
have worked out compact and fast numerical expansions of all the components of the NLO
time-kernel, centered in t̂ = t̂0 and converging for t̂ > t̂0/2, for a given t̂0. The combination
of these expansions, with a suitable choice of numbers of terms, the expansion point t̂0
and the separation point ts between regimes, allows to determine the NLO time-kernel
with an error �f̃ < 3 ◊ 10≠8 for every value of t̂. The series expansions presented provide
a solution to the issues posed by the asymptotic behavior of these calculations for large
value of the time.

In Chapter 5 this thesis focuses on Higgs physics. The discovery of Higgs boson with
a mass of approximately 125 GeV represents a monumental success for particle physics.
It opened the door to the next phase, the meticulous measurement of the properties of
this final component of the SM. In particular, the light-quark Yukawa couplings pose a
significant challenge for experimental investigation due to their smallness in the SM. In

66



67

Chapter 5, we undertook a comprehensive study to explore the potential of o�-shell Higgs
production as a means to measure the Yukawa couplings of first-generation quarks. Our
approach employs an EFT framework to disentangle quark masses from their couplings.
This decoupling process becomes particularly valuable when addressing scenarios that
involve large Yukawa couplings alongside massless quarks. The outcome of this approach
is the emergence of small e�ective couplings, which in turn, support the use of perturbation
theory and the application of a dimension-6 EFT analysis.

In scenarios where there are significant enhancements in the up and down Yukawa
couplings, several notable e�ects come into play. First, these enhancements lead to an in-
crease in the total width of the Higgs boson, subsequently causing a reduction in the Higgs
branching ratios in its standard decay channels. On the other hand, large enhancements
in Yukawa couplings also introduce a new production channel for the Higgs, in which the
Higgs boson is directly generated through parton annihilation. The interplay between
these e�ects makes it challenging to interpret o�-shell measurements as a straightforward
determination of the Higgs width, especially in such scenarios. Instead, the o�-shell sig-
nal strength is altered, and by employing appropriate kinematic discriminants, it becomes
possible to establish sensitivity limits on the modifications of the light-quark Yukawa cou-
plings. The signal and background amplitudes exhibit distinct characteristics, such as the
absence of interference related to the helicity selection rule, granting substantial discrimi-
nating power. Within the o�-shell region, there are enhanced signal contributions, largely
due to the behavior of the total cross section. This enhancement is particularly pro-
nounced for processes involving the longitudinal Z boson. In the case of ggF, a similar
enhancement in the o�-shell region is observed. Nevertheless, at higher energy scales,
the decay of the quark luminosity occurs at a slower rate compared to the gluon lu-
minosity, resulting in an increased relative contribution from the quark channel in the
o�-shell region. In order to derive the distributions in the invariant mass for the ggF
cross-section, I computed the form factors for the ggF amplitudes and implemented them
into a Monte-Carlo code.

Throughout our investigation, our primary focus was on the scenario involving on-
shell Z bosons, with specific signal process dd̄ æ hú

æ ZZ æ 4¸ and uū æ hú
æ

ZZ æ 4¸, where the enhanced Yukawa couplings are respectively applied. To ensure
the robustness of this description, we introduced a selection criterion applying a cut of
mZZ > 250 GeV and e�ciency factors, whose e�ects have been computed and verified
using MadGraph_aMC@NLO [205]. Our analysis has revealed that o�-shell Higgs production
stands out as a highly promising avenue for constraining the light-quark Yukawa cou-
plings. In an optimistic scenario, with systematic uncertainties limited to just 4%, we
have determined that values of Ÿd > 156 and Ÿu > 260 can be e�ectively excluded at
HL-LHC. Here, Ÿq represents the modification factor of the SM Yukawa coupling, specif-
ically evaluated for mu = 2.2 MeV and md = 4.7 MeV. These projected sensitivities
surpass those obtained through the investigation of various other processes, such as Higgs
pair production [167, 168], Higgs+jet interactions [165], Higgs+photon events [164], V V V
[169], or the examination of charge asymmetry in W ±h production [170]. We have also
explored how the projected sensitivity varies based on di�erent assumptions regarding
uncertainties, and we have determined that the limits derived from o�-shell production
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remain competitive with other approaches even in a more conservative scenario.
The analysis we have presented is rather crude; to provide more realistic constraints it

would be prudent to incorporate showers and detector e�ects. Additionally, considering
the use of NLO matrix elements in the probabilities, as outlined in equation (5.25), could
enhance the accuracy of our results. Despite the simplicity of our approach, the results
are notably promising. This leads us to believe that o�-shell Higgs production holds
significant potential as a means to investigate the light-quark Yukawa couplings.

At the same time, it’s worth noticing that the sensitivity of this analysis can be further
enhanced. In ongoing o�-shell analyses [73, 74], final states that include two neutrinos
and two leptons, as well as Higgs production in association with jets, are being explored.
Moreover, the addition of more kinematic distributions could also be beneficial.

Finally, it would be intriguing to investigate o�-shell Higgs production within a more
comprehensive EFT framework. This would involve incorporating additional EFT oper-
ators into the o�-shell Higgs analysis and conducting a combined fit that encompasses
various observables sensitive to the light-quark Yukawa couplings.
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Appendix A

Tables Coe�cients HVP at NNLO

(6a)

j0 = 0;

j1 = ≠
3793
864 ;

j2 = 35087
21600 ;

j3 = 1592093
43200 ;

h0 = ≠
359
36 ;

h1 = 122293
5184 ;

h2 = ≠
43879427
648000 ;

h3 = 14388407
48000 ;

g0 = 1301
144 ≠

19fi2

9 ;

g1 = 441277
10368 + fi2

1
≠

355
648 + ln 4

2
+ 25 ’(3)

2 ;

g2 = ≠
5051645167
38880000 + fi2

1
221411
32400 ≠ 18 ln 2

2
≠

3919 ’(3)
60 ;

g3 = 14588342017
38880000 + fi2

1
≠

2479681
64800 + 112 ln 2

2
+ 3113 ’(3)

10 ;

p0 = ≠
1808080780513

14580000 + 41851fi4

15 + 8432 ln4 2
3 + 67456 a4 + 2085448 ’(3)

15 +

+fi2
1
≠

11944163099
194400 + 272

3 (180 ≠ 31 ln 2) ln 2 + 115072 ’(3)
3

2
≠

575360 ’(5)
3 ;

p1 = 134017456919
96000 ≠

4481182fi4

135 ≠
98420 ln4 2

3 ≠ 787360 a4 + 2255200 ’(5)+

+fi2
1

23549054249
32400 ≠ 201122 ln 2 + 98420 ln2 2

3 ≠ 451040 ’(3)
2

≠
57189259 ’(3)

36 ;

p2 = ≠
13069081405453

3888000 + 330073fi4

4 + 80790 ln4 2 + 1938960 a4 + 77371609 ’(3)
20 +

+fi2
1
≠

729995599
405 + 6 (85313 ≠ 13465 ln 2) ln 2 + 1114360 ’(3)

2
≠ 5571800 ’(5);

p3 = 1274611832039
583200 ≠

986377fi4

18 ≠ 53340 ln4 2 ≠ 1280160 a4 + 11057200 ’(5)
3 +

+fi2
1

5809659289
4860 + 420 ln 2 (≠823 + 127 ln 2) ≠

2211440 ’(3)
3

2
≠

22833188 ’(3)
9 ;

Table A.1: The coe�cients g(6a)
i , h(6a)

i , j(6a)
i , p(6a)

i (i = 0, 1, 2, 3) from [46]. The superscript
(6a) has been dropped for simplicity. In the above coe�cients, the Riemann zeta function
’(k) = qŒ

n=1 1/nk and a4 = qŒ
n=1 1/ (2nn4) = Li4(1/2).
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(6b)

j0 = 0;

j1 = 11
27 ;

j2 = 41
120 ;

j3 = ≠
507
40 ;

h0 = 65
54 ;

h1 = ≠
3559
1296 + fl2 + 5

18 ln fl;

h2 = 3917
432 ≠

82fl2

3 + 61
10 ln fl;

h3 = ≠
4109
80 + 2211fl2

10 ≠
1763
30 ln fl;

g0 = 1
108 (259 ≠ 72fl2 + 276 ln fl);

g1 = ≠
9215
1296 + 65fi2

162 ≠
3fi2fl

4 + 49fl2

36 +
1
≠

301
54 + 8fl2

2
ln fl + 4

3 ln2 fl + 2 ’(3);

g2 = 501971
40500 ≠

113fi2

36 + 270fi2fl
36 ≠

8417fl2

180 +
1

3479
900 ≠ 44fl2

2
ln fl ≠ 8 ln2 fl ≠ 12 ’(3);

g3 = ≠
2523823
324000 + 625fi2

36 ≠ 49fi2fl + 84946fl2

225 +
1

987
50 + 200fl2

2
ln fl + 112

3 ln2 fl + 56 ’(3);

p0 = ≠
95519053063

486000 ≠ 7275fi2fl + fi2(24382331
810 ≠

285184
9 ln 2) +

1
≠

587150693
5400 + 75272fl2

3

2
ln fl+

+120800fi2

9 ln fl + 4720 ln2 fl + 1067115409fl2

5400 ≠ 32fi2fl2 (687 + ln 4) +
1

1135508
9 + 96fl2

2
’(3);

p1 = 279489728279
121500 + 179283fi2fl

2 + fi2
1
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143574463
405 + 3352256 ln 2

9

2
+

1
2280933773

1800 ≠ 309540fl2
2

ln fl+

≠
1419328fi2

9 ln fl ≠
174712

3 ln2 fl ≠
174350167fl2

75 + 16
3 fi2fl2 (48481 + 90 ln 2) +

≠
10
3 (446023 + 216fl2) ’(3);

p2 = ≠
229560199193

40500 ≠
912495fi2fl

4 + 4
135fi2(29597029 ≠ 31048560 ln 2) +

1
≠

1867939691
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2
ln fl+

+
1
788488fl2 + 1168336fi2

3

2
ln fl + 148348 ln2 fl + 258653648fl2

45 +

≠
320
3 fi2fl2 (5989 + ln 512) +

1
11034553

3 + 1440fl2
2

’(3);

p3 = 72762177677
19440 + 154035fi2fl + 35

162fi2 (≠2687659 + 2816064 ln 2) +

≠
7

108 (≠31650719 + 3973440fi2 + 8220240fl2) ln fl+

≠100240 ln2 fl ≠
513692207fl2

135 + 140
3 fi2fl2 (9055 + ln 4096) ≠

280
9 (78283 + 27fl2) ’(3);

Table A.2: Table 2: The coe�cients g(6b)
i , h(6b)

i , j(6b)
i , p(6b)

i (i = 0, 1, 2, 3) from [46]. The
superscript (6b) has been dropped for simplicity. In the above coe�cients, fl = me/m,
the Riemann zeta function ’(k) = qŒ

n=1 1/nk, and a4 = qŒ
n=1 1/ (2nn4) = Li4(1/2).
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(6bll)

j0 = 0;

j1 = 4
27 ≠

9fl2

2 ;

j2 = ≠
41
48 + 2201fl2

216 ;

j3 = 3037
900 ≠

5909fl2

216 ;

h0 = ≠
9
2 ;

h1 = 59
9 ≠

275fl2

36 ≠ 18fl2 ln fl;

h2 = ≠
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48 + 659fl2

18 ln fl;

h3 = 282617
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10481fl2
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9 ln fl;
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8 ≠ 4fi2fl + 15fl2 + fi2fl2
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g1 = ≠
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18 ln fl ≠
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28fi2fl
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16fl2
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1350 + 24fi2fl + 655429fl2
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360 ln fl ≠ 36fl2 ln2 fl+
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45000 ≠
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583200 + fi2
1
≠

615427
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388800 ≠
1

324fi2 (≠533001 + 9110736fl + 3110417fl2) +

+ 2
135fi4 (180247 + 73530fl2) +
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fl2 ln fl+
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Table A.3: The coe�cients g(6bll)
i , h(6bll)

i , j(6bll)
i , p(6bll)

i (i = 0, 1, 2, 3) from [46]. The super-
script (6bll) has been dropped for simplicity. In the above coe�cients, fl = me/m, the
Riemann zeta function ’(k) = qŒ

n=1 1/nk, and a4 = qŒ
n=1 1/ (2nn4) = Li4(1/2).
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Tables Coe�cients HVP at NLO in
TMR

n an bn cn dn

4 317
216 ≠

1
3

23
18 0

6 843829
259200 ≠
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432
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36

8 412181237
5292000 ≠
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48 ≠
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25200

141
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20
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330
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19509636989
30888 ≠
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65 ≠
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419236121304000

64743309493
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Table B.1: Coe�cients of the expansion of f̃4(t) for small t̂ up to t̂30 (from [128]), see
(4.22)
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n a(b;1,1)
n a(b;1,2)

n a(b;2,1)
n a(b;2,2)

n a(b;2,3)
n

0 ≠1.4724671380 1.1589872337 ≠4.8942765691 0.2973718753 2.1170734478

1 0.1002442629 ≠0.0022459376 ≠2.9475017651 0.4127862149 1.0364595246

2 0.0021557710 0.0008279191 ≠0.5075497783 0.1109534688 0.1101698869

3 0.0001282655 0.0007999410 0.0115794503 ≠0.0040980259 0.0167667530

4 ≠0.0001467432 ≠0.0006094594 ≠0.0013940058 0.0003899989 ≠0.0035236970

5 9.35581 ◊ 10≠6 7.37693 ◊ 10≠6 0.0001421294 ≠0.0000133805 0.0008586372

6 0.0000260037 0.0002711371 7.67679 ◊ 10≠6
≠0.00001764961 ≠0.0002257379

7 ≠0.0000189910 ≠0.0002551246 ≠0.00001492424 .000011742325 0.0000612688

8 6.93309 ◊ 10≠6 0.0001291619 8.61706 ◊ 10≠6
≠5.92454 ◊ 10≠6

≠0.0000164422

9 3.18779 ◊ 10≠7
≠0.0000121615 ≠4.20065 ◊ 10≠6 2.78837 ◊ 10≠6 4.04750 ◊ 10≠6

10 ≠2.93399 ◊ 10≠6
≠0.0000553459 1.95419 ◊ 10≠6

≠1.29025 ◊ 10≠6
≠7.17744 ◊ 10≠7

11 2.98580 ◊ 10≠6 0.0000760414 ≠9.00478 ◊ 10≠7 5.98351 ◊ 10≠7
≠7.67136 ◊ 10≠8

12 ≠2.08433 ◊ 10≠6
≠0.0000669985 4.17032 ◊ 10≠7

≠2.80343 ◊ 10≠7 1.94188 ◊ 10≠7

Table B.2: Coe�cients of the expansions in v of m2
µ

16fi2 f̃4(t) up to v12 with t̂0 = 5 (from
[128]), see (4.77).
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