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perturbations. In this work we study the intuitive physics behind SIGWs and we analyze
the imprints of local non-Gaussianity of the primordial curvature perturbation on the GW
spectrum. We consider all the relevant non-Gaussian contributions up to fifth-order in the
scalar seeds without any hierarchy, and we derive the related GW energy density ΩGW(f).
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1 Introduction

Primordial Gravitational Waves (GWs) have the potential to probe the entire cosmological
history, as a consequence of the weakness of the gravitational interaction: as soon as they
are emitted, they decouple from the thermal bath and evolve almost independently on any
intervening matter after the emission [1–6]. Ongoing and planned observations of GWs span
over 21 orders of magnitudes in frequency, starting from the Cosmic Microwave Background
(CMB) at the lowest frequencies, up to interferometric detectors passing through Pulsar
Timing Array (PTA) experiments [7].

Several mechanisms can generate GWs in the early universe [8–11]. While all these
mechanisms reside on some source modelling assumptions, there is a primordial guaranteed
source of GWs: those generated by second-order scalar fluctuations, called Scalar-Induced
GWs (SIGWs). SIGWs were firstly introduced in [12–17]. When a second-order perturbation
of the metric and of the stress-energy tensor is taken into account, the equation of motion,
that at first order describes the dynamic of tensor modes as free propagating GW, gets
a source term [9]. This is due to the fact that, going beyond linear order, scalar, vector
and tensor perturbations are not independent among each other and thus, combination of
first-order scalar perturbations may act as sources of GW (and viceversa [18, 19]). Recently,
also SIGWs sourced by scalar-tensor perturbations have been analyzed [20, 21].

As shown in the past, such a SIGWB signal is sensitive to the underlying statistics
of the sourcing curvature fluctuations, and in particular, to primordial non-Gaussianity
(nG) [22–28]. In all the works, mainly contributions up to fNL on the scalar-induced GW
spectrum have been explored [29–37] (see e.g., [38, 39] for recent papers which include
contributions up to gNL and [40] for a study on the bispectrum and trispectrum of induced
GWs). However, contributions of the same order are expected when higher-order local
nG terms (i.e., hNL, iNL) are taken into account. So, we compute the GW spectral energy
density considering all the relevant non-Gaussian contributions up to fifth-order in the scalar
seeds, without assuming any hierarchy among the non-Gaussian parameters. We derive
analytically the various contributions starting from the 6- and 8-point correlation functions
exploiting the Wick’s theorem, and then we perform numerical high dimensional integrations
via Monte Carlo methods [41].

Primordial fluctuations, both tensor and density ones, are generated and stretched on
super-horizon scales during inflation. The time of emission for the SIGWB is assumed
to be when they re-enter the horizon in radiation domination. We assume a log-normal
enhancement of the scalar power spectrum at the scales corresponding to these re-entering
modes, which are much smaller than the one probed by CMB. We consider power spectrum
amplitudes of O(10−2, 10−3). Such an enhancement of the amplitude, far from CMB scales, is
responsible also for the formation of Primordial Black Holes (PBHs) [42–46] and it could be
generated by several physical mechanisms, such as features in the gravitational potential [47–
60], modified gravity [61–69], multi-field inflation [70–81], curvaton scenarios [82–85], models
with parametric resonance [86–90], etc (see [91] for a review). In these cases, PBHs can be
generated in the very early stages of the universe, before any astrophysical object exists, if
the presence of large initial fluctuations gives rise to regions where the gravitational potential
exceeds (the kinetic energy of) the expansion of the universe. Since such PBHs form only in
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rare, large fluctuations, the number of PBHs is also very sensitive to the change in the shape
of the tail of the fluctuation distribution, which is regulated by the amount of non-Gaussianity.
Similarly to SIGWs, also in the calculation of the abundance of PBH, truncating the expansion
at order fNL, does not give accurate results [92]. Further modifications can also derive from
quantum diffusion [93, 94] or single field inflation if the inflaton deviates from the attractor
solution [95], which generate non-Gaussian exponential tails. Since SIGWs are generated
approximately at the same epoch, one observable can be exploited to constrain the parameter
space of the other [96–101]. See also [102] for a recent paper discussing a complementary
way to constrain nG using PBH clustering properties.

SIGWs have been proposed as a possible explanation of the recent Pulsar Timing Array
(PTA) collaboration detected signal [103–106] and are among possible targets of the future
space-based interferometer LISA [91, 107, 108]. For this reason, in the second part of the
paper, we focus on understanding if the signal coming from SIGWs can be used to estimate
the accuracy with which non-Gaussianity can be probed with LISA. In particular, accounting
for the latest detector specifications, we perform a Fisher matrix analysis on the signal
parameters [109–111]. Finally, we discuss the interplay between our new results and the PBH
abundance, when all the nG contributions are taken into account, following [112, 113].

The paper is composed as follows. In section 2 the intuitive physics behind scalar-induced
GW and the construction of the power spectra are analyzed, starting from second-order
perturbations of the metric. Studying the solution of the equation of motion of tensor
perturbation, it is computed how the power spectrum of scalar-induced GW, which is
proportional to the 4-point correlation function of primordial curvature perturbation. Then
we analyze the imprints of local type non-Gaussianity of the primordial fluctuations on the
GW spectrum, considering all the relevant non-Gaussian contributions up to fifth-order in
the scalar seeds. Section 3 collects all the analytical and numerical results obtained, reporting
the details for performing the integrations considering a lognormal parametrization for the
primordial curvature power spectrum. The resulting spectra of GWs are then compared with
the sensitivity of the LISA detector. In section 4 we address the detectability of the signal,
trying to infer how well LISA will constrain signal and non-Gaussian parameters. In section 5
we discuss PBH implications within our choice for the parameters of the model. Finally, in
section 6 we discuss the main results and we summarize the achievements. Some appendices
are added to describe in details all the steps that has been done for the computation of the
power spectra and the Feynman diagrams associated to each contribution in the spectrum.

2 Second-order scalar-induced gravitational waves

The detectability of the SIGWB depends on the amplitude of the primordial density fluc-
tuations since it comes from second-order term in cosmological perturbation theory [114].
The GW spectral energy density today ΩGW,0 induced by primordial scalar perturbations
represents the observable quantity. In order to evaluate this, it is necessary to compute the
Power Spectrum (PS) Ph associated to the induced GW starting from the general solution of
the Equation of Motion (EoM) of second-order tensor perturbations derived from Einstein’s
equation. For the general formalism, the main references are [13, 15–17, 36, 114–118].
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2.1 Second-order equation of motion

To compute the induced tensor modes we follow the approach of [115], where the perturbed
metric reads

ds2 = a2(η)
{

−
(
1 + 2Φ(1) + Φ(2)

)
dη2

+ 2ω
(2)
i dηdxi +

[
(1 − 2Ψ(1) − Ψ(2))δij + 1

2hij

]
dxidxj

}
,

(2.1)

where first-order vector and tensor perturbations are ignored and hij ≡ h
(2)
ij . The next step

is to apply the projector tensor T̂ lm
ij to the second-order Einstein equations

T̂ lm
ij G

(2)
lm = 8πGT̂ lm

ij T
(2)
lm . (2.2)

The projector tensor extracts the transverse, traceless part of any tensor and eliminates
the terms involving Φ(2), Ψ(2), ω

(2)
i and the scalar and vector parts of the anisotropic stress

Π(2)i
j in the second-order Einstein equations. In the absence of anisotropic stress Ψ = Φ,

the evolution equation for tensor modes results

h′′
ij + 2Hh′

ij − ∇2hij = −4T̂ lm
ij Slm , (2.3)

with the source term Sij(x, η) given by [36]

Sij(x, η) ≡ 4Φ∂i∂jΦ+ 2(1 + 3w)
3(1 + w) ∂iΦ∂jΦ− 4

3(1 + w)H2
[
∂iΦ′∂jΦ′ + H∂iΦ∂jΦ′ + H∂iΦ′∂jΦ

]
,

(2.4)
where Φ ≡ Φ(1) ≡ Φ(x, η) and w is the equation of state parameter. Going to Fourier space
we can write the tensor metric perturbation as

hij(x, η) =
∑

λ=+,×

∫
d3k

(2π)3/2 eik·xhk,λ(η)ελ
ij(k̂) , (2.5)

where λ = +, × are the two GW polarizations and ελ
ij(k̂) the polarization tensors. The scalar

perturbation Φ(k, η) can be split into a transfer function, ϕ(kη) and a primordial curvature
fluctuation R(k) [36, 115, 116]. The curvature fluctuation is conserved on super-horizon
scales and hence it provides a well-defined initial conditions in order to describe primordial
perturbations [119]. In the Newtonian gauge, the split of Φ(k, η), representing the Newtonian
gravitational potential, can be written as

Φ(k, η) = 3 + 3w

5 + 3w
ϕ(kη)R(k) = b + 2

2b + 3ϕ(kη)R(k) . (2.6)

In the last equation b = (1 − 3w)/(1 + 3w) is a parameter, often used for convenience in the
literature, which tells how much the equation of state of the universe differs from the one
associated to radiation w = 1/3 → b = 0: b < 0 and b > 0 correspond to a stiffer and a softer
fluid respectively. The transfer function ϕ(kη) encodes the linear evolution of perturbations
after horizon re-entry (see [116] for a recent review).
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The primordial curvature fluctuation R(k) is characterized by the power spectrum

⟨R(k)R(q)⟩ = δ(3)(k + q)PR(k) , (2.7)

with PR(k) parametrized by PR(k) = ∆R(k0)
(

k
k0

)ns−1
, with k0 the pivot scale and ns − 1

the spectral index. The latest constraints from Planck 2018 gave ∆2
R(k0) ∼ 2.2 × 10−9

and ns = 0.9649 ± 0.0042 [120].
In Fourier space, the EoM for the GW amplitude h for each polarization state λ becomes

h′′
λ(k, η) + 2Hh′

λ(k, η) + k2hλ(k, η) = 4Sλ(k, η) , (2.8)

where Sλ(k, η) encloses the FT of the source (2.4) given by

Sλ(k, η) ≡ −ελ
lm(k̂)Slm(k, η)

=
∫

d3q
(2π)3/2 Qλ(k, q)f(|k − q|, q, η)R(q)R(k − q) .

(2.9)

In the last relation the projection factor

Qλ(k, q) ≡ εij
λ (k̂)qiqj (2.10)

encloses the angle between the two vectors k and q. Taking k̂ as a unit vector along the ẑ

direction and considering q = q(sin θ cos φ, sin θ sin φ, cos θ) a generic vector with modulus
q, equation (2.10) becomes

Qλ(k, q) = q2
√

2
sin2(θ) ×

{
cos(2φ), λ = +
sin(2φ), λ = × .

(2.11)

Recalling that H = 2/(η(1 + 3w)) and defining p = k − q to simplify the notation, the
growing mode f(p, q, η) in (2.9) can be written as

f(p, q, η) = 3(1 + w)
(5 + 3w)2

[
2(5 + 3w)ϕ(pη)ϕ(qη) + 4

H2 ϕ′(pη)ϕ′(qη)

+ 4
H
(
ϕ(pη)ϕ′(qη) + ϕ′(pη)ϕ(qη)

)]
= 3(1 + w)

(5 + 3w)2

[
2(5 + 3w)ϕ(pη)ϕ(qη) + η2(1 + 3w)2ϕ′(pη)ϕ′(qη)

+2η(1 + 3w)
(
ϕ(pη)ϕ′(qη) + ϕ′(pη)ϕ(qη)

)]
.

(2.12)

This quantity encloses the transfer function ϕ(kη) and the dependence on the equation of
state of the cosmic fluid w, arising when the splitting of the field (2.6) is included in the
expression of the source term Sij(k, η).

2.2 Power spectrum

Having a complete expression for the equation of motion, the next step consists in finding a
solution for hλ, in order to build the corresponding power spectrum, as anticipated before.
Using the Green’s method, in fact, we can build the particular solution of the evolution

– 5 –
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equation of induced tensor modes. After obtaining the solutions of the homogeneous equation
h′′

k,λ + 2Hh′
k,λ + k2hk,λ = 0, it reads (here we follow the notation of [36])

hλ(k, η) = 4
a(η)

∫ η

ηi

dη̄ Gk(η, η̄)a(η̄)Sλ(k, η̄) , (2.13)

where Gk(η, η̄) is the Green’s function of the homogeneous solution. As reported in [17],
equation (2.13) is obtained assuming h(k, ηi) = 0 and h′(k, ηi) = 0 as initial conditions. This
choice is consistent with the assumption that, neglecting possible non trivial cross-correlated
spectrum by tensor-scalar-scalar couplings during inflation, primordial first-order tensor modes
are uncorrelated with the first-order scalar modes and hence uncorrelated with the induced
second-order tensor modes. This justifies to consider that there are no GWs before horizon
re-entry [116]. Any GW with primordial origin may be simply added to the solution (2.13).

Using now (2.9), the solution (2.13) can be rewritten as

hλ(k, η) = 4
a(η)

∫ η

ηi

dη̄ Gk(η, η̄)a(η̄)
∫

d3q

(2π)3/2 Qλ(k, q)f(|k − q|, q, η̄)R(q)R(k − q) . (2.14)

Furthermore, it is possible to define

I(|k − q|, q, η) =
∫ η

ηi

dη̄ Gk(η, η̄)a(η̄)
a(η)f(|k − q|, q, η̄) , (2.15)

which is called kernel or transfer function. The particular solution of the evolution equation
of the scalar-induced tensor modes finally becomes

hλ(k, η) = 4
∫

d3q

(2π)3/2 Qλ(k, q)I(|k − q|, q, η)R(q)R(k − q) . (2.16)

Hence the 2-point correlation function of the induced GW yields

⟨hλ1(k1, η1)hλ2(k2, η2)⟩ =16
∫

d3q1
(2π)3/2

∫
d3q2

(2π)3/2 Qλ1(k1, q1)I(|k1 − q1|, q1, η1)

× Qλ2(k2, q2)I(|k2 − q2|, q2, η2)
× ⟨R(q1)R(k1 − q1)R(q2)R(k2 − q2)⟩

(2.17)

where ⟨. . . ⟩ is the ensemble average that can be computed exploiting Wick’s theorem [121].
As shown in the last equation, the 2-point correlation function shows that the induced GW
spectrum depends on the 4-point function of the primordial curvature perturbation R.

Assuming statistical homogeneity and isotropy on the curvature perturbation and ⟨R⟩ = 0,
the 4-point correlation function can be decomposed into a disconnected contribution and
a connected one as

⟨R(k1)R(k2)R(k3)R(k4)⟩ = ⟨R(k1)R(k2)R(k3)R(k4)⟩d + ⟨R(k1)R(k2)R(k3)R(k4)⟩c .

(2.18)
The connected component is defined in terms of the primordial connected trispectrum TR,
defined as

⟨R(k1)R(k2)R(k3)R(k4)⟩c = δ(3)(k1 + k2 + k3 + k4)TR(k1, k2, k3, k4) . (2.19)

– 6 –
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Thus the corresponding connected 2-point function of the induced GW becomes

⟨hλ1(k1,η1)hλ2(k2,η2)⟩c = δ(3)(k1+k2)δλ1λ2δη1η2Ph,λ(k,η)
∣∣
c

= 16
∫

d3q1
(2π)3/2

∫
d3q2

(2π)3/2 Qλ1(k1,q1)I(|k1−q1|, q1,η1)Qλ2(k2,q2)

×I(|k2−q2|, q2,η2)δ(3)(k1+k2)TR(q1,k1−q1,q2,k2−q2) .

(2.20)

Applying now the effects of the delta and imposing k1 = −k2 = k, λ1 = λ2 = λ and
η1 = η2 = η, the connected PS reads

Ph,λ(k, η)
∣∣
c

=16
∫

d3q1
(2π)3/2

∫
d3q2

(2π)3/2 Qλ(k, q1)I(|k − q1|, q1, η)Qλ(k, q2)

× I(|k − q2|, q2, η)TR(q1, k − q1, −q2, q2 − k) .

(2.21)

When R is a Gaussian field this contribution vanishes, since the only connected n-point
function of a Gaussian field is the 2-point one (in the next section, when local nG is considered,
the contributions to the connected trispectrum will be computed, instead).

The disconnected part, as already mentioned, can be directly decomposed using the
Wick’s theorem. Considering all the possible combinations it reads

⟨R(q1)R(k1 − q1)R(q2)R(k2 − q2)⟩d = ⟨R(q1)R(k1 − q1)⟩⟨R(q2)R(k2 − q2)⟩
+ ⟨R(q1)R(q2)⟩⟨R(k1 − q1)R(k2 − q2)⟩
+ ⟨R(q1)R(k2 − q2)⟩⟨R(k1 − q1)R(q2)⟩ .

(2.22)

Exploiting the properties of the deltas and the projection factors Qλ(k, q), we obtain the
disconnected 2-point function of the induced GW

⟨hλ1(k1, η1)hλ2(k2, η2)⟩d

= δ(3)(k1 + k2)δλ1λ2δη1η2Ph,λ(k, η)
∣∣
d

= 16
∫

d3q2
(2π)3 Qλ1(k1, q2)I(q2, |k1 + q2|, η1)Qλ2(k2, q2)I(|k2 − q2|, q2, η2)

× δ(3)(k1 + k2)PR(q2)PR(|k1 + q2|)

+ 16
∫

d3q2
(2π)3 Qλ1(k1, q2)I(|k1 + q2|, q2, η1)Qλ2(k2, q2)I(|k2 − q2|, q2, η2)

× δ(3)(k1 + k2)PR(q2)PR(|k1 + q2|) .

(2.23)

Rewriting the last equation and calling q2 → q, the disconnected PS finally reads

Ph,λ(k, η)
∣∣
d

= 32
∫

d3q

(2π)3 Q2
λ(k, q)I2(q, |k − q|, η)PR(q)PR(|k − q|) . (2.24)

This contribution is the only one which survives when the simplest case of a Gaussian
primordial scalar field R is considered. We further specify, as underlined in [31], that the
leading order GW power spectrum arises from a 1-loop Feynman diagram, in turn originating
from the tree-level contributions to PR, as we further discuss in appendix B.

– 7 –
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In full generality it is possible to define the dimensionless power spectrum ∆2(k) associated
to hλ as

∆2(k) = k3

2π2 P (k) , (2.25)

i.e. the logarithmic interval contribution to the variance σ2 of the stochastic field [122]

σ2 = ⟨δ2(x)⟩ =
∫

d3k

(2π)3 P (k) =
∫

dk

k
∆2(k) . (2.26)

The 2-point correlation function of scalar-induced GW becomes

⟨hλ1(k1, η)hλ2(k2, η)⟩ = δ(3)(k1 + k2)δλ1λ2Ph,λ(k, η)

= δ(3)(k1 + k2)δλ1λ2 2π2

k3 ∆2
h,λ(k, η) .

(2.27)

As a last step, we obtain ΩGW(k, η), which constitutes the observationally relevant quantity
for the SGWB [36, 123]. The spatially averaged energy density of GW on sub-horizon
scales results [124]

ρGW(η) =
∫

d ln kρGW(k, η) = M2
Pl

16a2(η)⟨(∇hij)2⟩ , (2.28)

where MPl = (8πG)−1/2 is the reduced Planck mass, ρGW(η) is the total energy density of
GW filling the universe (or GW power) and the over-bar denotes a time average. Hence [36]

ΩGW(k, η) ≡ ρGW(k, η)
ρtot(η) = 1

48

(
k

a(η)H(η)

)2 ∑
λ=+,×

∆2
h,λ(k, η) , (2.29)

with ΩGW(k, η) the fractional energy density in GW per logarithmic wavenumber. The
oscillation average of the dimensionless power spectrum ∆2

h,λ(k, η) is reflected in the oscillation
average of the kernel (2.15) I(|k − q|, q, η), since it encloses all the time dependencies of
the induced GW. The observable spectrum today ΩGW,0(k), assuming that the emission of
GW occurs after the reheating phase, is obtained considering that GW redshift as radiation
with the expansion of the universe and hence [11]

ΩGW,0(k)h2 = Ωrad,0h2
(

g∗,0
g∗,e

)1/3

ΩGW,e(k) , (2.30)

observed at the present-day frequency

f = k/2πae√
HeMPl

(
Ωrad,0H2

0 M2
Pl

)1/4
(

g∗,0
g∗,e

)1/12

(2.31)
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for a given comoving momentum k. In this expression h is the reduced Hubble constant
h = H0/100 km s−1/Mpc, g∗ is the number of relativistic degrees of freedom (at present day
and at the time of emission) in the energy density and Ωrad,0 represents the present-day
amount of radiation, which from current observations is Ωrad,0h2 ∼ 4.2 × 10−5 [125].

2.3 Local model of non-Gaussianity

The imprint of primordial nG on the spectrum of SIGW has been already studied in previous
works (see e.g. [32, 35, 38, 39, 123, 126–131]). In this work we consider the effect of local
primordial nG mainly following [31, 36]. One of the main assumptions often made when
considering local nG is to assume a hierarchical scaling for the nG parameters, with fNL ≪ 1,
gNL ∝ O(f2

NL) and so on. As a consequence, some contributions to the final SIGW spectrum
are neglected. In order to be self-consistent up to the 8-point correlation function1 we
relax the hierarchical scaling of the nG parameters and we consider an expansion of R
up to the fifth order

R(x) = Rg(x) + 3
5fNL(R2

g(x) − ⟨R2
g⟩) + 9

25gNLR3
g(x)

+ 27
125hNL(R4

g(x) − 3⟨R2
g⟩2) + 81

625 iNLR5
g(x) ,

(2.32)

where fNL, gNL, hNL and iNL are free parameters of the expansion and ⟨R2
g⟩ represents the

variance of the Gaussian field Rg. The terms −3fNL⟨R2
g⟩/5 and −81hNL⟨R2

g⟩2/125 are added
to maintain the mean value of R(x) unchanged, meaning that ⟨R⟩ = ⟨Rg⟩ = 0. As it will
be clear in the following, the expansion is truncated at fifth order in order to account for
all the possible contributions to the 8-point correlation function, arising when considering
next-to-next-to leading order corrections to the spectrum. The factors (3/5)α are related to
the local nG expansion of the Bardeen potential Φ. After expanding Φ in terms of the nG
parameters one can match with the expansion of R in matter domination, where Φ = 3

5R at
first order [27]. It is then always possible to redefine the nG parameters in the R expansion
reabsorbing the 3

5 factors, thus obtaining2

R(x) = Rg(x) + fNL(R2
g(x) − ⟨R2

g⟩) + gNLR3
g(x) + hNL(R4

g(x) − 3⟨R2
g⟩2) + iNLR5

g(x) . (2.33)

Substituting this latter equation in (2.18), and repeating the same calculation reported in
subsection 2.2 one can obtain the nG corrections to (2.24). We will address in the following the
nG corrections, starting with those at order A3

R and subsequently examining the ones at order
A4

R. Hence, considering again that ⟨hλ1(k1, η1)hλ2(k2, η2)⟩ = δ(3)(k1+k2)δλ1λ2δη1η2Ph,λ(k, η),
1This sentence will be clear in the following, after we perform the full calculation of the tensor power

spectrum contributions.
2In the following we will keep calling the nG parameters as fNL, gNL, . . . . Actually to make order we could

call the ones in (2.32) as fΦ
NL, gΦ

NL, while the ones in (2.33) as fR
NL, gR

NL, . . . . As stated in the main text the
two are related by

fR
NL = 3

5fΦ
NL , gR

NL = 9
25gΦ

NL , . . .

In the following we will actually consider the coefficients associated to “R”, dropping the label just to ease the
notation.

– 9 –



J
C
A
P
0
5
(
2
0
2
4
)
0
8
6

and imposing k1 = −k2 = k, η1 = η2 = η and λ1 = λ2 = λ, we obtain (the Gaussian
contribution is written again for completeness)

Ph,λ(k,η)
∣∣
Gaussian = 25

∫
d3q

(2π)3 Q2
λ(k,q)I2(|k−q|, q,η)PRg (q)PRg (|k−q|) ; (2.34)

Ph,λ(k,η)
∣∣
t = 28f2

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Qλ(k,q1)Qλ(k,q2)I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×PRg (q2)PRg (|k−q2|)PRg (|q1−q2|) ; (2.35)

Ph,λ(k,η)
∣∣
u = 28f2

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Qλ(k,q1)Qλ(k,q2)I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×PRg (q1)PRg (q2)PRg (|k−(q1+q2)|) ; (2.36)

Ph,λ(k,η)
∣∣
s = 28f2

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Qλ(k,q1)Qλ(k,q2)I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×PRg (q1)PRg (q2)PRg (k) ; (2.37)

Ph,λ(k,η)
∣∣
gNL

= 3·27gNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Qλ(k,q1)Qλ(k,q2)I(|k−q1|, q1,η)

×I(|k−q2|, q2,η)PRg (q1)PRg (q2)PRg (|k−q1|) ;
(2.38)

Ph,λ(k,η)
∣∣
hybrid = 27f2

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (|k−q1|)PRg (q2)PRg (|q1−q2|) ;
(2.39)

Ph,λ(k,η)
∣∣
new = 3·27gNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (|k−q1|)

= 3·27gNL⟨R2
g⟩
∫

d3q1
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)PRg (q1)PRg (|k−q1|)

= 3·22gNL⟨R2
g⟩Ph,λ(k,η)

∣∣
Gaussian . (2.40)

The six nG contributions at order A3
R, actually come from the 2-loop correction to

the leading order tensor power spectrum. We obtain three additional terms with respect
to [36], that we label as gNL, “s” and “new” (note that we follow the notation of [130]). The
former two, as we show in the following, just vanish [31, 130]; the “new” term, on the other
hand, still contributes to the final spectrum. It is the only contribution sensitive to the
sign of the nG parameter, since it is linearly dependent on it and thus in principle could
compensate the f2

NL ones. Furthermore, as it can be appreciated from figures 4 and 6, the
gNL contribution is almost one order of magnitude greater than the f2

NL one, at the peak.
Hence, imposing that Ωf2

NL
GW/ΩgNL

GW ∼ 1, roughly we can write fNL ∼
√

10 gNL, so that the
f2

NL contribution is comparable with the gNL one. Assuming for example fNL ∼ 10−1, with
gNL ∼ 10−3, (and so in the case of a hierarchy between the nG parameters) the “new” term
could still provide an important contribution at this order. We conclude noting that this
latter contribution can be rewritten in terms of the Gaussian one, exploiting the definition
of variance ⟨R2

g⟩ =
∫

d3kPRg (k)/(2π)3. This suggests the presence of a possible degeneracy
between gNL and AR at this order, which can have a relevant impact on the Fisher matrix.
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At order A4
R, we get the 3-loop corrections to the leading order tensor power spectrum. We

label them in terms of the dependence on the nG parameters as follows

Ph,λ(k,η)
∣∣
f2
NLgNL

= 3·29f2
NLgNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
PRg (k)PRg (q1)PRg (q2)PRg (q3)

+PRg (k)PRg (q1)PRg (q3)PRg (|q2−q3|)
+PRg (q1)PRg (|q1−q2|)PRg (q3)PRg (|k−q1−q3|)
+PRg (q1)PRg (|k−q2|)PRg (|q1−q2|)PRg (q3)
+PRg (q1)PRg (q3)PRg (|k−q1−q3|)PRg (|q2−q3|)
+PRg (q1)PRg (q3)PRg (|k−q1−q2+q3|)PRg (|q2−q3|)
+PRg (q1)PRg (|k−q1|)PRg (|q1−q2|)PRg (q3)
+PRg (q1)PRg (|q1−q2|)PRg (q3)PRg (|k−q2−q3|)

+PRg (q1)PRg (q3)PRg (|k−q3|)PRg (|q2−q3|)
]

= 3·29f2
NLgNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
PRg (k)PRg (q1)PRg (q2)PRg (q3)

+PRg (k)PRg (q1)PRg (q3)PRg (|q2−q3|)
+PRg (q1)PRg (|q1−q2|)PRg (q3)PRg (|k−q1−q3|)
+2PRg (q1)PRg (q3)PRg (|k−q1−q3|)PRg (|q2−q3|)
+PRg (q1)PRg (|q1−q2|)PRg (q3)PRg (|k−q2−q3|)

+PRg (q1)PRg (q3)PRg (|k−q3|)PRg (|q2−q3|)
]

+3·2gNL⟨R2
g⟩Ph,λ(k,η)

∣∣
u

+3·2gNL⟨R2
g⟩Ph,λ(k,η)

∣∣
t ; (2.41)

Ph,λ(k,η)
∣∣
f2
NLgNL,d = 3·28f2

NLgNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2|)

= 3·28f2
NLgNL⟨R2

g⟩
∫

d3q1
(2π)3

∫
d3q2
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (|k−q1−q2|)

= 3·28f2
NLgNL⟨R2

g⟩
∫

d3q1
(2π)3

∫
d3q2
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (|k−q1|)PRg (q2)PRg (|q1−q2|)
= 3·2gNL⟨R2

g⟩Ph,λ(k,η)
∣∣
hybrid ;

(2.42)
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Ph,λ(k,η)
∣∣
g2

NL
= 32 ·27g2

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
PRg (q1)PRg (|k−q1|)PRg (q3)PRg (|q1−q2−q3|)

+PRg (q1)PRg (q2)PRg (q3)PRg (|k−q3|)
+PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2+q3|)

+3PRg (q1)PRg (|k−q1|)PRg (q2)PRg (q3)
]
;

(2.43)

Ph,λ(k,η)
∣∣
g2

NL,d = 3·26g2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×
[
32PRg (q1)PRg (|k−q1|)PRg (q2)PRg (q3)

+2PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2+q3|)
]

= 33 ·26g2
NL⟨R2

g⟩2
∫

d3q1
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)PRg (q1)PRg (|k−q1|)

+3·27g2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2+q3|)
= 33 ·26g2

NL⟨R2
g⟩22−5Ph,λ(k,η)

∣∣
Gaussian

+3·27g2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2+q3|)
= 33 ·2g2

NL⟨R2
g⟩2Ph,λ(k,η)

∣∣
Gaussian

+3·27g2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2+q3|) ;
(2.44)

Ph,λ(k,η)
∣∣
f4
NL

= 28f4
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
2PRg (q3)PRg (|q1−q3|)PRg (|q2−q3|)PRg (|k−q3|)

+PRg (q3)PRg (|q1−q3|)PRg (|q2−q3|)PRg (|k−q1−q2+q3|)
]
;

(2.45)

Ph,λ(k,η)
∣∣
f4
NL,d = 27f4

NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q2)PRg (q3)PRg (|q1−q2|)PRg (|k−q1−q3|) ;
(2.46)
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Ph,λ(k,η)
∣∣
fNLhNL

= 3·29fNL hNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
2
(
PRg (k)PRg (q1)PRg (q2)PRg (q3)

+PRg (q1)PRg (|k−q1|)PRg (|q1−q2|)PRg (q3)
+PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q3|)

+PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2|)
)

+PRg (q1)PRg (|k−q1|)PRg (q3)PRg (|q2−q3|)
]

= 3·29fNL hNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)

×
[
2
(
PRg (k)PRg (q1)PRg (q2)PRg (q3)

+PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q3|)
)

+PRg (q1)PRg (|k−q1|)PRg (q3)PRg (|q2−q3|)
]

+3·22f−1
NLhNL⟨R2

g⟩Ph,λ(k,η)
∣∣
t

+3·22f−1
NLhNL⟨R2

g⟩Ph,λ(k,η)
∣∣
u ;

(2.47)

Ph,λ(k,η)
∣∣
fNLhNL,d = 3·29fNL hNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (q3)PRg (|k−q1−q2|)

= 3·29fNL hNL⟨R2
g⟩
∫

d3q1
(2π)3

∫
d3q2
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (q2)PRg (|k−q1−q2|)
= 3·22f−1

NLhNL⟨R2
g⟩Ph,λ(k,η)

∣∣
hybrid ;

(2.48)

Ph,λ(k,η)
∣∣
iNL

= 5·3·28iNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Qλ(k,q1)Qλ(k,q2)

I(|k−q1|, q1,η)I(|k−q2|, q2,η)
×PRg (q1)PRg (|k−q1|)PRg (q2)PRg (q3) ;

(2.49)

Ph,λ(k,η)
∣∣
iNL,d = 5·3·27iNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)

×PRg (q1)PRg (|k−q1|)PRg (q2)PRg (q3)

= 5·3·27iNL⟨R2
g⟩2
∫

d3q1
(2π)3 Q2

λ(k,q1)I2(|k−q1|, q1,η)PRg (q1)PRg (|k−q1|)

= 5·3·22iNL⟨R2
g⟩2Ph,λ(k,η)

∣∣
Gaussian . (2.50)
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In equations (2.42), (2.44), (2.46), (2.48) and (2.50) the letter “d” indicates that these
terms are originated by the disconnected trispectrum of the primordial fluctuations. All
the other terms correspond to connected contributions, instead. The additional internal
momentum q3 arises from the local model of non-Gaussianity.

Again, also at this order some of the disconnected contribution can be rewritten in terms
of the lower order power spectra Ph,λ(k, η)

∣∣
Gaussian or Ph,λ(k, η)

∣∣
hybrid, with different numerical

factors in front of them. It is also possible to rewrite some of the connected contributions in
terms of the lower order ones. In the first step of equation (2.47), for example, we can rewrite
the second and the fourth line in the square brackets in terms of the “u” and “t” contributions.

Recalling now that the constants fNL, gNL, hNL and iNL are related to products of two,
three, four and five Gaussian fields in the non-Gaussian expansion of R in Fourier space,
respectively, it is straightforward to recover the initial terms in that expansion which, combined
together, give rise to the expressions (2.34)–(2.50). Since they all come from the 4-point
correlator of the primordial curvature perturbation ⟨R(q1)R(k1 − q1)R(q2)R(k2 − q2)⟩,
all terms need to have exactly 4 entries. Hence, at leading order, the unique combination
contributing to the 4-point function comes from the product of four terms, each linearly
dependent on the Gaussian field Rg. The next-to-leading order corrections arise from all
the possible combinations in the 4-point correlator of the nG scalar field giving rise to
6-point functions, i.e.

• two terms containing the Gaussian field squared (∝ fNL) and two terms linearly
dependent on it → f2

NL;

• one term containing the Gaussian field cubed (∝ gNL) and three terms linearly dependent
on it → gNL.

The next-to-next-to-leading order contributions, instead, arise from the 8-point correlation
functions and originate from

• two terms proportional to the Gaussian field squared (∝ fNL), one proportional to its
cube (∝ gNL) and the last one linearly dependent on Rg → f2

NLgNL;

• two terms containing the cube of the Gaussian field (∝ gNL) and two terms linearly
dependent on it → g2

NL;

• four terms proportional to the square of the Gaussian field (∝ fNL) → f4
NL;

• one term proportional to the fourth power of the Gaussian field (∝ hNL), one term
containing the Gaussian field squared (∝ fNL) and two terms linearly dependent on it
→ fNL hNL;

• one term proportional to the fifth power of the Gaussian field (∝ iNL) and three terms
linearly dependent on it → iNL.

We remark that the terms just reported are all the possible ones contributing up to the 8-point
function of the primordial scalar perturbations that arise when the local model of nG is
considered and they do not require any further correction at the perturbative order considered
for this work. An higher order term in the expression (2.33), for example proportional to
AR6

g(x), would lead at least to a 10-point function of the primordial Gaussian fluctuations.
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The goal of this work is to provide a Fisher analysis for the LISA detectors, trying to
infer the accuracy for the measurement of the non-Gaussian parameters. In the following
the results of the different contributions to the spectral density are shown. Useful changes
of variable to simplify the numerical evaluation are reported in appendix A.

3 Results

Having the analytical expressions of all the components contributing to the spectrum of
second-order scalar-induced GW (2.34)–(2.50), we now study the relative importance of the
different contributions to the spectrum. Similar arguments, treated with different notations,
can be found in [17, 116, 123, 124, 132]. In this work we choose a primordial dimensionless
power spectrum parametrized as a lognormal function [31]

∆2
g(k) = AR√

2πσ2
exp

(
− ln2(k/k∗)

2σ2

)
. (3.1)

With this choice, the variance of the primordial Gaussian perturbation ⟨R2
g⟩ is normalized

as
∫

d ln k ∆2
g(k) = AR, i.e the amplitude of the spectrum. Here k∗ (or equivalently f∗)

determines the position of the peak and σ its width. We consider σ = 1/10 and f∗ ∼ 0.005
Hz, assuming that the spectrum is centered in the LISA band. Here AR is taken to be of
O(10−2, 10−3), which is larger than the value coming from CMB experiments [120], but this
choice is justified since at the scales of interest we have no tight constraints. We note that
in the above parametrization the spectrum depends on the ratio k/k∗; hence the results are
normalized with respect to the peak scale, simplifying the comparison between the analysis
performed considering experiments working in different frequency ranges.

In the following we report the contributions of the scalar-induced GW spectra at all
orders considered in this work. The integrals are computed numerically, first exploiting the
suitable change of variables reported in appendix A and then using the Vegas package [41].

3.1 “Gaussian” component of the spectrum

Starting from the “Gaussian” term of the spectrum, equation (2.34), we obtain

ΩGW(k, η)|Gaussian = 1
12

(
k

a(η)H(η)

)2 ∫ ∞

0
dt

∫ 1

−1
ds

1
u2v2 J̃2(u, v, x)∆2

g(vk)∆2
g(uk) . (3.2)

In the last equation we introduced J̃(u, v, x) = v2 sin2 θĨ(u, v, x) and we performed the
integration over the angle ϕ, since nothing in the integrand depends on it (see appendix A).
The resulting GW spectrum for this component, normalized to the amplitude of the primordial
curvature perturbation A2

R is shown in figure 1. The corresponding Feynman diagram, instead,
is depicted in figure 2. Further details are reported in appendix B.1.

3.2 “t” component of the spectrum

The “t” component of the spectrum, coming from equation (2.35), can only be computed nu-
merically. However some useful changes of coordinates can be exploited to rewrite the integral
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Figure 1. The plot shows the Gaussian component of the spectrum, obtained using a lognormal seed
with σ = 0.1. The spectrum is normalized with respect to A2

R.

Figure 2. Feynman diagram corresponding to the Gaussian contribution.

in a more treatable form (see appendix A). The spectral density for the “t” component is

ΩGW(k, η)|t = 1
12π

(
k

a(η)H(η)

)2
f2

NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12

u1v1
(u2v2)2

1
w3

a,12
J̃(u1, v1, x)J̃(u2, v2, x)

× ∆2
g(v2k)∆2

g(u2k)∆2
g(wa,12k) ,

(3.3)

where wa,12 = |q1 − q2|/k and φ12 = ϕ1 − ϕ2. This new variable is introduced to ease
the integration, since in this way the integrand depends only on the difference between the
azimuthal angles. In figure 4, we plot the GW spectrum for this component, normalized to the
factor f2

NL and to the amplitude A3
R. The Feynman diagram for this contribution is reported

on the left in the first row of figure 3, while further details are reported in appendix B.2.

3.3 “u” component of the spectrum

Similarly, for the “u” component of the spectrum we have

ΩGW(k, η)|u = 1
12π

(
k

a(η)H(η)

)2
f2

NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12

u1u2
(v1v2)2

1
w3

b,12
J̃(u1, v1, x)J̃(u2, v2, x)

× ∆2
g(v1k)∆2

g(v2k)∆2
g(wb,12k) ,

(3.4)
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Figure 3. Feynman diagrams corresponding to the connected and disconnected f2
NL contributions.

On the top row, starting from the left, we have respectively the “t” and “u” components, while on the
bottom we have the hybrid and the (vanishing) “s”.

where wb,12 = |k − (q1 + q2)|/k and φ12 = ϕ1 − ϕ2. In figure 4 we plot the resulting GW
spectrum for this component, normalized to f2

NL and to the amplitude A3
R. The Feynman

diagram for this contribution is shown on the right in the first row of figure 3. Further
details are reported in appendix B.2.

3.4 “hybrid” component of the spectrum

For the “hybrid” component, coming from equation (2.39), a slightly different change of
variables can be considered to further simplify the numerical evaluation of the integrals.
Before going into the details of the calculation of this term, we point out that the momentum
q2 in this expression represents an internal momentum in the trispectrum, which comes
from the Fourier Transform of (2.33). This additional integration of the two power spectra
PRg (q2)PRg (|q1 − q2|) suggests that this term originates from a 1-loop correction of the
disconnected part of the trispectrum. As discussed in appendix C of [36], a suitable change
of variables in this case is

u1 = |k − q1|
k

; v1 = q1
k

; u2 = |q1 − q2|
q1

; v2 = q2
q1

. (3.5)

Once the Jacobian of the transformation and the correct changes in the extremes of integration
are performed, a suitable second change of variables can be considered3

si = ui − vi and ti = ui + vi − 1 . (3.6)

Hence the final spectrum yields

ΩGW(k, η)|hybrid = 1
12

(
k

a(η)H(η)

)2
f2

NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

× 1
(u1v1u2v2)2 J̃2(u1, v1, x)∆2

g(u1k)∆2
g(v2v1k)∆2

g(u2v1k) .

(3.7)

3This change of variables is useful to exploit that the domain of the ti and si variables is rectangular.
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Figure 4. The plot shows the various terms at O(f2
NL). The t and u components correspond

respectively to the C and Z components of [36]. Their sum is reported in black.

The Feynman diagram for this contribution is shown on the left in the second row of figure 3.
Further details are reported in appendix B.2.

The resulting GW spectra for the various components operating at O(f2
NL), normalized

to the nG parameter f2
NL and to the amplitude of the primordial curvature perturbation A3

R
are shown in figure 4. We observe the presence of a particular feature, with the highest peak
actually made of two contiguous peaks mainly deriving from the “t” component and the
“hybrid” one. We label this behaviour as “double peak” feature in the following.

3.5 “s” and “gNL” components of the spectrum

As described in [130], these two contributions are vanishing due to symmetry properties of
the integrals. Thus, we report them just for completeness.

ΩGW(k, η)|s = 1
12π

(
k

a(η)H(η)

)2
f2

NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12u1v1u2v2J̃(u1, v1, x)J̃(u2, v2, x)

×
∆2

g(v1k)
v3

1

∆2
g(v2k)
v3

2
∆2

g(k)

= 0 .

(3.8)

ΩGW(k, η)|gNL = 1
8π

(
k

a(η)H(η)

)2
gNL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

×
∫ 2π

0
dφ12 cos 2φ12u1v1u2v2J̃(u1, v1, x)J̃(u2, v2, x)

×
∆2

g(v1k)
v3

1

∆2
g(v2k)
v3

2

∆2
g(u1k)
u3

1

= 0 .

(3.9)
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Figure 5. Feynman diagrams corresponding to the connected and disconnected gNL contributions.
The diagram on the left corresponds to the (vanishing) gNL term, while the remaining one to the
“new” contribution.

The Feynman diagrams for the “s” and gNL contributions are shown respectively on the
right in the second row of figure 3 and on the left of figure 5. Further details are reported
in appendix B.2 and B.3.

3.6 “new” component of the spectrum

The “new” contribution coming from equation (3.11), is studied in this paper for the first time.
It arises naturally when the trispectrum for the primordial scalar perturbation, expanded
at least up to third-order in a local model of nG, is computed via Wick’s theorem. It
is interesting to notice that, apart from numerical factors, it has the same shape of the
“Gaussian” component multiplied by a further integration of the power spectrum. Hence

Ph,λ(k, η)
∣∣
new = 12gNL⟨R2

g⟩Ph,λ(k, η)
∣∣
Gaussian . (3.10)

This form makes clear how this component can have a large impact on the total spectrum of
GWs since, depending on the value of gNL, it could be of the same order of the “Gaussian”
term or even become the dominant contribution. The final expression reads4

ΩGW(k, η)|new = 12gNLARΩGW(k, η)|Gaussian , (3.11)

and it does not need to be computed, once the Gaussian spectrum is known. The Feynman
diagram for this contribution is shown on the right in figure 5. Further details are reported
in appendix B.3. We emphasize that this component can be present also in the case where
the other non-Gaussian components at the same order in perturbation theory “t”, “u” and
“hybrid” are vanishing: when fNL = 0, the gNL parameter could still provide a non-vanishing
contribution that would also depend on the sign of gNL. The resulting spectrum is reported
in figure 6.

3.7 Order O(f2
NLgNL) components

The same procedure described above can be used to evaluate the terms contributing at higher
orders, accounting for the additional integration over the internal momentum q3 (see again
appendix A). In the case of the O(f2

NLgNL) terms reported in equations (2.41) and (2.42), the
two components can be treated separately. The first line of the connected component vanishes
for the same reasoning done for the “s” and the “gNL” ones, since only the cosine coming

4This result follows since the variance for a log-normal power spectrum corresponds simply to the ampli-
tude AR.
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Figure 6. This plot shows the O(gNL) component. We call name it “new” in the main text, since
this contribution was not considered by [36].

from the polarization sum of the projection factors depends on the angle φ12 = ϕ1 − ϕ2. The
same happens in the second and the last lines when the change of variables ϕ1 = ϕ2 + φ12 is
performed, since |q2 − q3| is proportional to cos(ϕ2 − ϕ3) and not affected by this change.
All the other terms can be computed performing the same two changes of variables, with
φij = ϕi − ϕj . Finally one obtains

ΩGW(k, η)
∣∣
f2
NLgNL

= 1
16π2

(
k

a(η)H(η)

)2
f2

NLgNL

3∏
i=1

[∫ ∞

0
dti

∫ 1

−1
dsiviui

]

×
∫ 2π

0
dφ12J̃(u1, v1, x)J̃(u2, v2, x) cos(2φ12)

×
[ ∫ 2π

0
dφ23

∆2
g(v1k)
v3

1

∆2
g(wa,12k)
w3

a,12

∆2
g(v3k)
v3

3

∆2
g(wb,13k)
w3

b,13

+ 2
∫ 2π

0
dφ23

∆2
g(v1k)
v3

1

∆2
g(v3k)
v3

3

∆2
g(wb,13k)
w3

b,13

∆2
g(wa,23k)
w3

a,23

+
∫ 2π

0
dφ23

∆2
g(v1k)
v3

1

∆2
g(wa,12k)
w3

a,12

∆2
g(v3k)
v3

3

∆2
g(wb,23k)
w3

b,23

]

+ 6gNL⟨R2
g⟩
(
ΩGW(k, η)

∣∣
t + ΩGW(k, η)

∣∣
u

)
.

(3.12)

For the disconnected part we get

ΩGW(k, η)
∣∣
f2
NLgNL,d = 6gNL⟨R2

g⟩ΩGW(k, η)
∣∣
hybrid . (3.13)

The resulting GW power spectra, normalized to the non-Gaussian parameters f2
NLgNL and

to the primordial amplitude A4
R are shown in figure 8. The “double peak” feature is still

present but with the two peaks of almost the same height. This behaviour originates from
the connected contribution that goes to 0 less sharply with respect to the f2

NL case. The
corresponding Feynman diagrams are reported in figure 7 (see also appendix B.4).
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Figure 7. Feynman diagram corresponding to the connected and disconnected f2
NLgNL contributions.

3.8 Order O(g2
NL) components

For the components at order O(g2
NL), shown in equations (2.43) and (2.44), the second and

the fourth lines of the connected part vanish again due to the integration of the cosine.
The results for the other terms are

ΩGW(k, η)
∣∣
g2

NL
= 3

64π2

(
k

a(η)H(η)

)2
g2

NL

3∏
i=1

[∫ ∞

0
dti

∫ 1

−1
dsiviui

]

×
∫ 2π

0
dφ12

∫ 2π

0
dφ23J̃(u1, v1, x)J̃(u2, v2, x) cos(2φ12)

×
[

∆2
g(v1k)
v3

1

∆2
g(u1k)
u3

1

∆2
g(v3k)
v3

3

∆2
g(wq123k)
w3

q123

+
∆2

g(v1k)
v3

1

∆2
g(v2k)
v3

2

∆2
g(v3k)
v3

3

∆2
g(w123k)
w3

123

]
(3.14)
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Figure 8. The plot shows the contributions at O(f2
NLgNL). We report the connected component (3.12)

in blue and the disconnected component (3.13) in orange. Their sum is reported in black.

ΩGW(k, η)
∣∣
g2

NL,disc = 54g2
NL⟨R2

g⟩2ΩGW(k, η)
∣∣
Gaussian

+ 1
64π2

(
k

a(η)H(η)

)2
g2

NL

3∏
i=1

[∫ ∞

0
dti

∫ 1

−1
dsiviui

]
J̃2(u1, v1, x)

×
∫ 2π

0
dφ12

∫ 2π

0
dφ13

∆2
g(v1k)
v3

1

∆2
g(v2k)
v3

2

∆2
g(v3k)
v3

3

∆2
g(w123k)
w3

123

(3.15)

In figure 9 we plot these contributions, normalized to the nG parameter g2
NL and to the

amplitude A4
R. In this case we note that the first line of the disconnected component is

proportional to the “Gaussian” spectrum. We also add that the disconnected contribution
dominates the spectrum, being one order of magnitude greater than the connected one. The
corresponding Feynman diagrams are reported in figure 10 (see also appendix B.4).

3.9 Order O(f4
NL) components

At order O(f4
NL), the terms coming from equations (2.45) and (2.46) are

ΩGW(k, η)
∣∣
f4
NL

= 1
96π2

(
k

a(η)H(η)

)2
f4

NL

3∏
i=1

[∫ ∞

0
dti

∫ 1

−1
dsiviui

]

×
∫ 2π

0
dφ12

∫ 2π

0
dφ23J̃(u1, v1, x)J̃(u2, v2, x) cos(2φ12)

×
[
2

∆2
g(v3k)
v3

3

∆2
g(u3k)
u3

3

∆2
g(wa,13k)
w3

a,13

∆2
g(wa,23k)
w3

a,23

+
∆2

g(v3k)
v3

3

∆2
g(wa,13k)
w3

a,13

∆2
g(wa,23k)
w3

a,23

∆2
g(w123k)
w3

123

]
(3.16)
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Figure 9. The plot shows the different contributions at O(g2
NL). We report the connected contribution,

equation (3.14), in blue and the disconnected contribution, equation (3.15), in orange. Their sum is
reported in black.

Figure 10. Feynman diagrams corresponding to the connected and disconnected g2
NL contributions.
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Figure 11. This plot shows the contributions at O(f4
NL). The connected component, eq. (3.16),

contains both the “planar” and “non-planar” ones of [36], while the disconnected component, eq. (3.17),
corresponds to the “reducible” one. Their sum is reported in black.

ΩGW(k, η)
∣∣
f4
NL,d = 1

192π2

(
k

a(η)H(η)

)2
f4

NL

3∏
i=1

[∫ ∞

0
dti

∫ 1

−1
dsiviui

]

×
∫ 2π

0
dφ12

∫ 2π

0
dφ23J̃2(u1, v1, x)

×
∆2

g(v2k)
v3

2

∆2
g(v3k)
v3

3

∆2
g(wa,12k)
w3

a,12

∆2
g(wb,13k)
w3

b,13
.

(3.17)

These contributions correspond to the “planar”, “non-planar” and “reducible” components
of [36], respectively. The resulting spectra, obtained through numerical integration, are
shown in figure 11. The corresponding Feynman diagrams are reported in figure 12 (see
also appendix B.4).

3.10 Order O(fNLhNL) components

At order O(fNLhNL) the SIGW spectral density arising from equations (2.47) and (2.48) is

ΩGW(k, η)
∣∣
fNLhNL

= 12hNL
fNL

⟨R2
g⟩
(
ΩGW(k, η)

∣∣
t + ΩGW(k, η)

∣∣
u

)
(3.18)

since the terms in square brackets in the second step of (2.47) vanish. The disconnected
component reads

ΩGW(k, η)
∣∣
fNLhNL,d = 12hNL

fNL
⟨R2

g⟩ΩGW(k, η)
∣∣
hybrid (3.19)

The spectra for this component contributing to the scalar-induced GW spectrum are
reported in figure 13. Also in this case the “double-peak” feature is present, similarly to the
f2

NL case. We note that the final shape of these contribution is exactly the same of the f2
NL one

at the next-to-leading order. This is because the non-vanishing components of the connected
and disconnected terms, are actually proportional by the same factor to the u,t and hybrid
terms. The corresponding Feynman diagrams are reported in figure 14 (see also appendix B.4).
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Figure 12. Feynman diagram corresponding to the connected and disconnected f4
NL contributions.

Figure 13. The plot shows the contributions at O(fNLhNL). The connected component, eq. (3.18),
is reported in blue, while the disconnected component, (3.19) is reported in orange. Their sum is
reported in black.

3.11 Order O(iNL) components

Lastly, the connected component at order O(iNL) in equation (2.49) vanishes for symmetry
reasons. The only non-vanishing contribution is the disconnected one, (2.50),

ΩGW(k, η)|iNL,disc = 60iNL⟨R2
g⟩2ΩGW(k, η)|Gaussian . (3.20)

We report the spectrum in figure 15, obtained by simply multiplying the “Gaussian” one
by a proper factor. The corresponding Feynman diagrams are reported in figure 16 (see
also appendix B.4). We conclude noting that a similar contribution is expected at each
order in the expansion. When considering the N -point correlation function (with N even) it
will always be possible to build a correlator with three simple Gaussian fields and a term
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Figure 14. Feynman diagram corresponding to the connected and disconnected fNLhNL contributions.

proportional to mNL Rm
g , with m = N − 3 (e.g. for the 6-point function we had m = 3

and we had the “new” contribution, while for the 8-point function we have m = 5 and
we originate the iNL term). The number m defines the highest possible power in the local
expansion at the order considered (accounting for a term proportional to Rm+1

g would lead
to a (N + 1)-point correlation function that, since N is even, will be vanishing for a Gaussian
field). The corresponding Feynman diagram would have the same topology of the “new” or
iNL ones, but with (m − 1)/2 factorizable loops.5

3.12 SIGWB signal vs LISA sensitivity

In this subsection we compare the spectral density of GWs with the sensitivity of the LISA
detector, once all the different contributions are summed together. Since all the spectra
discussed until now are related to the emitted spectrum of GW, namely ΩGW,e(k), we need
to redshift them to present times via equation (2.30). As mentioned in appendix A, the
range of frequencies probed by LISA are sufficiently high to consider that the corresponding
scales re-enter the horizon before the epoch of equivalence. With this assumption ΩGW,e(k) =
ΩGW,eq(k) and g∗,e = g∗,eq. As it is possible to verify in figure 2 of [133], the effective

5This can be understood as follows: among the m possible lines arising from the mNL vertex, only one will
correlate with a Gaussian field. The remaining m − 1 lines will form a closed loop in pairs.
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Figure 15. The plot shows the contributions at O(iNL). We report only the disconnected contribution
since the connected one vanishes.

Figure 16. Feynman diagram corresponding to the connected and disconnected iNL contributions.

number of relativistic degrees of freedom is fixed to g∗ ∼ 3.36 for temperatures of the universe
below T ∼ 0.1 MeV. This allows to set (g∗,0/g∗,e)1/3 = 1 in the above equation, since the
temperature at equivalence was Teq ∼ 0.8 eV. Recalling that Ωrad,0h2 ∼ 4.2 × 10−5 it is
straightforward to obtain the spectrum of scalar-induced GW observed today.

In the following we report the plots obtained varying the nG parameters in order to
observe their effect on the spectrum. The choice of the parameters is to highlight the effects
of the different contributions. We input AR = 10−2, σ = 1/10 and f∗ = 0.005 Hz.

We report in figure 17 the resulting total spectra obtained considering only those
contributions proportional to any power of fNL, up to order A4

R. We consider three different
values of fNL to show how the corresponding contributions affect the final spectrum. Firstly,
we remark that such corrections will always be positive, being proportional to even powers of
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Figure 17. The figure shows the GW spectrum obtained for different values of fNL, fixing gNL and
hNL to 0.

the nG parameter. For sufficiently high values of fNL, these terms could become high enough
to be comparable to the Gaussian one, as it can be appreciated from the shift upwards of the
resulting spectrum. The main imprint arising from these terms can be observed in the UV
tail. The higher the value of fNL, in fact, the more the “double peak” feature is important,
leading to a large enhancement of the spectrum at those frequencies. A further bump in
the far UV tail arising from the f4

NL spectrum could also be observed. We note that even
in the case of fNL = 1 or 4, the variations of the spectrum in the UV range can still be
appreciated and are mainly due to the f2

NL corrections.
Instead, in figure 18 we report the spectra obtained accounting for different values of fNL

but also considering a non-vanishing gNL and hNL. We do not include iNL in the analysis
since it provides a subdominant contribution, whose effect would just result in a shift upward
or downward of the spectrum (in order to provide an appreciable change in the spectrum,
iNL has to be at least of order 104, when AR = 10−2 and even higher for lower values of
the amplitude). Due to the non-vanishing values of gNL and hNL, in this case more terms
are expected to contribute. In the plot, the effect of gNL consists mainly in a shift of the
spectrum upward (coming also from the “new” term) and in a modification of the UV tail
coming both from the g2

NL and the f2
NLgNL terms (whose main effect consists in enhancing

the resonance peak). A further modification of the tail comes from the fNLhNL contribution
that, as shown in figure 13, mainly affects this part of the spectrum. More specifically, the
effect of the fNLhNL terms, even if in principle subdominant, depends on the sign of both hNL

– 28 –



J
C
A
P
0
5
(
2
0
2
4
)
0
8
6

Figure 18. The figure shows the GW spectrum obtained for different values of fNL. In this case we
consider non-vanishing values for gNL and hNL in order to account for their contributions to the GW
spectrum.

and fNL. As figure 18 shows, in fact, for positive values of hNL, when fNL is negative, the UV
part after the peak results damped in the range corresponding to the peak shown in figure 13.

We report in figure 19 the spectra obtained by varying gNL to different values. Since we
now consider only gNL to be non-vanishing, the corrections arise only from the g2

NL terms
and the “new” term. As expected, the main effect amounts in a shift of the spectrum upward
or downward, depending on the value of the nG parameter. A further enhancement can
be appreciated in the UV tail and it comes mainly from the g2

NL term, that decreases more
slowly for high values of the frequency. Furthermore, even if in principle subdominant, this
latter term (when normalized) reaches values of order 100 around the peak as shown in
figure 9. So when AR = 10−2, around the peak the spectrum is able to compensate a AR
factor and this contribution becomes comparable to the “new” one. For lower values of
the amplitude such effects can still provide a non-negligible contribution to the spectrum,
depending on the value of gNL. Of course the shift upward and downward is degenerate
with the amplitude AR and consequently with the Gaussian term, but the further UV bump
comes mainly from the g2

NL term, that contributes with a different frequency shape and in
principle can be used to break such a degeneracy.

Then we report in figure 20 the spectra obtained varying hNL after fixing gNL = 50 and
fNL = 4. In order to appreciate the effect of the hNL contribution it is necessary to have a
sufficiently high and non-vanishing value of fNL. Furthermore, if on one hand this contribution
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Figure 19. The figure shows the effects of the gNL contributions to the spectrum (in absolute value):
we fix all the other nG parameter to 0. The main effect of this contribution consist in a shift of the
spectrum coming from the “new” contribution and a modification of the UV tail coming from the
g2

NL one.

dominates with respect to the iNL and f4
NL ones, on the other hand it is comparable to the

f2
NLgNL one and clearly subdominant with respect to the gNL ones, as it can be appreciated

from the figures reported before. For the chosen values of gNL and fNL, when hNL = ±100 the
corresponding contribution will be still subdominant with respect to the gNL one: the orange,
green and red curve are almost superimposed. When considering a higher value for hNL,6
keeping fNL ∼ O(1) we can easily observe that the corresponding contribution modifies the
spectrum accordingly. For positive values of the parameter, the “double peak” feature that
characterizes the fNLhNL contribution becomes important and generates a small bump in the
purple spectrum reported in the figure. This effect then rapidly decreases (as the fNLhNL
spectrum goes rapidly to 0 after the “double peak”) and the gNL behaviour dominates. For
negative values of the parameter hNL, such contributions cause a suppression of the spectrum
leading to troughs where in the positive case the spectrum had an enhancement (e.g. after
the peak where the effect of the hNL term becomes more important). We recall that the term
generating this contributions are exactly the same that give rise to the f2

NL one, multiplied
by a proper factor, as shown before. This in principle makes the hNL and fNL parameters
degenerate at this order since they leave the same imprint on the spectrum. Due to the

6The order of magnitude needed to make this contribution appreciable can be understood easily, considering
that fNLhNL has to be at least of order ∼ 10A−2

R to overcome the A2
R factor and then it has to be high enough

to be comparable to the eventual gNL contribution.
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Figure 20. The figure shows the effect of hNL one the spectrum. Since these terms are present only
as products of fNLhNL, a non-vanishing fNL is required. We fix gNL = 50 and fNL = 4.

presence of further terms depending on the latter parameter at the next-to-next-to-leading
order, such a degeneracy could in principle be broken.

Finally we report in figure 21 different spectra obtained fixing the values of gNL and fNL
to −15 and −0.9 respectively and varying hNL. We recall that we fix iNL = 0 just because
its effect consist in enhancing the Gaussian spectrum, but such effect becomes relevant only
when iNL ∼ A−2

R . We observe that even without assuming a hierarchical behaviour between
the nG parameters, it is possible to obtain a spectrum of the same order of the Gaussian
one (corresponding to the black curve in the figure), but with some nG features that still
can be observable in the spectrum. The most relevant effects due to primordial nG can be
appreciated in the UV tail where the fNLhNL and the gNL contributions originate a bump
after the resonance peak. The hNL terms, depending on the sign of the nG parameter, can
enhance or suppress the spectrum, as it can be observed comparing the blue or the green
one with the orange line (corresponding to hNL = 0). In this latter case, being the hNL
contributions vanishing and the fNL ones always positive, the suppression in the IR tail
comes mainly from gNL contributions.

We also verified that for the amplitude chosen in this work, when considering Planck
best fit values for fNL and gNL, the nG corrections lead to a strong enhancement of the
spectrum that overcomes the bounds on the energy density of GWs coming from Big Bang
Nucleosynthesis [11].
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Figure 21. The plot shows the effect of hNL for different values of the parameter. We show this
plot to underline that without assuming a hierarchy between the nG parameters, it is still possible to
observe the effects of nG without any strong deviation from the Gaussian spectrum.

4 Fisher forecast analysis

In this section we report the theoretical steps at the base of the Fisher forecast that we
perform both on the shape parameters (i.e AR, σ, f∗) and on the nG ones (i.e. fNL, gNL, hNL,
iNL). This method allows to predict the uncertainty we could obtain with future experiments
on the parameters of interest of the model. The Fisher information matrix is defined as

Fαβ =
〈

− ∂2 ln L
∂λα∂λβ

〉 ∣∣∣∣
λ⃗=λ⃗0

, (4.1)

with λα the parameters considered, λ⃗0 their best fit values and L the likelihood. We consider
a Gaussian likelihood

ln L = −Nc

2
∑

i

∑
k

(
D(k)

i − D(k),th
i

)2

σ
(k)2
i

(4.2)

where i runs over the three LISA (TDI) channels and k runs over frequency bins fk. Nc

is the number of data segments in the analysis. Notice that since we are using the AET
basis the likelihood reduces to the sum of the diagonal elements (in channel space). The
variance can be expressed in terms of the theoretical ansatz as σ

(k)2
i =

(
D(k),th

i

)2
and
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D(k),th
i (fk, λ⃗) = Rii(fk)h2ΩGW(fk, λ⃗) + NΩ

ii (fk) with Rij(fk) the response function and
NΩ

ij (fk) the noise associated to the TDI channels. Hence we obtain

Fαβ = Td

∑
i∈{A,E,T }

∫ fmax

fmin

∂Dth
i

∂λα

∂Dth
i

∂λβ

1
σ2

i

df (4.3)

where Td is the total observation time and σ accounts for the noise in all the three TDI
channels. We assume the signal to be centered in the LISA band, a mission duration Td = 4
years, a fixed LISA noise model and different values for the nG parameters (taking into
account the Planck bounds). In the following we report the results of the forecast obtained
firstly accounting only for contributions at order A3

R and then adding the ones at order A4
R,

to observe the effect of the nG corrections on the forecast.

4.1 Forecast up to O(A3
R)

We perform a Fisher forecast firstly accounting for all the contributions up to order A3
R (hence

only the ones ∝ f2
NL and in principle the “new” term). The shape parameters are specific of

the chosen seed (log-normal in this work) and leave very specific imprints on the spectrum
itself. The nG parameters, on the other hand, leave different features, especially on the tails
of ΩGW, as explained in the previous section. Furthermore, the nG parameters themselves are
multiplicative parameters, hence regulating the amplitude of the contributions they generate,
while the different features they generate in the spectrum depend on the interaction of the
corresponding scalar perturbations in the scalar trispectrum (i.e. on the various combinations
giving rise to the different topologies in the Feynman diagrams at each order). We consider
AR = 10−2, σ = 0.1 and f∗ = 5 · 10−3 Hz for the shape parameters and fNL = 4, compatible
with Planck best fit values (at 68% CL). For what regards gNL, due to its degeneracy with
the Gaussian contribution (see subsection 3.6 and the corresponding Feynman diagram),
its inclusion in the forecast would generate a singular matrix or could completely spoil any
constraint on fNL and AR. We consider gNL to be vanishing, but we specify that due to its
relative importance, fixing it to a different value could affect (worsening or improving) the
constraints on AR and fNL. The results obtained are reported in figure 22. We observe that
it is possible to obtain tight bounds, on all the parameters considered. The shape parameters
can be bound with a relative error up to 10−4, while fNL, can be constrained up to O(10−3)
level. We notice the presence of a degeneracy between AR and fNL, both of them being
parameters that affect the magnitude of the spectrum itself (this behaviour is thus expected
with all the nG parameters considered). Such a degeneracy is broken by the different shape
(e.g., the “double peak” feature) that the different nG contributions leave on the spectrum
with respect to the Gaussian case (proportional only to the amplitude).

4.2 Forecast up to O(A4
R)

In this subsection, instead, we report the outcome of the Fisher forecast obtained including
all the contributions up to order A4

R. We keep the same values considered in the previous
subsection for all the parameters and we add gNL = −10, compatible with Planck best fit
values (at 68% CL) and we input hNL = 10 as an example. Similarly to the gNL case, at
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Figure 22. We report the triangular plot obtained from the Fisher forecast for AR = 10−2 and
fNL = 4, σ = 0.1 and f∗ = 0.005 Hz. The other nG parameters are fixed to 0.

this order the iNL correction is again degenerate with the Gaussian one. For this reason, we
consider it to be vanishing. The results are reported in figure 23.

Even if on one hand we expect that all the bounds to worsen due to the larger parameter
space, on the other hand we find that, due to the higher order contributions, it is still possible
to place quite tight constraints (ranging from almost O(10−3) accuracy in the worst case, up
to 10−4 in the best case) on AR, σ and f∗. This can be understood, again, recalling that
they provide very specific features to the spectrum (like the position of the resonance peak).
Furthermore we observe that it is still possible to measure fNL at O(10−3), while gNL and
hNL up to O(10−2). The presence of terms ∝ hNLfNL and ∝ gNL, in fact, induces further
peaks or bumps in the spectrum with respect to the case with hNL = 0, whose shape depends
on the features of the scalar spectrum considered. Thus they add more information that
helps in improving the constraints on both the shape parameters and the nG ones.

We observe a slight degeneracy of hNL with fNL originating from the full degeneracy
among the hNLfNL terms and the f2

NL ones. As reported in subsection 3.10 and as it can
be observed from the Feynman diagrams, these contributions arise exactly from the same
combination of the u, t and hybrid terms hence, modulo a different multiplicative constant,
the frequency shape of these contributions is completely identical, making it difficult to
distinguish the two. The degeneracy is possibly broken by the presence of further different
fNL-dependent terms like the f4

NL and fNLg2
NL ones (this can be understood with the presence

of new topologies in the Feynman diagrams). The importance of these contributions, of
course, depends on the values chosen for the nG parameters. We conclude underlying that
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Figure 23. We report the triangular plot obtained from the Fisher forecast for all the parameters
included in this work. We just fix iNL = 0, without including it in the forecast.

the presence of g2
NL and gNLf2

NL terms at this order is able to break the degeneracy on gNL
found at the previous order, allowing to impose very tight constraints on such a parameter
without spoiling the whole forecast.

5 Primordial Black Holes implications

We conclude discussing the PBH implications related to the production of the SIGW spectra
discussed in this work. The presence of large initial fluctuations can lead to the formation of
overdense region as the former enter the horizon and their value exceeds the collapse threshold.
Hence, after the collapse, these regions can form PBHs and since this process occurs at
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the horizon re-entry of the perturbed region [134], this explains why PBHs constitute a
counterpart of the SIGWB [96, 135–137]. Their formation depends on the peak value of the
primordial scalar perturbation and the masses generated are determined by the corresponding
frequency [96]. It is possible to evaluate the fraction of the Universe that turns into PBH
at the epoch of formation following [112, 113]

βNG = ρPBH
ρtot

∣∣∣
form

=
∫

D
K(C − Cth)γPG(CG, ζG)dCGdζG (5.1)

accounting for both the non-linearity, arising from the non-linear relation between the
curvature perturbation and the density contrast, and the primordial nG (in this work
accounted with the local expansion). The joint probability density function for the Gaussian
curvature perturbation ζG and the Gaussian compaction function CG in equation (5.1) yields

PG(CG, ζG) = 1
(2π)σcσr

√
1 − γ2

cr
exp

(
ζG
2σ2

r

)
exp

[
− 1

2(1 − γ2
cr)

(CG
σc

− γcrζG
σr

)2]
, (5.2)

where in the last expression σc, σr are the variances respectively of CG and ζG, while γcr
is defined as

γcr = σ2
cr

σcσr
. (5.3)

The compaction function C, instead, results [113]

C = CG
dζNG

dζG
− 1

4ΦC2
G

(
dζNG

dζG

)2

(5.4)

Following [113], we take K = 3.3 for a log-normal power spectrum and γ = 0.36. Regarding the
threshold Cth, that depends on the width σ of the power spectrum, we follow the prescription
of [138], while the domain of integration yields D = {CG, ζG ∈ R : C(CG, ζG) > Cth ∧
C1(CG, ζG) < 2Φ}. More details about the quantities and the constants needed to evaluate the
domain and the functions to evaluate the integral can be found in the mentioned papers (see
also [139] for implications of a broad power spectrum on the PBH abundance). Substituting
the same nG parameters considered in the previous section, i.e. fNL = 4, gNL = −10, hNL = 10
and fixing iNL = 10 as an example, we find βNG ≃ 4.4 · 10−9 at the formation time. In
addition we verified that when considering the case rdec = 0.4 as in [113] for the curvaton
model, chosen as an example, and stopping up to the gNL contribution (hence N = 3 in the
reference paper, corresponding to impose vanishing coefficients for the ζ4

G, ζ5
G, . . . terms) we

get βNG ∼ 10−15 in accordance with their results.7 When keeping the same coefficients of the
ζ2

G and ζ3
G terms, but considering −10 and 50 for the ζ4

G, ζ5
G terms8 we get βNG ≃ 2 · 10−16,

almost an order of magnitude less than the corresponding value in the curvaton model. This
result further underlines the impact of primordial non-Gaussianity on the formation of PBHs.

7We add that this value, even when adding the further terms of the expansion, will not change substantially,
since as the authors show for the value of σ chosen, the expansion itself has already converged.

8Note that in this case we are not specifically considering the curvaton model, as done by the authors
of [113], since in such a case the value of the coefficients of the expansion is fixed depending on rdec. We just
aim to remark how variations of the model can impact on the amount of PBH and possibly help in excluding
(or validating) some models of inflation.
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6 Conclusions and discussion

In this work we studied the signatures and the impact of primordial nG on the SIGW signal,
expected to be among the sources present in the LISA band. We considered the nG local
expansion up to R5

g. In this way we accounted for all the contributions to the tensor power
spectrum up to the next-to-next-to leading order.

We found additional components with respect to [36] that did not account for any gNL
contribution, like the “new” term at Next-To-Leading order. This latter is of particular
importance since it depends linearly on gNL and thus on its sign. We specify that some of
the contributions we found (i.e., the disconnected ones) are related to corrections to the
Gaussian statistics encoded in the power spectrum and should be distinguished from the
genuine nG ones (i.e., coming from the connected trispectrum) [130].

Often in literature a hierarchy among the nG parameters is assumed, leading to neglect
the corresponding contributions. However, even assuming a hierarchy among the nG param-
eters (e.g., gNL ≪ fNL), we show that, especially around the peak of the spectra, the gNL
contribution is an order of magnitude greater than the f2

NL one when all the parameters are
normalized to 1. So, these terms can provide a valuable contribution. Furthermore, we find
that at O(A3

R) the only non-vanishing gNL contribution arises from a disconnected term in
the scalar trispectrum and can be rewritten in terms of the (tensorial) Gaussian contribution.
On the one hand, this simplifies the numerical analysis, but, on the other hand, it provides a
possible source of degeneracy between the amplitude and the nG parameters. The same line
of reasoning does not apply for the fNL terms at this order, since they show some particular
features (the “double peak” in the UV tail) that enhances the spectrum at high frequencies.

Going to the next order in the expansion O(A4
R), we observe the presence of further

additional terms that in principle could help in breaking the degeneracies. The spectra
that we find are all the possible ones at this order, so no further corrections can arise. Any
higher power in R in the local expansion, when building the tensor power spectrum, leads to
contributions at order A5

R (or 10-point correlation function in R). These new terms, for high
enough values of the nG parameters and for the parameters we consider in this work, can
still produce valuable contributions to the final spectrum. The g2

NL term, for instance, for the
values allowed by Planck, can provide a dominant contribution comparable to the leading
order. We note the presence of terms depending linearly on the various nG parameters and
so in principle sensitive to their sign. We studied the effects of each non-Gaussian parameters
and we reported some examples of the spectra and of the different features that could arise
if any of the various contributions dominate.

Finally, we performed a Fisher forecast to estimate the capability of the future space-
based interferometer LISA to constrain the various parameters. We consider values of fNL = 4
and gNL = −10 compatible with Planck best fit values (at 68% CL) and we chose hNL = 10
as an example. We also considered three further parameters in the forecast, i.e. AR, σ and
f∗, that we input respectively to the reference values of 10−2, 0.1 and 0.005 Hz. We firstly
perform the analysis considering only the contributions up to the next-to leading order,
neglecting the gNL contribution since it is degenerate with the amplitude (being exactly
proportional to the Gaussian spectrum). We find that LISA would be able to constrain
the shape parameters up to order O(10−4), while fNL can be measured with precision of
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O(10−3). Even with the addition of further nG parameters we find that LISA will still
be able to constrain the shape parameters up to O(10−4), due to the different effects they
provide on the spectrum, that are strictly dependent on the position of the peak, on the
amplitude and on the width. Also the other nG parameters, instead, can be constrained
up to O(10−3). The inclusion of astrophysical foregrounds, expected to be present in the
LISA band, could also impact our estimates [140].

We also verified the implications of the nG parameters on the amount of PBHs, follow-
ing [112, 113]. For the values of the nG parameters considered in the Fisher forecast we find
βNG ≃ 4.4 · 10−9. In addition we reproduced the results for the curvaton model obtained
by the authors of [113]. With the purpose of underlying the effects of primordial nG in the
abundance of PBH, we consider different nG coefficients with respect to the reference paper
obtaining a variation in the amount of PBH of almost one order of magnitude, underlying
how PBH and correspondingly SIGW could be important in validating (or excluding) models
of primordial inflation.

We conclude mentioning that in principle ⟨hλ,(2)
ij h

λ,(3)
ij ⟩ or higher order terms in the tensor

power spectrum can be responsible for further non-negligible contributions, as shown in [141].
These additional terms could possibly affect the constraints on the nG parameters and have an
impact on our results. Being interested mainly in the contributions coming from the leading
order in the tensor spectrum, we leave the analysis of these additional terms for a future work.
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A Manipulation of integrals for the numerical computation

This appendix retrieves the main steps to rewrite the integrals of the components of the GW
spectrum following e.g. [36]. We take the “t” component, equation (2.35), as an example,
underlying that the same reasoning can be applied to each of the other terms. We start from

∑
λ=+,×

Ph,λ(k, η)
∣∣
t

= 28f2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∑
λ=+,×

[Qλ(k, q1)Qλ(k, q2)]

× I(|k − q1|, q1, η)I(|k − q2|, q2, η)PRg (q2)PRg (|k − q2|)PRg (|q1 − q2|) .

(A.1)
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In order to evaluate the final spectrum of SIGW we sum over polarizations and we per-
form the oscillation-average of each term contributing to the power spectrum, i.e. equa-
tions (2.34)–(2.50). Then we insert the results in the expression of the spectral density
of GW, equation (2.29), and sum over all the contributions to get the corrections to the
“Gaussian” term at different orders.

First change of variables. We start setting

k = k(0, 0, 1) ,

q1 = q1(cos ϕ1 sin θ1, sin ϕ1 sin θ1, cos θ1)
q2 = q2(cos ϕ2 sin θ2, sin ϕ2 sin θ2, cos θ2) ,

(A.2)

where k is aligned along ẑ and all the angles are referred to it. Firstly we rewrite the 3D
integral in d3qi in spherical coordinates as∫

d3qi =
∫ ∞

0
q2

i dqi

∫ π

0
sin θidθi

∫ 2π

0
dϕi =

∫ ∞

0
q2

i dqi

∫ 1

−1
d cos θi

∫ 2π

0
dϕi , (A.3)

and then we introduce a first suitable change of variables

vi = qi

k
, (A.4)

ui = |k − qi|
k

= (1 + v2
i − 2vi cos θi)1/2 =

(
1 + v2

i − 2k · qi

k2

)1/2
, (A.5)

whose determinant for Jacobian is detJi = −kui/vi. The integrals than become∫
d3qi = k3

∫ ∞

0
dvi

∫ 1+vi

|1−vi|
duiuivi

∫ 2π

0
dϕi . (A.6)

Polarization-summed projection factor. After introducing these new variables, it is
useful to rewrite the projection factor, defined as

Qλ(k, q) = q2
√

2
sin2 θ ×

{
cos 2ϕ, λ = +
sin 2ϕ, λ = × .

(A.7)

Summing over the polarizations one obtains
∑

λ=+,×

[
Q2

λ(k, q)
]

= q4

2 sin4 θ cos2 2ϕ + q4

2 sin4 θ sin2 2ϕ = q4

2 sin4 θ . (A.8)

With the new coordinates ui and vi, we get

cos θi = 1 + v2
i − u2

i

2vi
(A.9)

sin2 θi = 4v2
i − (1 + v2

i − u2
i )2

4v2
i

, (A.10)

and the sum becomes

∑
λ=+,×

[
Q2

λ(k, q)
]

= v4k4

2

(
4v2 − (1 + v2 − u2)2

4v2

)2

. (A.11)
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The term in equation (A.1), instead, reads∑
λ=+,×

[Qλ(k, q1)Qλ(k, q2)]

= q2
1q2

2
2 sin2 θ1 sin2 θ2(cos 2ϕ1 cos 2ϕ2 + sin 2ϕ1 sin 2ϕ2)

= q2
1q2

2
2 sin2 θ1 sin2 θ2 cos(2(ϕ1 − ϕ2))

= k4

2 v2
1v2

2

(
4v2

1 − (1 + v2
1 − u2

1)2

4v2
1

)(
4v2

2 − (1 + v2
2 − u2

2)2

4v2
2

)
cos(2(ϕ1 − ϕ2)) .

(A.12)

Kernel. For what regards the kernel I(|k − q|, q, η) we refer to [123] and the appendix A
of [36]. The kernel is defined as

I(|k − q|, q, η) = I(p, q, η) =
∫ η

ηi

dη̄Gk(η, η̄)a(η̄)
a(η)f(p, q, η̄) . (A.13)

To build this quantity it is necessary to get the solution to the equation of motion of the
transfer function ϕ(kη) which appears inside the growing mode f(p, q, η).

In absence of isocurvature perturbations, the Newtonian potential Φ(k, η) in equation (2.6)
evolves according to

Φ′′(k, η) + 3(1 + w)HΦ′(k, η) + wk2Φ(k, η) = 0 , (A.14)

which, exploiting the relation H(η) = 2/(η(1 + 3w)) and a change of variable y =
√

wkη,
can be rewritten as

d2Φ
dy2 + 6(1 + w)

1 + 3w

1
y

dΦ
dy

+ Φ = 0 → d2Φ
dy2 + 2γ

1
y

dΦ
dy

+ Φ = 0 . (A.15)

In the last step we defined γ = 3(1+w)
1+3w . When w ̸= 0, the solutions are given in terms of the

Spherical Bessel functions of the first and second kind jν and yν

ϕ(kη) = C1jγ−1(y) + C2yγ−1(y)
yγ−1 . (A.16)

Imposing the super-horizon initial conditions ϕ(kη → 0) = 1 and ∂xϕ(kη → 0) = 0, it is
possible to fix the two constants C1 and C2 exploiting the limiting forms of the Spherical
Bessel functions

ϕ(kη → 0) = 1 = 1
yγ−1 (C1jγ−1(y → 0) + C2yγ−1(y → 0) ∼ 1

yγ−1

(
C1yγ−1 + C2

yγ

)
, (A.17)

and hence C1 = 1 and C2 = 0.
The frequencies at play are sufficiently high to consider that the corresponding scales

re-enter the horizon before the epoch of equivalence. This allows to fix w = 1/3, corresponding
to scalar-induced GW produced in radiation domination. Hence γ = 2 and the relevant
Spherical Bessel function is j1(z) = sin z

z2 − cos z
z , resulting in

ϕ(kη) = 1
y3 (sin y − y cos y) =

(√
3

kη

)3 [
sin
( kη√

3

)
− kη√

3
cos

( kη√
3

)]
. (A.18)
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The growing mode then becomes

fRD(p, q, η) =4
3

1
p3q3η6

[
18pqη2 cos

( pη√
3

)
cos

( qη√
3

)
+ 2

√
3pη(q2η2 − 9) cos

( pη√
3

)
sin
( qη√

3

)
+ 2

√
3qη(p2η2 − 9) sin

( pη√
3

)
cos

( qη√
3

)
+
(
54 − 6(q2 + p2)η2 + p2q2η4) sin

( pη√
3

)
sin
( qη√

3

)]
.

(A.19)
Finally we evaluate the Green’s function Gk(η, η̄). The general expression for it, taken from
appendix A in [36], results

Gk(η, η̄) = kηη̄[jα−1(kη̄)yα−1(kη) − jα−1(kη)yα−1(kη̄)] . (A.20)

Again, in radiation domination α = 2/(1 + 3w) = 1, and hence the only relevant Spherical
Bessel functions are j0(z) = sin z/z and y0(z) = − cos z/z. Thus

Gk,RD(η, η̄) = sin k(η − η̄)
k

. (A.21)

The last factor in (A.13), a(η̄)/a(η), can be computed exploiting the relation a(η) = a0
(

η
η0

)α
,

with α = 2/(1 + 3w)

a(η̄)
a(η) =

a0
(

η̄
η0

)α

a0
(

η
η0

)α =
( η̄

η

)α
, (A.22)

hence a(η̄)/a(η) = η̄/η in radiation domination. Putting everything together, the kernel
becomes

IRD(p, q, η) =
∫ η

ηi

dη̄
sin k(η − η̄)

k

η̄

η
fRD(p, q, η̄) . (A.23)

Performing now the change of variables u = p/k = |k − q|/k, v = q/k, x = kη and x̄ = kη̄ ,

IRD(u, v, x) = 1
k2

∫ x

xi

dx̄ sin(x − x̄) x̄

x
fRD(u, v, x̄) . (A.24)

We then introduce, as in [36], Ĩ(u, v, x) ≡ k2I(vk, uk, x/k) = k2I(p, q, η), which is required to
compute the observable GW spectrum, since its oscillation average has a known asymptotic
limit for x ≫ 1, corresponding to the “late-time” limit or, equivalently, to consider scales
which are significantly inside the horizon. It results

ĨRD(u1, v1, x → ∞)ĨRD(u2, v2, x → ∞)

= 1
2x2 ĨA(u1, v1)ĨA(u2, v2)

[
ĨB(u1, v1)ĨB(u2, v2) + π2ĨC(u1, v1)ĨC(u2, v2)

]
,

(A.25)

where

ĨA(u, v) = 3(u2 + v2 − 3)
4u3v3 , (A.26)

ĨB(u, v) = −4uv + (u2 + v2 − 3) ln
∣∣∣3 − (u + v)2

3 − (u − v)2

∣∣∣ (A.27)

ĨC(u, v) = (u2 + v2 − 3)Θ(u + v −
√

3) . (A.28)
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With this in mind, the oscillation average of the square of the kernel, in radiation domination
and in the sub-horizon limit, is

I2
RD(p,q,η) = 1

k4 ĨRD(u,v,x → ∞)ĨRD(u,v,x → ∞) = 1
2x2k4

(3(u2+v2−3)
4u3v3

)2

×
[(

−4uv+(u2+v2−3) ln
∣∣∣∣3−(u+v)2

3−(u−v)2

∣∣∣∣)2
+π2(u2+v2−3)2Θ(u+v−

√
3)
]

,

(A.29)
while in the general case in which there are u1, v1, u2 and v2, as in equation (A.1), we get

IRD(|k − q1|, q1, η)IRD(|k − q2|, q2, η) = 1
k4 ĨRD(u1, v1, x → ∞)ĨRD(u2, v2, x → ∞)

= 1
2x2k4

3(u2
1 + v2

1 − 3)
4u3

1v3
1

3(u2
2 + v2

2 − 3)
4u3

2v3
2

×
[(

− 4u1v1 + (u2
1 + v2

1 − 3) ln
∣∣∣∣3 − (u1 + v1)2

3 − (u1 − v1)2

∣∣∣∣)
×
(

− 4u2v2 + (u2
2 + v2

2 − 3) ln
∣∣∣∣3 − (u2 + v2)2

3 − (u2 − v2)2

∣∣∣∣)
+ π2(u2

1 + v2
1 − 3)(u2

2 + v2
2 − 3)Θ(u1 + v1 −

√
3)Θ(u2 + v2 −

√
3)
]

.

(A.30)

From this point on, the notation RD will be dropped for simplicity, but radiation domination
is always implied in this work.

Resulting integral. We now conclude introducing φ12 = ϕ1 − ϕ2 and defining

wa,12 = |q1 − q2|
k

= (v2
1 + v2

2 − 2v1v2(cos θ1 cos θ2 + sin θ1 sin θ2 cos φ12))1/2

=
(

v2
1 + v2

2 − 2q1 · q2
k2

)1/2 (A.31)

and
J̃(ui, vi, x) = v2

i sin2 θiĨ(ui, vi, x) = 4v2
i − (1 + v2

i − u2
i )2

4 Ĩ(ui, vi, x) . (A.32)

Equation (A.1) can thus be rewritten as∑
λ=+,×

Ph,λ(k,η)
∣∣
t
= 25π

k3 f2
NL

∫ ∞

0
dv1

∫ 1+v1

|1−v1|
du1

∫ ∞

0
dv2

∫ 1+v2

|1−v2|
du2

∫ 2π

0
dφ12

×u1v1u2v2
[
v2

1v2
2 sin2 θ1 sin2 θ2 cos(2φ12)

]
Ĩ(u1,v1,x)Ĩ(u2,v2,x)

×
∆2

g(v2k)
v3

2

∆2
g(u2k)
u3

2

∆2
g(wa,12k)
w3

a,12

= 25π

k3 f2
NL

∫ ∞

0
dv1

∫ 1+v1

|1−v1|
du1

∫ ∞

0
dv2

∫ 1+v2

|1−v2|
du2

∫ 2π

0
dφ12u1v1u2v2 cos(2φ12)

×J̃(u1,v1,x)J̃(u2,v2,x)
∆2

g(v2k)
v3

2

∆2
g(u2k)
u3

2

∆2
g(wa,12k)
w3

a,12
, (A.33)

where we used the definition of dimensionless power spectrum and integrated over the internal
angle (that leads to a further 2π factor).
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Second change of variables. A useful second change of variable can be performed
introducing

si = ui − vi ,

ti = ui + vi − 1 .
(A.34)

This variables are chosen since the corresponding integration domain is rectangular, allowing
to simplify the numerical evaluation of the integrals, especially when multidimensional
integrals are considered. The determinant of the Jacobian results -1/2.

Finally the integrals can be rewritten as

∫ ∞

0
dvi

∫ 1+vi

|1−vi|
dui = 1

2

∫ ∞

0
dti

∫ 1

−1
dsi . (A.35)

Hence

cos θi = 1 − si(1 + ti)
ti − si + 1 , (A.36)

sin2 θi = (1 − s2
i )ti(2 + ti)

(ti − si + 1)2 , (A.37)

q1 · q2
k2 = cos φ12

4

√
(1 − s2

1)t1(2 + t1)(1 − s2
2)t2(2 + t2)

+ 1
4(1 − s1(1 + t1))(1 − s2(1 + t2)) , (A.38)

k · qi

k2 = 1
2(1 − si(1 + ti)) , (A.39)

and

I(|k − q1|, q1, η)I(|k − q2|, q2, η) = 288
x2k4

(−5 + s2
1 + t1(2 + t1))

((1 + t1)2 − s2
1)3

(−5 + s2
2 + t2(2 + t2))

((1 + t2)2 − s2
2)3

×
[(

s2
1 − (1 + t1)2 + 1

2(−5 + s2
1 + t1(2 + t1)) ln

∣∣∣∣2 − t1(2 + t1)
3 − s2

1

∣∣∣∣)
×
(

s2
2 − (1 + t2)2 + 1

2(−5 + s2
2 + t2(2 + t2)) ln

∣∣∣∣2 − t2(2 + t2)
3 − s2

2

∣∣∣∣)
+ π2

4 (−5 + s2
1 + t1(2 + t1))(−5 + s2

2 + t2(2 + t2))Θ(1 −
√

3 + t1)Θ(1 −
√

3 + t2)
]

.

(A.40)
The expression for the polarization-summed, oscillation-averaged, “t” component of the
power spectrum finally reads

∑
λ=+,×

Ph,λ(k, η)
∣∣
t

= 23π

k3 f2
NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

∫ 2π

0
dφ12 cos(2φ12)u1v1u2v2

× J̃(u1, v1, x)J̃(u2, v2, x)
∆2

g(v2k)
v3

2

∆2
g(u2k)
u3

2

∆2
g(wa,12k)
w3

a,12
. (A.41)
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We additionally report as a further example the case of the “u” component of the power
spectrum. Starting from equation (2.36) one obtains

∑
λ=+,×

Ph,λ(k,η)
∣∣
u

= 28f2
NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∑
λ=+,×

[Qλ(k,q1)Qλ(k,q2)]

×I(|k−q1|, q1,η)I(|k−q2|, q2,η)PRg (q1)PRg (q2)PRg (|k−(q1+q2)|) ,

(A.42)

resulting, after the two change of variables, in

∑
λ=+,×

Ph,λ(k, η)
∣∣
u

= 23π

k3 f2
NL

∫ ∞

0
dt1

∫ 1

−1
ds1

∫ ∞

0
dt2

∫ 1

−1
ds2

∫ 2π

0
dφ12 cos(2φ12)u1v1u2v2

× J̃(u1, v1, x)J̃(u2, v2, x)
∆2

g(v1k)
v3

1

∆2
g(v2k)
v3

2

∆2
g(wb,12k)
w3

b,12
. (A.43)

Here we defined

wb,12 = |k − (q1 + q2)|
k

= (1 + v2
1 + v2

2 + 2v1v2(cos θ1 cos θ2 + sin θ1 sin θ2 cos φ12) − 2v1 cos θ1 − 2v2 cos θ2)1/2

=
(

1 + v2
1 + v2

2 + 2q1 · q2
k2 − 2k · q1

k2 − 2k · q2
k2

)1/2
. (A.44)

Higher order nG contributions. The procedure for rewriting the integrals corresponding
to higher order contributions coming from the 8-point correlation function, equations (2.41)–
(2.50) is similar to the one reported above, but with the additional vector q3, defined as

q3 = q3(cos ϕ3 sin θ3, sin ϕ3 sin θ3, cos θ3) . (A.45)

Again, some convenient changes of variables are

qi = vik

cos θi = 1
2vi

(1 + v2
i − u2

i ) ,
(A.46)

whose determinant of the Jacobian is k3u1u2u3/(v1v2v3), and

ui = 1
2(ti + si + 1)

vi = 1
2(ti − si + 1) ,

(A.47)
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with determinant of the Jacobian 1/8. The projection factors Qλ(k, q) and the kernels
I(|k − q|, q, η) are unaffected by the presence of the additional integration. For easiness of
notation, we introduce the following variables

wa,ij =
|qi−qj |

k
=
(
v2

i +v2
j −2vivj(cosθi cosθj +sinθi sinθj cos(ϕi−ϕj))

)1/2

=
(

v2
i +v2

j −2
qi ·qj

k2

)1/2 (A.48)

wb,ij =
|k−qi−qj |

k

=
(
1+v2

i +v2
j +2vivj(cosθi cosθj +sinθi sinθj cos(ϕi−ϕj))−2vi cosθi−2vj cosθj

)1/2

=
(

1+v2
i +v2

j +2
qi ·qj

k2 −2k·qi

k2 −2
k·qj

k2

)1/2
(A.49)

wq123 = |q1−q2−q3|
k

=
(
v2

1 +v2
2 +v2

3 −2v1v2(cosθ1 cosθ2+sinθ1 sinθ2 cos(ϕ1−ϕ2))

−2v1v3(cosθ1 cosθ3+sinθ1 sinθ3 cos(ϕ1−ϕ3))

+2v2v3(cosθ2 cosθ3+sinθ2 sinθ3 cos(ϕ2−ϕ3))
)1/2

=
(

v2
1 +v2

2 +v2
3 −2q1 ·q2

k2 −2q1 ·q3
k2 +2q2 ·q3

k2

)1/2

(A.50)

w123 = |k−q1−q2+q3|
k

=
(
1+v2

1 +v2
2 +v2

3 +2v1v2(cosθ1 cosθ2+sinθ1 sinθ2 cos(ϕ1−ϕ2))
−2v1v3(cosθ1 cosθ3+sinθ1 sinθ3 cos(ϕ1−ϕ3))
−2v2v3(cosθ2 cosθ3+sinθ2 sinθ3 cos(ϕ2−ϕ3))

−2v1 cosθ1−2v2 cosθ2+2v3 cosθ3
)1/2

=
(

1+v2
1 +v2

2 +v2
3 +2q1 ·q2

k2 −2q1 ·q3
k2 −2q2 ·q3

k2 −2k·q1
k2 −2k·q2

k2 +2k·q3
k2

)1/2

(A.51)

We conclude this appendix with some considerations on the coefficients associated to
each integral. In order to obtain an expression for ΩGW(k, η) starting from the corresponding
power spectra (2.41)–(2.50) there is a simple way to find the correct coefficient in front of
every components in (3.12)–(3.20), being the change of variables performed always the same.
We consider as an example the third line of (2.41)

∑
λ=+,×

Ph,λ(k, η)
∣∣
f2
NLgNL

= 3 · 29f2
NLgNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

∑
λ=+,×

[Qλ(k, q1)Qλ(k, q2)]

× I(|k − q1|, q1, η)I(|k − q2|, q2, η)
× PRg (q1)PRg (|q1 − q2|)PRg (q3)PRg (|k − q1 − q3|) . (A.52)

– 45 –



J
C
A
P
0
5
(
2
0
2
4
)
0
8
6

After the first change of variable it results

∑
λ=+,×

Ph,λ(k, η)
∣∣
f2
NLgNL

= 3 · 29f2
NLgNL

( 1
2π

)9 ∫
dv1

∫
dv2

∫
dv3

∫
du1

∫
du2

∫
du3

×
∫

dϕ1

∫
dϕ2

∫
dϕ3( v1k)2(v2k)2(v3k)2k3 u1

v1

u2
v2

u3
v3

×
[

(v1k)2(v2k)2

2 sin2 θ1 sin2 θ2 cos 2(ϕ1 − ϕ2)
]

× 1
k4 Ĩ(|k − q1|, q1, η)Ĩ(|k − q2|, q2, η)

×
(

2π2

k3

)4 ∆2
g(v1k)
v2

1

∆2
g(wa,12k)
w2

a,12

∆2
g(v3k)
v2

3

∆2
g(wb,13k)
w2

b,13
.

(A.53)

while the second change of variables leads to an additional numerical factor 1/23 coming
from the Jacobian, hence

∑
λ=+,×

Ph,λ(k, η)
∣∣
f2
NLgNL

= 3 · 29f2
NLgNL

( 1
2π

)9
(

2π2

k3

)4

k6k3 k4

2
1
k4

1
23

∫ dt1

∫
dt2

∫
dt3

×
∫

ds1

∫
ds2

∫
ds3

∫
dϕ1

∫
dϕ2

∫
dϕ3v1v2v3u1u2u3

cos 2(ϕ1 − ϕ2) × J̃(|k − q1|, q1, η)J̃(|k − q2|, q2, η)

×
∆2

g(v1k)
v2

1

∆2
g(wa,12k)
w2

a,12

∆2
g(v3k)
v2

3

∆2
g(wb,13k)
w2

b,13
. (A.54)

The final numerical factor results 1/(29k3π) and is independent on the momenta enclosed
in the primordial seeds. Recalling now equation (2.29)

ΩGW(k, η) = 1
48

(
k

a(η)H(η)

)2 k3

2π2

∑
λ=+,×

Ph,λ(k, η) , (A.55)

the exact coefficients for the various expressions of the ΩGW can be obtained from

ΩGW(k, η) = 1
3 · 214π3

(
k

a(η)H(η)

)2
 ∑

λ=+,×
Ph,λ(k, η)

 |ti,si , (A.56)

where the subscript ti and si, means that we are considering just the integrals written in
terms of these new variables. In the example above, equation (A.54), ∑

λ=+,×
Ph,λ(k, η)

∣∣
f2
NLgNL

 |ti,si = 3 · 29f2
NLgNL

∫
dt1

∫
dt2

∫
dt3

∫
ds1

∫
ds2

∫
ds3

×
∫

dϕ1

∫
dϕ2

∫
dϕ3v1v2v3u1u2u3 cos 2(ϕ1 − ϕ2)

× J̃(|k − q1|, q1, η)J̃(|k − q2|, q2, η)

×
∆2

g(v1k)
v2

1

∆2
g(wa,12k)
w2

a,12

∆2
g(v3k)
v2

3

∆2
g(wb,13k)
w2

b,13
,

(A.57)
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The term (k/aH)2 cancels out with the 1/x2 that is present in the expression of the oscillation
average of the product of the kernels. Starting from this simple relation it is possible to
retain the coefficient of the various terms of the scalar-induced spectrum. In some cases
an additional step to further simplify the expressions involves an extra integration over the
internal angles ϕi, when the integrands do not depend on them, giving rise to factors 2π

(as seen for the “t” term above).

B Feynman diagrams

We report in this appendix further details on the Feynman diagrams corresponding to the
different contributions to the tensor GW spectrum we found at each order in AR. We first
briefly summarize the Feynman rules necessary to construct such diagrams and then we show
how they can be used to predict the behaviour of the corresponding integrals.

Following [36], we draw transfer functions with dashed lines, while GW with wiggling
lines. To ease the notation we do not indicate the polarization state λ and the momentum
flow relative to these latter, but in general to each GW a polarization state λ or λ′ and a
momentum directed outward (as expected from momentum conservation) are associated.
The general idea is that since by definition the tensor power spectrum is originated by the
integration of a trispectrum of scalar perturbations, equation (2.17), that in turn can be
linked to products of power spectra, it has to be at leading order at 1-loop. We associate
to each power spectrum a straight line, while the momentum flow is described by arrows.
Furthermore, each diagram must contain 4 internal vertices, corresponding to each of the
4 nG scalar perturbations RNG generating the trispectrum. Each vertex relates a certain
number of power spectra to a dashed line and the number of power spectra depends on the
power of Rg in the local expansion that originates the contribution. For example, a term
originating from a ∝ hNLR4

g contribution, a ∝ fNLR2
g one and two linear term, must contain

a vertex linked to 4 lines, another one linked to only two lines and the remaining two linked
to just one line each. Any integration over a fixed internal momentum leads to a loop and all
the momenta are conserved at each vertex. The multiplicity of each diagram can be obtained
considering the number of possible ways each vertex can be linked to the others, excluding
contributions involving a propagator with vanishing momentum.

B.1 Gaussian diagram

The Gaussian contribution, reported in figure 2, constitutes the leading order in the tensor
power spectrum. Since it originates from the interaction of scalar perturbations (and
consequently power spectra) it requires at least one integration over the internal momentum
linking the different power spectra. This justifies why, as specified in [31], this contribution
leads to a 1-loop diagram. The diagram reported corresponds to equation (2.34). Since this
contribution arises from the a trispectrum component originated by 4 linear contributions in
each ⟨RgRgRgRg⟩, each vertex must be linked to only 1 solid line. Momentum conservation
then leads to the diagram built in that way.
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B.2 f2
NL diagram

The diagrams corresponding to the next-to leading order corrections and proportional to f2
NL

are reported in figure 3. The ones in the first row and the second in the second row are origi-
nated by connected contributions, while the first one in the second row is the only disconnected
one. On the first line, we have respectively the C and Z contributions in [36] or the “t” and “u”
in [130], reported in equations (2.35) and (2.36), the first contribution on the second line the
hybrid one, corresponding to equation (2.39), while the last one is the “s”, equation (2.37). In
order to build a trispectrum in this case, as also explained in section 2.3, we need two terms
proportional to f2

NL and two simple linear terms. Since each fNL carries a factor R2
g, the corre-

sponding vertices must be connected to two different lines. At the end, the diagrams need to
have two vertices connected with two solid lines and two vertices connected to just a single one.

It is interesting now to distinguish two different contributions, the “connected” and the
“disconnected” ones, just by looking at the diagrams themselves. The former directly lead
to a Dirac delta in the real momenta since the beginning, the latter need an intermediate
integration that leads the Q and I functions to depend on the same internal momentum.
Thus the connected or disconnected origin of these diagrams can be understood simply by
the dependence on q2 in the dashed lines on the right.

Finally, the fourth diagram vanishes due to rotational invariance. This can be understood
by the absence of any internal solid line depending on some combination of the momenta q⃗1,
q⃗2. Mathematically this leads to the absence of any dependence on the azimuthal angles in
the power spectra and so the integration over them just leads to a vanishing contribution.

B.3 gNL diagrams

Only two diagrams are present at order gNL. The first one in figure 5 is a connected but
vanishing contribution, for symmetry reasons. The second diagram, on the other hand,
originates from a disconnected contribution and is not vanishing. The “bubble” originates
from two of the three factors Rg in the gNL term contracting with themselves. Such a
contribution can be factorized, since there’s no other spectra depending on the corresponding
momentum. The remaining diagram has the exact same topology of the Gaussian one, further
justifying that the term we call “new” can be written as proportional to the Gaussian one.

B.4 Higher order contributions

We then report higher order diagrams corresponding to contributions at order A4
R, in

figures 7, 10, 12, 14 and 16. Following the reasoning of the previous subsections, it is clear
that the second and the fourth g2

NL diagrams just vanish or that the fifth leads to a contribution
proportional to the Gaussian. The remaining two correspond to the first and second line in
square brackets of (2.43) and the sixth to the last term in (2.44). Again for symmetry reasons,
the first, the second and the ninth diagrams in figure 7, the first, third and fifth in figure 14
and the first in figure 16 vanish. Furthermore the last f2

NLgNL diagram and the last fNLhNL,
corresponding to the disconnected contributions, share the same topology of the hybrid one,
after the bubble is factorized. The only non vanishing iNL contribution, again corresponding
to the disconnected term, after the bubbles are factored out, shows the same topology of the
Gaussian contribution and thus it is proportional to it. The three f4

NL contributions, instead,
correspond respectively to the “planar”, “non-planar” and “reducible” in [31, 36].

– 48 –
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