
Confidence regions for optimal sensitivity and
specificity of a diagnostic test
Regioni di confidenza per sensibilità e specificità ottimali
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Abstract We propose new methods that provide approximate joint confidence re-
gions for the optimal sensitivity and specificity of a diagnostic test, fixed by the
Youden index criterion. Such methods are semiparametric and overcome limita-
tions of alternative approaches available in the literature. Our proposal is based on
empirical likelihood pivots and covers two situations: binormal model and binormal
model after the use of Box-Cox transformations. In the last case, we show how to
use two different transformations, for the healthy and the diseased subjects.
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1 Introduction and background

The accuracy of a diagnostic test can be assessed by its receiver operating charac-
teristic (ROC) curve. The test result can be dichotomized at a specified cutpoint.
Given the cutpoint, the sensitivity is the probability of a true positive, i.e., the prob-
ability that the test correctly identifies a diseased subject. The specificity is the
probability of a true negative, i.e., the probability that the test correctly identifies
a non-diseased subject. When one varies the cutpoint throughout the entire real line,
the resulting pairs (1 − specificity, sensitivity) form the ROC curve (see Pepe[1],
as general reference). Let X denote the result of a continuous diagnostic test for
a non-diseaded subject and Y the result of the test for a diseaded subject. We as-
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sume, without loss of generality, that high test values indicate high likelihood of
disease. Then, for a given cutpoint τ , the sensitivity and the specificity of the test
are θ(τ) = Pr(Y > τ) = 1−FY (τ) and η(τ) = Pr(X ≤ τ) = FX (τ), respectively,
where FX (·) denotes the cumulative distribution function of X and FY (·) the cumu-
lative distribution function of Y . In practice, for the purpose of making diagnosis,
that is, classifying a subject as either diseased or healthy, a diagnostic threshold is
required. In order to select an “optimal” diagnostic cutpoint, there exists a variety
of approaches. Among them, the one based on the Youden index [2], J, is certainly
the most popular. The Youden index is the maximum of the sum of sensitivity and
specificity minus one, i.e., J = maxτ J(τ), with J(τ) = θ(τ)+η(τ)−1. The corre-
sponding optimal cutpoint, τ+ say, is the value that maximizes J(τ), i.e., the cutpoint
that has the largest value in the associated sum of sensitivity and specificity. Clearly,
sensitivity and specificity at the optimal cutpoint τ+ are relevant measures for the
diagnostic ability of the test.

Actually, the ROC curve of a new diagnostic test is unknown, being unknown (at
least partially) the distributions of the test results, for both diseased and non-diseased
populations. Hence, the statistical evaluation of the discriminatory ability of the test
is obtained by making inference about its ROC curve and other quantities of interest,
such as optimal thresholds and associated sensitivities and specificities. Generally,
inference is based on data from some suitable sample of patients for which the dis-
ease status can be exactly assessed by means of a so-called gold standard test (GS).
When an optimal threshold is estimated from data of both diseased and healthy sam-
ples, the corresponding estimated sensitivity and specificity are correlated, and joint
inference is necessary to take into account such a correlation. Methods to built joint
confidence regions for sensitivity and specificity at the optimal cutpoint based on the
Youden index are proposed by Bantis et al.[3] and Yin and Tian[4]. Both works deal,
in particular, with parametric (or semi-parametric) methods for the binormal model.
When the hypothesis of normality is not adequate, in both articles it is suggested to
resort, when possible, to a single Box-Cox transformation. The main limits of such
methodologies are: (i) the related confidence regions have (or derive from regions
that have) elliptical shape, because they are based on the asymptotic normality of
appropriate estimators or pivots; (ii) when the normality of the biomarker does not
meet, application of Box-Cox transformations is considered, but limited to a single
transformation for both populations.

We propose new methods that provide approximate joint confidence regions for
the sensitivity and specificity of a test, corresponding to the optimal cutpoint fixed
by the Youden index criterion. They are based on empirical likelihood pivots, so
give rise to likelihood-type regions that have no predetermined constraints on the
shape and are automatically range respecting. The proposal covers binormal model
and binormal model after the use of Box-Cox transformations. Importantly, in the
second case, we show how to use two different transformations, for the healthy and
the diseased subjects.

Background Let x1, . . . ,xm be a random sample from X , i.e., the test results
from m non-diseased patients, and y1, . . . ,yn a random sample from Y , i.e., the test
results from n diseased patients. The true disease status of each patient is assumed to
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be ascertained by a GS test. Let F̂X denote the empirical distribution function based
on x1, . . . ,xm and F̂Y the empirical distribution function based on y1, . . . ,yn. Hence,
for a fixed value t, F̂X (t) = (1/m)∑m

i=1 I(xi ≤ t), where I(·) denotes the indicator
function. Recall that we consider a continuous diagnostic test and that, for a fixed
threshold τ , θ = θ(τ) = 1−FY (τ) and η = η(τ) = FX (τ). Adimari and Chiogna[5]
define the empirical likelihood [6] statistic

ℓ(θ ,η ,τ) = 2m
{

F̂X (τ) log
F̂X (τ)

η
+
[
1− F̂X (τ)

]
log

1− F̂X (τ)
1−η

}

+2n
{

F̂Y (τ) log
F̂Y (τ)
1−θ

+
[
1− F̂Y (τ)

]
log

1− F̂Y (τ)
θ

}
,

for θ ∈ (0,1), η ∈ (0,1), τ ∈T , where T =
[
max{x(1),y(1)},min{x(m),y(n)}

)
, and

x(i), i = 1, . . . ,m, and y( j), j = 1, . . . ,n, denote the order statistics from the samples.
When τ /∈ T , then ℓ(θ ,η ,τ) = +∞. The Authors prove that, under very weak con-
ditions, for each triplet τ0, θ0 = 1−FY (τ0) and η0 = FX (τ0) of true parameter val-
ues, when min{m,n}→+∞ and limm/n is finite and not zero, ℓ(θ0,η0,τ0)

d−→χ2
2 ,

where χ2
2 indicates the chi-squared distribution with 2 df. Then, such result can

be used to construct non-parametric confidence regions for a pair of parameters,
for example (θ0,η0), when the third remaining parameter is fixed: the set Rα =
{(θ ,η) : ℓ(θ ,η ,τ0)≤ cα} , where α ∈ (0,1) and cα is such that Pr(χ2

2 > cα) = α ,
is a confidence region with nominal coverage probability 1−α for the pair (sensitiv-
ity, specificity), at a fixed cutt-off τ0. Regions obtained by ℓ(θ ,η ,τ0) retain all good
features of empirical likelihood confidence regions, whose shape and orientation is
determined only by the data, and are range respecting.

2 The proposed method

Let τ+ be the true optimal cutpoint based on the Youden index approach, and let
θ+ and η+ be the corresponding values of sensitivity and specificity. If τ+ was
known, the pivot ℓ(θ+,η+,τ+) could be used directly to build approximate confi-
dence regions for (θ+,η+). In practice, τ+ is unknown and must be estimated from
the available data. Let τ̂+ be a suitable estimator for τ+. By resorting to the plug-in
method, we can consider the quantity ℓ(θ+,η+, τ̂+), where an estimate replaces an
unknown value. Unfortunately, such a replacement is not untroublesome. Indeed, the
standard χ2 approximation is no longer applicable in such a case. It is well known in
the literature that when estimated entities enter in an empirical likelihood pivot, this
has an asymptotic distribution which is a linear combination of independent χ2

1 ran-
dom variables (see, for example, Hjort et al.[9]), whose coefficients are (unknown)
eigenvalues of a suitable 2×2 matrix. Since accurate estimation of such coefficients
can be somewhat challenging, in the following we resort to the bootstrap calibration
and apply it to the distribution of ℓ∗(θ+,η+) = ℓ(θ+,η+, τ̂+). This allows us to
obtain estimates of the quantiles of the distribution of ℓ∗(θ+,η+), which we will
use to define the desired confidence regions.
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Binormal model In some situations it is reasonable to assume that the diagnos-
tic test has normal distribution, in both populations of healthy and diseased subjects.
Let X ∼ N(µx,σ2

x ) and Y ∼ N(µy,σ2
y ). To formalize the assumption that the values

of the test are positively associated with the disease status, we impose hereafter that
µy > µx. For the binormal model, the optimal threshold provided by the criterion
based on the Youden index can be obtained analytically and results to be

τ+ =
µx((σy/σx)2 −1)− (µy −µx)+(σy/σx)

√
(µy −µx)+((σy/σx)2 −1)σ2

x log((σy/σx)2)

(σy/σx)2 −1
.

When variances are equal, i.e. σ2
x = σ2

y , then τ+ = (µx +µy)/2. Then, by the plug-
in principle, a consistent estimator of τ+ can be obtained by substituting in the
above expressions the empirical counterparts X̄ = (1/m)∑m

i=1 Xi, Ȳ = (1/n)∑n
i=1 Yi,

Sx =
√
(1/(m−1))∑m

i=1(Xi − X̄)2 and Sy =
√
(1/(n−1))∑n

i=1(Yi − Ȳ )2 of µx, µy,
σx and σy, respectively. Observe that the resulting τ̂+ estimator is, essentially, the
maximum likelihood estimator of τ+.

Let Φ(·) denote the cumulative distribution function of the standard normal.
Given the observed data x1, . . . ,xm and y1, . . . ,yn, we compute the estimate τ̂+ and
the corresponding optimal estimated sensitivity θ̂+ = 1−Φ((τ̂+− ȳ)/Sy) and speci-
ficity η̂+ = Φ((τ̂+ − x̄)/Sx). To conveniently calibrate ℓ∗(θ+,η+) we resort to a
simple bootstrap procedure:
1. use parametric bootstrap to get B bootstrap samples {x}b and {y}b, for b =

1, . . . ,B, of sizes m and n, respectively;
2. add to each bootstrap sample the extremes (min and max) of the corresponding

original sample, so as to obtain “enlarged” bootstrap samples of size m+2 and
n+2, respectively;

3. compute (x̄b, ȳb, Sxb, Syb), τ̂+b and ℓ(θ̂+, η̂+, τ̂+b ) from the b-th pair of (enlarged)
bootstrap samples, where θ̂+ and η̂+ are the estimates obtained from the origi-
nal data and the empirical distributions are taken from bootstrap samples;

4. get the estimate ĉα as the sample quantile of order 1 − α from the values
ℓ(θ̂+, η̂+, τ̂+b ), b = 1, . . . ,B.

Then, the set Rα = {(θ+,η+) : ℓ∗(θ+,η+)≤ ĉα} , is a confidence region, with
nominal coverage probability 1−α , for the optimal pair (sensitivity, specificity),
corresponding to the Youden index criterion. In the above presented bootstrap pro-
cedure, at step 2, we “enlarged” bootstrap samples in order to reduce effects of
the so-called convex hull problem, i.e., to reduce the probability that ℓ(θ̂+, η̂+, τ̂+b )
may be not finite. Moreover, we process only (enlarged) bootstrap samples whose
averages respect the fixed order (µy > µx).

Normal models after Box-Cox transformations Suppose now that distribu-
tions of X and Y cannot reasonably be considered normal. Moreover, assume that
X > 0 and Y > 0, with probability 1. In such a situation, Box-Cox transformations
can help to achieve normality and are frequently used in ROC studies [3, 7]. How-
ever, to the best of our knowledge, papers available in the literature discuss, in this
regard, a single transformation for the test results, both for healthy and diseased
subjects. Although this approach has the advantage of leaving the ROC curve un-
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changed (due to its invariance property with respect to increasing monotonic trans-
formations), it can be inappropriate in cases where the two distributions of X and Y
are very different from each other. In the following, we show how a more general
approach involving two different transformations may be used.

Let

X (λ1) =

{
Xλ1−1

λ1
λ1 ̸= 0

log(X) λ1 = 0
Y (λ2) =

{
Y λ2−1

λ2
λ2 ̸= 0

log(Y ) λ2 = 0,

the transformed test results. The parameters defining the transformations are de-
noted by λ1 and λ2. Our proposal starts from the following observation. Since the
optimal threshold τ+ meets the relation

τ+ = argmax
τ

[FX (τ)−FY (τ)] = argmax
τ

[Pr(X ≤ τ)−Pr(Y ≤ τ)]

= argmax
τ

[
Pr

(
X (λ1) ≤ τ(λ1)

)
−Pr

(
Y (λ2) ≤ τ(λ2)

)]
,

where τ(λ1) and τ(λ2) are the transformed values of a same generic threshold τ ,
the double transformation leaves the optimal values of sensitivity and specificity
unchanged. Moreover, θ+ = 1−Pr

(
Y (λ2) ≤ τ+(λ2)

)
and η+ = Pr

(
X (λ1) ≤ τ+(λ1)

)
.

Clearly, in the transformed scales, such optimal values match with two different
threshold values.

ℓ(θ+,η+, τ̂+) = 2m

{
F̂(1)

X (τ̂+1 ) log
F̂(1)

X (τ̂+1 )

η+
+
[
1− F̂(1)

X (τ̂+1 )
]

log
1− F̂(1)

X (τ̂+1 )

1−η+

}

+ 2n

{
F̂(2)

Y (τ̂+2 ) log
F̂(2)

Y (τ̂+2 )

1−θ+
+
[
1− F̂(2)

Y (τ̂+2 )
]

log
1− F̂(2)

Y (τ̂+2 )

θ+

}
, (1)

which is infinite when τ̂+1 is out of the range of the sample from X (λ̂1), or τ̂+2 is out
of the range of the sample from Y (λ̂2). Observe that now the pivot in (1) depends on
three estimated nuisance parameters: λ̂1, λ̂2 and τ̂+.

In order to obtain confidence regions for the pair (θ+,η+), we propose the fol-
lowing algorithm. Given the observed data x1, . . . ,xm and y1, . . . ,yn, we firstly com-
pute the estimates λ̂1 and λ̂2. Then, using transformed data x′1, . . . ,x

′
m and y′1, . . . ,y

′
n,

say, we obtain sample means and standard deviations x̄′, ȳ′, S′x, S′y, and maximize,

with respect to τ , Φ
(

τ(λ̂1)−x̄′
S′x

)
−Φ

(
τ(λ̂2)−ȳ′

S′y

)
to get τ̂+. Next, we can get the es-

timates θ̂+ = 1−Φ
(

τ̂+2 −ȳ′

S′y

)
and η̂+ = Φ

(
τ̂+1 −x̄′

S′x

)
. Finally, we use bootstrap cali-

bration:

1. get B parametric bootstrap samples {x′}b and {y′}b, for b = 1, . . . ,B, of sizes m
and n, respectively;

2. add to each bootstrap sample the extremes (min and max) of the corresponding
original (transformed) sample, so as to obtain “enlarged” bootstrap samples;

3. from the b-th pair of (enlarged) bootstrap samples, compute (x̄′b, ȳ′b, S′xb, S′yb),
τ̂+b , τ̂+1b, τ̂+2b and ℓ(θ̂+, η̂+, τ̂+b ), using (1) where θ̂+ and η̂+ are the estimate
obtained from the original (transformed) data;
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4. get the estimate ĉα as the sample quantile of order 1 − α from the values
ℓ(θ̂+, η̂+, τ̂+b ), b = 1, . . . ,B.

The set Rα = {(θ+,η+) : ℓ∗(θ+,η+)≤ ĉα} , is the searched confidence region
with nominal coverage 1 − α . In the bootstrap procedure, we process only (en-
larged) bootstrap samples whose averages respect the order between the averages
of the original (transformed) samples. As an example, Table 1 gives some results
of a large simulation study conducted to evaluate the finite sample behaviour of our
confidence regions.

Table 1 Simulation results for Log Normal distributions: empirical coverages (over 10000 Monte
Carlo replications) for some values of m, n, θ+ and η+. B = 1000 and α = 0.1,0.05,0.01.

θ+ η+ m n 0.90 0.95 0.99

0.696 0.861 50 50 0.869 0.929 0.983
50 75 0.866 0.927 0.984
75 50 0.862 0.932 0.983
75 75 0.865 0.932 0.984

100 100 0.866 0.927 0.983

0.790 0.895 50 50 0.874 0.936 0.986
50 75 0.877 0.936 0.988
75 50 0.870 0.935 0.986
75 75 0.877 0.934 0.986

100 100 0.867 0.935 0.987

0.888 0.940 50 50 0.903 0.944 0.974
50 75 0.900 0.946 0.977
75 50 0.887 0.948 0.991
75 75 0.891 0.950 0.991

100 100 0.886 0.947 0.989
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