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Delay-induced directional switches and mean switching time in swarming systems
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Coordinated directional switches often emerge in moving biological groups replete with individual-level
interactions. Recent self-propelled particles models can somewhat mimic the patterns of directional switches,
but they usually do not include the effects of time delays in the interactions. Here, we focus on investigating the
influence of time-delay interactions on the collective motion of swarming locusts, an experimentally well-studied
system that exhibits ordered switches between clockwise and counterclockwise movement. We show, both
analytically and numerically, that time delays of different types can affect the directional switches. Specifically,
for the sufficiently small response delay, increasing the transmission delay can increase the mean switching
time, while, for the large response delay, increasing the transmission delay may destroy the ordered directional
switches. Our results decipher the role of time-delay interactions in the collective motion, which could be
beneficial to the design of collective intelligent devices.
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I. INTRODUCTION

Collective motions of coherence emergent in interacting
multi-individual particles or swarming systems are om-
nipresent in nature and synthetic systems. Examples include
foraging ant colonies [1,2], swarming locusts [3], schooling
fish [4–7] or prawns [8], flocking birds [9], coordinated robots
[10–12], and synchronized spacecrafts [13]. These emer-
gent phenomena as well as the corresponding systems have
attracted a great deal of attention from various research com-
munities [14–24]. In the last decades, numerous theoretical
[1,20,21,25,26] and empirical studies [3,4,17–19] have been
carried out for exploring the underling mechanisms result-
ing in coordinated collective behaviors. Particularly in 1995,
Vicsek and his colleagues proposed a simple self-propelled
particles (SPP) model [26], where each moving individual
is regarded as a particle orienting its velocity parallel to the
average velocity of its local neighborhood particles. Extensive
studies have been conducted on the Vicsek model and its
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variants for illustrating the phase transition between ordered
and disordered states. The group density and the strength of
noise have been found as the critical ingredients influencing
the collective animal motion and the swarming phenomena of
bacteria [18,24].

Most of the models focused majorly on how a large number
of individuals move at almost the same velocities; however,
those studies did not directly and systematically exploit an
important and ubiquitous phenomenon that coherent animal
groups can suddenly change in direction. Actually, direc-
tional switching behaviors can be often observed in biological
systems, e.g., swarming bacteria [27], marching locusts [3],
homing pigeons [28], starling flocks [29], and schooling fish
[7] or prawns [8]. Some studies show that a switch in direction
is a response to an external influence, such as the presence of
a predator [7]. However, without the change in the external
environment, the directional switches still occur, which has
been confirmed by the experiments on various densities of
desert locusts [3], glass prawns [8], and pigeons [28].

The initial studies of directional switching behavior
focused on how the densities affect collective alignment of an-
imal groups. Evidences emerging from both experimental and
theoretical studies suggested that disordered animal groups
can transit to ordered motion as the group density increases
[3]. Recently, more complex situations with randomness have
been taken into account, which demonstrated the positive
role of intrinsic noise in enhancing the ordered switches in
direction [1,7,30,31]. It was shown that directional switches of
moving locusts are produced as a consequence of the ergodic
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random evolution of the system [30]. Although the exist-
ing models could somewhat mimic the ordered directional
switching behaviors, they only considered the instantaneous
interactions but often omitted the influence of the time-delay
interactions that arise in many collective motions due to fi-
nite communication speeds and information-processing times
[32,33]. Since time delays play important roles in inducing
the emergence of swarms of living organisms [32], an intro-
duction of their influence into the model could be beneficial to
deciphering the essential underlying mechanism that produces
the phase transition process of real animal groups.

The animal group movement usually involves two types
of time delays, viz., the transmission delay and the response
delay [34–36]. The transmission delay corresponds to the
amount of the time required for an individual to receive in-
formation from its neighbors, while the response delay (also
known as the information processing delay) to the amount of
the time required for an individual to process the received in-
formation and adjust its state. In addition, the mean switching
time (MST) between different moving directions is an impor-
tant indicator, describing the ordered extent of moving groups.
Our previous investigation [33] only numerically reported an
elementary result that increasing the transmission delay may
significantly increase the MST of directional switches; how-
ever, it considers neither the interplay between the two types
of time delays nor how this interplay contributes to the direc-
tional switches by estimating the MST. Therefore, this article
intends to investigate all these time-delay interactions on the
directional switches in the locust nymphs that are supposed to
move in an experimental arena of ring shape.

This article is organized as follows. We start with a time-
delay model that includes either the information processing
delay or the transmission delay. Then, we investigate a gener-
alized model which contains both types of delays. Indeed, we
propose a general mathematical framework to calculate the
MST for moving groups with delayed interactions. Treating
the MST as a function of the group density and the time delay,
we show that the MST monotonically increases with the the
group density or/and the transmission delay, but decreases
with the response delay. Particularly in those delayed-coupled
individuals, both the response and the transmission delays
are responsible for the ordered directional switches, in con-
trast to the previous studies [1,3,30,31] where only noise
and group density can induce switches in moving directions.
Finally, we close this article by providing some discussion and
perspective remarks.

II. RESULTS

A. MST for individual-based systems with response delays

In a real biological experiment, locust nymphs of various
densities were put in a homogeneous ring-shaped experimen-
tal arena [3]. It was found that the groups of locust nymphs
with high density, instead of marching randomly between the
two directions, marched in one direction for several hours.
After a period of time, they suddenly turned their directions in
only a few minutes and marched in an opposite direction for a
number of hours. According to the ring-shaped experimental
arena, we assume that, in our model, N individuals move
along a circle, which is denoted by the interval � = [0, 1)

with a periodic boundary condition. The state of each individ-
ual is described by its position, denoted by Xi ≡ Xi(t ) ∈ �,
and by its velocity, Vi ≡ Vi(t ) for i = 1, 2, · · · , N . Denote by
Ji,R(t ) = { j ∈ {1, · · · , N} | min(di j, 1 − di j ) � R} the set of
the ith individual’s neighbors at time t , where di j = |Xi − Xj |.
Thus, each individual adjusts its state based on the behaviors
of its neighbors in the set Ji,R(t ).

In Vicsek’s model [26] and its variants [3,31] as well,
the interactions among individuals are assumed to occur in-
stantaneously. Here, we introduce the effect of time-delayed
interactions. First, for simplicity, the information transmission
is supposed to be instantaneous while the response delay
τ > 0, corresponding to processing, cognitive, or execution
time, is taken into account. Then, we have the following time-
delayed system:

dXi = Vi(t ) dt, (1)

dVi = [sign(Ui,R(t − τ )) − Vi(t − τ )]dt + η dWi, (2)

where each dWi is the standard white noise (independently
sampled for each individual), η > 0 represents the strength of
noise, sign(·) : R → {−1, 0, 1} is the signum function, and

Ui,R(t ) = 1

|Ji,R(t )|
∑

j∈Ji,R (t )

Vj (t ) (3)

is the mean of the velocity at time t of the individuals in the
set Ji,R(t ). Also, we denote by U (t ) the average velocity of the
whole group. As such, U (t ) ≡ Ui,R(t ) for R larger than 0.5 and
arbitrary i. Additionally, it is supposed that each individual
needs time τ to adjust its velocity when the velocities of its
neighbors are received, so the ith individual in Eq. (2) of the
time-delayed model updates its velocity at time t according
to the information of the neighbored individuals’ velocities
at time t − τ . Clearly, as τ = 0, the model of Eqs. (1)–(3) is
equivalent to the standard Vicsek’s SPP model [3,31].

Through simulating the system of Eqs. (1)–(3) for different
N , we investigate the influence of the group density on the
collective motion. All the stochastic differential equations
are solved using the standard Euler-Maruyama numerical
scheme [37] with a time step �t = 0.01. The initial positions
of the individuals are taken uniformly from the interval [0,1],
and the initial velocities are normally distributed with zero
mean and unit variance. The parameter of the interaction range
is used as R = 0.1, which corresponds to 27.8 cm interaction
range of the locusts in a ring-shaped experimental arena [3].
And the results are similar if the other values of R are taken
into account. The typical evolutions of the average velocity
U of the whole group are shown in Fig. 1(a), where, without
any change in the external environment, the group switches
suddenly its velocity in an opposite direction [i.e., from left
(U (t ) < 0) to right (U (t ) > 0) or from right to left]. Indeed,
the group with a low density switches its direction more
frequently than the group with a high density. We numeri-
cally estimate the MST between the switches from long-term
stochastic simulations. As significantly shown in Fig. 1(b),
the MST increases monotonically with the group size. This
implies that, in spite of the presence of delayed interaction,
the disordered movement of individuals within the group can
transit to the highly aligned collective motion as the group
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FIG. 1. Effects of the group density and the response delay, respectively, on the collective behaviors of the model of Eqs. (1)–(3). (a) The
average velocity U (t ) changes with time evolution for the model with τ = 0.1, η = 2, R = 0.1, and different N = 30 (green), 40 (red), and 50
(blue). Here and throughout, the initial positions of individuals are taken uniformly from the interval [0,1], the initial velocities are set as the
numbers normally distributed with zero mean and unit variance, and the time step is selected as �t = 0.01 for t ∈ [0, 106]. (b) The MST as a
function of the group size N , for different τ . (c) The MST as a function of the response delay τ , for η = 2, R = 0.1, and different N .

size N increases. This is akin to the phenomena observed in
the experiments [3] and to the results obtained in the classical
Vicsek’s model and its variants that are free of time delays
[3,26,31].

Now, we study how the response delay influences the group
motion. Still in Fig. 1(b), we can see that, for any fixed N ,
the MST of the group with smaller response delay is longer
than that of the group with larger response delay. Obviously,
the frequency of directional switches increases monotonically
with the response delay. This is further confirmed from an-
other viewpoint [see Fig. 1(c)]. Here, the MST decreases as
the response delay increases. Therefore, increasing the re-
sponse delay can induce dramatically directional switches in
the collective swarming motion.

In order to quantify how the interplay between the group
density and the response delay contributes to the switches
emergent, we study the collective behavior of a mean-field
model. As such, suppose all the individuals to be interacting
with each other, and use the global velocity average U (t ) to
replace Ui,R(t ) in Eq. (2). Then, we get

dVi = [sign(U (t − τ )) − Vi(t − τ )]dt + η dWi. (4)

Taking the average of all these equations for i = 1, · · · , N
yields an Itô’s stochastic differential equation for U (t ) as

dU = [sign(U (t − τ )) − U (t − τ )]dt + η N−1/2 dW. (5)

Denote by P(u, t ) the probability density of the stochastic
process defined by Eq. (5). Then, P(u, t )du stands for the
probability of the global velocity average U (t ) ∈ [u, u + du),
satisfying the following delayed Fokker-Planck equation (as
the one developed in Ref. [38]):

∂

∂t
P(u, t ) = − ∂

∂u

∫
R

[sign(uτ ) − uτ ]P(u, t ; uτ , t − τ )duτ

+ η2

2N

∫
R

∂2

∂u2
P(u, t ; uτ , t − τ )duτ , (6)

where uτ = u(t − τ ) and P(u, t ; uτ , t − τ ) is the joint prob-
ability density of U (t ). Denote by Pst (u) the stationary
probability distribution (SPD) of U (t ), and by P(1)

st (u) the
first-order approximation of the SPD. Using the small de-
lay approximation method [38], we obtain the first-order

approximation to Pst (u) as

P(1)
st (u) = 1

Z
exp

( − φ(u)
)
, (7)

where Z is a normalization constant and the potential φ(u) is
given by φ(u) = −2NVeff (u)/η2 and the function Veff is given
by

Veff (u) =
√

N

2πη2τ

∫ u

0
du′

∫ ∞

−∞
duτ [sign(uτ ) − uτ ]

× exp

(
− [uτ − u′ − (sign(u′) − u′)τ ]2

2η2τ/N

)
. (8)

Through further detailed calculations (refer to Methods),
Veff (u) in (8) becomes

Veff (u) =
∫ u

0
erf

(
ψ (u′)√
2η2τ/N

)
du′ − τ |u| − (1 − τ )

u2

2

=
∫ u

0
erf

(√
N

2η2τ
[(1 − τ )ν + τ sign(ν)]

)
dν (9)

−τ |u| − (1 − τ )
u2

2
.

For the case N � 1 and 0 � τ < 1, using the asymptotic
expansion of the function erf (·) yields:∫ u

0
erf

(
ψ (u′)√
2η2τ/N

)
du′ ≈ |u|

and

Veff (u) ≈ (1 − τ )

(
|u| − u2

2

)
. (10)

Hence, from (7), the first-order approximation of P(1)
st (u) be-

comes

P(1)
st (u) = kτ e2k2

τ (|u|−u2/2)

ek2
τ

√
π (1 + erf (kτ ))

, (11)

where kτ = √
N (1 − τ )/η. It is easy to see from Fig. 2 that

P(1)
st (u) has two global maxima at u = ±1. For N � 1 and
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FIG. 2. The first-order approximation P(1)
st , obtained in (11) for

Pst , changes with the average velocity U , for system (5) with R = 0.5
and η = 2. Here, τ = 0.1 is fixed but N is differently selected (a), and
N = 30 is fixed but τ is differently selected (b).

0 < τ < 1, erf (kτ ) ≈ 1, so that, from (11), we have

P(1)
st (u = ±1) ≈ kτ

2
√

π
=

√
N (1 − τ )

2η
√

π
.

This implies that one can clearly distinguish the quasista-
tionary states when the group size N becomes large or the
response delay τ becomes sufficiently small. This is also
consistent with the results shown in Fig. 1.

Now, we are to calculate the mean first passage time for sys-
tem (5), denoted by T (−1 → +1) = T (+1 → −1) = T (u),
i.e., the average time cost for the particle jumping from one
well of the effective potential to the other, for small τ . As
such, we introduce the stochastic differential equation without
delay as follows:

dU = −ζ ′(u)dt +
√

2ετ dW, (12)

where ζ (u) = u2/2 − |u| is the effective potential and ετ =
η2/2N (1 − τ ) with 0 � τ < 1. A direct calculation yields the
SPD for (12) as

P(proc)
st (u) = Ze−ζ (u)/ετ . (13)

It is easy to see from (11) and (13) that the time-delayed
system (5) and the nondelayed system (12) share the same
SPD of the average velocity U (t ). Thus, systems (5) and (12)
own the same mean first passage time from one steady state
u = 1 to the other u = −1. Moreover, the response delay τ is
also shown in the diffusion parameter of ετ , which allows us to
analyze the influence of the response delay on the directional
switches. Therefore, system (5) can be well approximated
by the non-delayed system (12). Here, we assume that the
dynamics are governed by (12). If a particle is initially located
at u �= 0 (i.e., P{u(0) �= 0} = 1) in one of the wells, then T (u),
the mean first passage time of the particle jumping into the
other well, satisfies (see [39], p. 132)

ετ T ′′(u) − ζ ′(u)T ′(u) = −1, (14)

where the boundary conditions (absorbing at zero and re-
flecting at +∞) satisfy T (0) = 0 and limu→+∞ T ′(u) = 0,
because we assume that a particle starts off from the right well
near the minimum at u = 1. Correspondingly, the solution is

T (u) = 1

ε τ

∫ u

0
e

ζ (y)
ετ

∫ ∞

y
e− ζ (z)

ετ dydz. (15)
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FIG. 3. The MST obtained using Eqs. (16)–(17) (lines in differ-
ent types) versus the MST obtained using the stochastic simulations
(symbols in different types). (a) The MST as a function of the
group density N , respectively, for different delays τ = 0 (solid line,
circles), τ = 0.1 (dashed line, diamonds), τ = 0.3 (dotted line, tri-
angles), and τ = 0.5 (dash-dotted line, crosses). (b) The MST as a
function of the response delay τ , respectively, for N = 20 (solid line,
circles), N = 30 (dashed line, diamonds), and N = 40 (dash-dotted
line, triangles).

Since we are interested in the regime of small fluctuations
(i.e., ετ → 0), for any u close to the minimum, T (u) in (15) is
well approximated by

T (N, τ ) �
√

πη2

N (1 − τ )
exp

(
N

η2
(1 − τ )

)
. (16)

Clearly, the mean fist passage time is equivalent to the MST
between different moving directions. The approximation ob-
tained in (16) implies that the MST is an increasing function
with respect to the group density but it decreases monotoni-
cally with the response delay.

In particular, for τ = 0, the MST in (16) for the SPP model
(4) degenerates as

TN =
√

πη2

N
exp

(
N

η2

)
, (17)

which is the MST (see Methods) for the following SPP model
without delay interactions,

dVi = [sign(U (t )) − Vi(t )]dt + η dWi. (18)

Comparing these two MSTs obtained, respectively, in (16) and
in (17), we see that the existence of the response delay can
significantly decrease the MST, which means that the response
delay can induce the directional switches of moving groups.
In addition, the MST for the SPP model with or without delay
is an increasing function of the group density, which implies
that group density is a crucial factor for the spontaneously
directional switches.

From Fig. 3, which compares the MSTs, respectively,
derived from the simulation and calculated from the analyt-
ical estimation in (16), we see that the analytical estimation
matches the simulations well for sufficiently small τ and large
N . Both theoretical and numerical results show that swarming
groups with higher densities and smaller response delays have
relatively lower frequencies of directional switches. This fur-
ther indicates that improving the information process speed
(i.e., decreasing the response delay of a moving group) can
increase its MST of the directional switches.
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B. MST for systems with transmission delays

Apart from the response delay introduced in the model of
(1)–(2), the transmission delay can not be neglected, because
it arises from a realistic situation where moving individuals
need time to receive the state information from their neigh-
bors. Thus, we consider the following model

dVi = [
sign

(
U R

i (t − ω)
) − Vi(t )

]
dt + η dWi. (19)

Here, ω > 0 is the transmission delay, indicating that each
individual needs time ω to receive the velocity information
of its neighbors and the adjustment time is not taken into
consideration. Thus, the ith individual updates its velocity
according to the combination of its own velocity at time t and
the mean velocity of its neighbors at time t − ω. The other
parameters are the same as those set for system (2).

When the interaction radius is sufficiently large, system
(19) is reduced as

dVi = [sign(U (t − ω)) − Vi(t )]dt + η dWi. (20)

Similarly, the average velocity U (t ) of the whole group satis-
fies the system,

dU = [sign(U (t − ω)) − U (t )]dt + η N−1/2 dW. (21)

Thus, P(u, t ), the probability distribution function for the
variable U produced by system (21), satisfies the following
Fokker-Planck equation (refer to Ref. [38]):

∂

∂t
P(u, t ) = − ∂

∂u

∫
R

[sign(uτ ) − u]P(u, t ; uτ , t − τ )duτ

+ η2

2N

∫
R

∂2

∂u2
P(u, t ; uτ , t − τ )duτ . (22)

Still using the small delay approximation method [38], we
obtain the first-order approximation of the SPD as

P∗
st (u) ≈ D exp

( − ξ (u)
)
, (23)

where D is a normalization constant and the potential ξ (u)
fulfills

ξ (u) = −2N

η2

{∫ u

0
erf

(√
N

2η2ω
[(1 − ω)ν

+ω · sign(ν)]

)
dν − u2

2

}
. (24)

The approximation of the SPD specified in (23) has two global
maxima at u = ±1, as shown in Fig. 4. In Fig. 4(a), it is
easy to distinguish the quasistationary states as the group
size becomes large. This indicates that, as the group density
increases, the turning rate of the group significantly decreases.
In Fig. 4(b), the group with a larger ω has a smaller potential
function. Hence, increasing the transmission delay can also
significantly increase the MST of the directional switches.
Furthermore, suppose a particle to start off from the left well
near the minimum u = −1 for a sufficiently small ω. Then,
the MST as a function of N and ω is calculated as (see
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FIG. 4. (a) The first order approximation P(1)
st , obtained in

Eq. (11), changes with the average velocity U for delay ω = 0.1 and
different population size N . (b) The potential function as a function
of U for N = 30 and different delay ω. Here, system (21) with
R = 0.5 and η = 2 is taken into account.

Ref. [39]):

T (N, ω) = 2N

η2

∫ 0

−1

1

P∗
st (u)

∫ u

−∞
P∗

st (s)dsdu

= 2N

η2

∫ 0

−1
exp(ξ (u))

∫ u

−∞
exp(−ξ (s))dsdu. (25)

Based on the analytical result obtained in Eq. (25), we calcu-
lated the MST for ω = 0.1 and for different N in Fig. 5. We
also compare the this calculated result with the MST obtained
directly from the stochastic simulations, which shows them in
a high consensus for larger values of N .

C. Individual-based system with both response
and transmission delays

Here, we are to investigate the effect of both the response
and the transmission delays on the MST. As such, we incor-
porate the transmission delay into system (2), which yields a
generalized model:

dVi = [
sign

(
U R

i (t − τ − ω)
) − Vi(t − τ )

]
dt + η dWi, (26)

where the parameters are the same as those in system (2).
To be candid, system (26) with both the response and the
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FIG. 5. The MST as a function of the group density. Here, for
ω = 0.1, the solid line is depicted using Eq. (25), while the circles
are depicted using the stochastic simulations.
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FIG. 6. The MST as a function of the response delay τ for the
system (26) with N = 30, η = 2, and R = 0.1, particularly as the
transmission delay ω = θτ for θ = 1, 2, 3. Here, each arrow indi-
cates the changing direction of the MST with increasing θ and for
the given response delay τ .

transmission delays does not admit a feasible analytical treat-
ment, even though, from the above analyses, we have obtained
the estimation of the MST for the model with either the
response delay or the transmission delay. So, we calculate
the MST from the long-term stochastic simulations. In Fig. 6,
we set ω = θτ with τ ∈ [0, 1] and θ = 1, 2, 3. For each pair
(τ, ω), we performed the stochastic simulations for the system
(26) and calculated the MST correspondingly. It can be seen
from Fig. 6 that increasing the transmission delay can inhibit
the directional switching of swarming locusts as the response
delay is sufficient small; however, it may induce frequently
directional switches when the response delays are sufficiently
large. Thus, the groups with small response delay and large
transmission delay likely have directional switches of low
frequency. In those previous studies [30,31], it was shown
that noise can play a crucial role in the directional switches
of swarming locusts. The results in Fig. 6 reveal that, in
addition to the noise, the time delays aroused by the limited
information transmission and the processing speed also have
important influence on the directional switching behavior of
the collective motion.

III. CONCLUDING REMARKS

To summarize, in this article, we studied the directional
switching behaviors of the collective motion, quantifying the
influence of the group density, the response delay, and the
information transmission delay on the MST between two
moving directions. Particularly, we first generalized the stan-
dard Vicsek model to a computational framework with the
local alignment interactions and the response delay, in which
individuals only receive the information from its neighbors
and require some time to adjust their velocities. For this gen-
eralized model, we numerically investigated the influence of
the factors, including the group size and the response delay, on
the MST. To get deep insights into the mechanism behind the
influence of the factors, we studied the collective dynamics
of the mean-field model with the global interactions. As a

result, we obtained the analytical estimation of the MST with
respect to the group size and the response delay. Also, we
considered the model with the information transmission delay
and calculated its MST by assuming the interaction radius is
sufficiently large. Moreover, we also numerically investigated
the model with both the response and the transmission delays.

We have articulated a framework for calculating the MST
of the stochastic time-delay systems, where the analytical
results match the corresponding numerical results fairly well.
More precisely, we find that, as the density of the group
increases, a rapid transition occurs from a disordered move-
ment of the individuals within the group to a highly aligned
collective motion. We also find that the response delay can
induce the directional switches because the MST is a decreas-
ing function of the response delay. By simulating the system
simultaneously with the response and the transmission delays,
we further find that, for the case of smaller response delay,
increasing the transmission delays may significantly reduce
the turning rate of moving directions, while, for the case of
larger response time delay, increasing the transmission delay
may result in high frequency directional switching. Our results
show that, apart from the noise and the group densities, the
time-delay interactions also play important roles in inducing
the directional switches of the moving animal groups. This
complements the results in the literature where the time delays
were not taken into account in the modeling.

To be candid, all individuals in our models are all sup-
posed to be moving along a one-dimensional circle, so the
obtained results are not applicable directly to illustrating the
collective motions in two or three-dimensional spaces. Recent
progress has showed that the phase transition of collective
dynamics in the spaces of higher dimensions are remarkably
different [17]. In order to improve our understanding phase
transition of moving animal groups, directional switches of
collective motions in these spaces of different dimensions
are included in our present or/and future research topics.
Moreover, the time delays for the realistic moving animals
are not necessarily the same but often randomly distributed
in some specific range. Thus, highly anticipated is a novel
extension of the method currently used in this article to a
more technical and advanced version that can treat the moving
individuals possessing randomly distributed delays. Addition-
ally, the network topologies of the realistic moving animal
groups are not necessarily time-invariant but often temporally
changing [40,41]. Thus, detecting the time-varying topologies
by the methods developed in [42–44] and further extending
the method used in this article to the case where the moving
groups possess time-varying topologies could be some of our
future research topics.

Moreover, in this article, we always assume that each
individual adjusts its velocity to the average velocity of indi-
viduals in its local neighborhood. However, this configuration
does not include the social interaction, an important factor
influencing the moving group. In fact, the social interaction
implies that individual tends to align its status with that of
individual which has strong social ties, but that might be
separated by a relatively long Euclidean distance [21,45]. This
kind of interactions can be described by the social networks
which has been observed in the moving pigeons [28] and in
the schooling fish as well [46,47]. The phase transition of
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moving locusts on adaptive networks with random topologies
has been discussed in [48], where each node represents an in-
sect, and the links represent the interactions between locusts.
Thus, further extending the method used in this article to
the case where the moving groups possess social interactions
could also be some of our future research topics.

The data sets generated during and/or analyzed during the
current study are all available from the corresponding authors
upon request.

All relevant computer codes are available from the authors
upon request.
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APPENDIX: METHODS

1. Potential function

In the main text we have defined Veff of the potential func-
tion φ(u). Let

Veff (u) =
√

N

2πη2τ

∫ u

heff (u′)du′ (A1)

with

heff (u′) =
∫ ∞

−∞
[sign(uτ ) − uτ ] exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

=
∫ ∞

−∞
sign(uτ ) exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

−
∫ ∞

−∞
uτ exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

� I2 − I1 (A2)

and ψ (u′) = (1 − τ )u′ + τ sign(u′). Further letting μ = uτ −
ψ (u′) and ν = μ√

2η2τ/N
, we obtain

I1 =
∫ ∞

−∞
μ exp

(
− μ2

2η2τ/N

)
dμ

+ψ (u′)
∫ ∞

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= ψ (u′)
∫ ∞

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= ψ (u′)
√

2η2τ/N
∫ ∞

−∞
exp(−ν2)dν

= ψ (u′)
√

2πη2τ/N, (A3)

where the validity of the last equality follows from the fact
that

∫ ∞
−∞ exp(−u2)du = √

π. For I2, we calculate as follows:

I2 =
∫ ∞

−∞
sign(uτ ) × exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

= −
∫ 0

−∞
exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

+
∫ ∞

0
exp

(
− [uτ − ψ (u′)]2

2η2τ/N

)
duτ

� I3 + I4.

Again, letting μ = uτ − ψ (u′) and ν = μ√
2η2τ/N

yields, re-

spectively:

I3 = −
∫ −ψ (u′ )

−∞
exp

(
− μ2

2η2τ/N

)
dμ

= −
∫ 0

−∞
exp

(
− μ2

2η2τ/N

)
dμ

−
∫ −ψ (u′ )

0
exp

(
− μ2

2η2τ/N

)
dμ

= −
√

2η2τ/N

[ ∫ 0

−∞
exp

(−ν2
)
dν

+
∫ −ψ (u′ )√

2η2τ/N

0
exp(−ν2)dν

]

and

I4 =
∫ ∞

−ψ (u′ )
exp

(
− μ2

2η2τ/N

)
dμ

=
√

2η2τ/N
∫ ∞

−ψ (u′ )√
2η2τ/N

exp(−ν2)dν

=
√

2η2τ/N

[ ∫ 0

−ψ (u′ )√
2η2τ/N

exp(−ν2)dν +
∫ ∞

0
exp(−ν2)dν

]
.

(A4)

Thus, we have

I3 + I4 = −
√

2η2τ/N

[∫ −ψ (u′ )√
2η2τ/N

0
exp(−ν2)dν

−
∫ 0

−ψ (u′ )√
2η2τ/N

exp(−ν2)dν

]

=
√

2η2τ/N

[ ∫ ψ (u′ )√
2η2τ/N

0
exp(−ω2)dω
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+
∫ 0

−ψ (u′ )√
2η2τ/N

exp(−ν2)dν

]

=
√

2η2τ/N
∫ ψ (u′ )√

2η2τ/N

−ψ (u′ )√
2η2τ/N

exp(−ν2)dν

= 2
√

2η2τ/N
∫ ψ (u′ )√

2η2τ/N

0
exp(−ν2)dν

=
√

2πη2τ/N · erf

(
ψ (u′)√
2η2τ/N

)
, (A5)

where ω = −ν and erf (u) = 2√
π

∫ u
0 e−t2

dt . Consequently, to-
gether with (A2), (A3), and (A5), it follows that

heff (u′) =
√

2πη2τ

N

[
erf

(
ψ (u′)√
2η2τ/N

)
− ψ (u′)

]
. (A6)

Substituting Eq. (A6) into Eq. (A1) yields Eq. (9). This makes
it possible to obtain the potential function in the main text.

2. MST estimation for SPP model without delay

To calculate the MST for the SPP model without delay,
we investigate the following Itô stochastic differential equa-
tion for U (t ) from system (18):

dU = [sign(U (t )) − U (t )]dt + η N−1/2 dW. (A7)

Denote by P(u, t ) the probability distribution of the group
velocity average U (t ). It satisfies the following Fokker-Planck
equation:

∂

∂t
P(u, t ) = − ∂

∂u
[sign(u) − u]P(u, t ) + η2

2N

∂2

∂u2
P(u, t ).

The SPD for system (A7) is obtained as

Pst (u) = C exp

(∫ u

0

2N

η

2

[sign(u) − u]du

)

= C exp

(
−2N

η

2

ζ (u)

)
,

where C is a normalization constant. Furthermore, assume that
a particle starts off from the left well near the minimum at
u = −1. Then, the corresponding mean first passage time
satisfies the following equation (see [39]):

[sign(u) − u] · dT

du
+ η2

2N

d2T

du2
= −1, (A8)

which can be further analytically calculated as

TN = 2N

η

2 ∫ 0

−1
exp

(
2N

η

2

ζ (u)

)

×
∫ s

−∞
exp

(
−2N

η

2

ζ (u)

)
dsdu.

Here, the boundary conditions T (0) = 0 and T ′(−∞) = 0 are
used. Clearly, TN as obtained above is a function of N . Using
the Taylor expression of function ζ (u) � u around 0 for the
first integration and ζ (u) � (u + 1)2 − 1 around −1 for the
second integration, TN can be approximated as

TN �
√

πη2

N
exp

(
N

η2

)
. (A9)
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