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We address a generalization of the concept of metapopulation capacity for trees and
networks acting as the template for ecological interactions. The original measure
had been derived from an insightful phenomenological model and is based on the
leading eigenvalue of a suitable landscape matrix. It yields a versatile predictor of
metapopulation persistence through a threshold value of the eigenvalue determined
by ecological features of the focal species. Here, we present an analytical solution to a
fundamental microscopic model that incorporates key ingredients of metapopulation
dynamics and explicitly distinguishes between individuals comprising the “settled
population” and “explorers” seeking colonization. Our approach accounts for general
network characteristics (in particular graph-driven directional dispersal which is known
to significantly constrain many ecological estimates) and yields a generalized version
of the original model, to which it reduces for particular cases. Through examples,
including real landscapes used as the template, we compare the predictions from our
approach with those of the standard model. Results suggest that in several cases of
practical interest, differences are significant. We also examine, with both models, how
changes in habitat fragmentation, including removal, addition, or alteration in size,
affect metapopulation persistence. The current approach demonstrates a high level
of flexibility, enabling the incorporation of diverse “microscopic” elements and their
impact on the resulting biodiversity landscape pattern.

ecological corridors | metapopulation capacity | habitat fragmentation | landscape structure |
microscopic models

Understanding spatial ecology and unraveling the intricate dynamics of ecological
interactions in relation to biodiversity and population dynamics has been a longstanding
pursuit in ecological research (1–6). Models of metapopulations (7, 8) proved central to
the description of extinction and colonization events, especially in connection with
population persistence and dynamics (9, 10). Habitat patches arise from, and are
decisively influenced by, the spatiotemporal changes of landscapes and play a crucial
role in the persistence and extinction of metapopulation (9, 11, 12).

One significant aspect of this pursuit has been the recognition of the vital role
of river networks acting as ecological corridors, facilitating the movement of species,
populations, and pathogens, as well as constraining the related ecological processes (11).
The strong influence of dendritic connectivity on biodiversity patterns has been observed
across diverse models and is supported by massive empirical and experimental evidence
(13–19). Such evidence underscores the crucial role of spatially constrained connectivity
in the river basin, with its universal self-organized critical scaling features (20), in shaping
dendritic metapopulations (13), fluvial community composition (14, 21), and species
persistence (22, 23). Complex life cycles of specific focal species have also been studied
in this context (24).

The application of network theory to ecological problems, particularly in the field of
spatial ecology, has emerged as a valuable approach (3, 25, 26), but it often overlooks
exact results derived in the context of river networks (27–29). Graph theory, which
allows the representation of space as a network comprising of interconnected habitats
and fragmented dispersal pathways (30), enables a shift in focus from spatially continuous
characteristics to the relationships between patches (31–33). Networks, sensu Southwood
(34), act as templates for ecological strategies. This network-based perspective has yielded
valuable insights into how networks of habitat patches can support metapopulations and
how connectivity affects a multitude of properties including persistence and invasibility,
in both experimental and field studies (12, 35–38). Such studies underscore the profound
influence of network structure on ecological dynamics (4, 39, 40).

In this context, the pioneering work of Hanski and Ovaskainen (HO) holds particular
significance (7, 8, 32, 41). It introduced a novel measure known as metapopulation
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capacity, derived from a phenomenological metapopulation
model, to assess survivability in fragmented landscapes (41). This
measure can be readily applied to both randomly fragmented
landscapes (42) and real-world networks of habitat fragments
where the areas and connectivities of the patches are known
(32, 43). Technically, metapopulation capacity is quantified as
the leading eigenvalue of a carefully defined landscape matrix
(41). By comparing the metapopulation capacity of a landscape
to a threshold value determined by species-specific properties,
predictions can be made regarding species persistence in that
landscape (41). This measure offers a convenient ranking system
for assessing the ability of different landscapes to support viable
metapopulations (32, 41, 44). Furthermore, similar results have
been independently derived outside of ecology and metacom-
munities, most notably in the context of epidemic spreading
(45, 46) where the influence of networks and stochasticity has
been extensively investigates (47–49).

Motivated by the need for a deeper understanding of metapop-
ulation dynamics, our study introduces a fundamental approach
that aims at capturing the essential ingredients of spatial ecology
in arbitrarily connected patches. Our framework explicitly
distinguishes between two groups of individuals within the
metapopulation: the “settled population” comprising individuals
that remain in a specific habitat patch, and the “explorers”
who venture out to colonize new regions. By incorporating this
distinction, we construct a stochastic individual-based model
that accounts for the specific landscape characteristics and
fundamental processes driving metapopulation dynamics. We
propose a general exact solution to our model, which allows us to
derive an explicit metapopulation kernel that naturally reflects
both the microscopic dynamical features and the underlying
dispersal network. We then study how this mechanism interacts
with the ecological template on various structures, including real
topographic landscapes, whose features are ultimately encoded in
the global metapopulation dynamics.

Results
Microscopic Dynamics. Fig. 1 illustrates the core ideas of our
microscopic model. We describe the dynamics of a focal species

in a dispersal network consisting of N different patches, each
of them with a finite number of colonizable sites. We make the
distinction between individuals who remain in a given patch,
the “settled population”, and those who instead move between
patches and attempt to colonize them, the “explorers.”

Individuals of the settled population die at a rate ei, and with
a rate Cij give birth to explorers in a neighboring patch j. Once
an explorer is born, it diffuses between patches connected by the
dispersal network with a rate Dij = Di→j. An explorer then may
attempt to colonize one of the sites of its current patch with a rate
�. If the site is empty, it settles and stops moving. If it chooses
an already occupied site, it dies in the process. Remarkably, the
explorer dynamics corresponds to that of diffusion with random
stopping times, which has been long argued to be at the core of the
HO metapopulation model (32). Further, an intrinsic mortality
rate for explorers may be immediately added to the model, but
without qualitatively changing our results.

We write the diffusion rate asDij = DAij, whereD is a baseline
rate and Aij are the elements of the adjacency matrix, Â,
describing the dispersal network. Similarly, given that ex-
plorers are created locally in neighboring patches, we set
Cij = ci h(D, �)Aij, where ci is the colonization rate and the
function h encodes the feasibility of exploration. Since Cij and
ci are both rates, h must be dimensionless. Thus, we must
have that h = h(D/�). We note that f = D/� is a species
parameter that characterizes how many patches explorers visit
before attempting to settle and thus quantifies the exploration
efficiency. IfD� �, explorers will remain close to the originating
patch. In the other limit, D� �, they will explore large parts of
the dispersal network before settling. Let us note that, in all the
processes above, Â does not need to be symmetric nor binary—
that is, the dispersal network may be directed and weighted.
Therefore, our microscopic model also admits the possibility
of biased diffusion and directed dispersal, which is particularly
relevant for nonstandard topographies such as river networks
and insurmountable barriers (11). Further, these choices ensure
that Dij = 0 if the two patches are not connected, as well as
Dii = 0, and Cii = 0. Hence, the explorers’ dynamics is local—
they cannot move directly among distant patches, but only along
the dispersal network.

Fig. 1. Sketch of the microscopic derivation of the metapopulation model. We explicitly consider a dispersal network and describe, in each of its patches with a
finite number of inhabitable sites, the local population of a given species. These settled individuals may give birth to explorers, whose role is to diffuse along the
dispersal network. At any time, an explorer can attempt colonization by settling on a new patch. By assuming that only the settled population can be observed,
we derive an effective metapopulation model with an all-to-all dispersal kernel that explicitly includes the effects of the underlying dispersal topology.
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Effective Metapopulation Model. From the microscopic model,
we derive the equations for the evolution of the density of the
settled population in patch i (�i) and the number of explorers
per empty site (xi) (Materials and Methods). Crucially, these
equations give rise to a generalized version of the HO model
in the limit in which the dynamics of the explorers is much faster
than the dynamics of the settled population. This quasistationary
approximation amounts to setting ẋi = 0 (Materials andMethods)
and leads to the effective equation for �i

�̇i = −ei�i + (1− �i)
N∑
j=1

cj Kji �j, [1]

where ei is the extinction rate at patch i and Kji are the elements
of a matrix kernel K̂ that describes the effective dispersal strength
from patch j to patch i. Eq. 1 is indeed the HO metapopulation
model, yet with a major difference: the kernel Kji is not given a
priori but rather determined by the microscopic dynamics and
the morphology of the habitat. Moreover, as we will show below,
the kernel not only depends on the distance between patches i
and j but also incorporates other aspects of the dispersal network.
Importantly, even if a patch i is not a direct neighbor of patch j, it
will still be influenced by the latter through the effective coupling
described by Kji, which in general is nonzero. Thus, in this sense,
the global couplings in the metapopulation model emerge from
purely local processes.

We derive an exact expression for K̂ , finding that the kernel
between two patches depends manifestly on the topological
features of the dispersal network even if it describes an effective
fully connected model. We obtain

Kji = h(f )
N∑
l=1

Ajl
N∑
k=1

Vik(V 91)kl
1 + f !k

, [2]

where !k the k-th eigenvalue of the transpose out-degree
Laplacian of the dispersal network, and Vij = v(j)i with v(k)
the corresponding right eigenvector (SI Appendix). Eq. 2 tells us
that the kernel depends on the spectral properties of the dispersal
network (50, 51). Furthermore, we can explicitly show that the
spectral part of Kji can be rewritten as a sum over all possible
paths between patches i and j. The weight associated with each
path j→ i depends on f and on the path length, so shorter paths
are more likely and longer paths are not, which remarkably leads
to a finite effective kernel despite summing over all possible paths
(Materials and Methods).

The results of Hanski and Ovaskainen (7, 8, 32, 41) can be
directly applied to Eq. 1. In particular, we may assume ci = cAi
and ei = e/Ai, where Ai is the area of patch i. Note that in
dendritic metapopulations, the area of the patch may be derived
from the total contributing area at the site (11, 52), which holds
universal distributions for fluvial networks in runoff-producing
areas (20). The survival of a species is determined by the
maximum eigenvalue of the landscape matrix Mij = KijAiAj,
i.e., the metapopulation capacity �M—if �M > e/c, the species
survives; otherwise, it goes extinct. In our case, �M will depend
on the form of the function h(f ), which models the feasibility
of exploration, i.e., the explorability of the focal species. We take
a Monod function h(f ) = �/(1 + 1/f ), where the saturating
value � represents the maximal explorability at large efficiency f
(Materials and Methods).

Although we cannot find a general analytical expression for
�M , we can compute it in certain limits in undirected dispersal

networks. Not surprisingly, f → 0 gives �M → 0, implying
that in the absence of exploration, survival is not possible.
On the other hand, in the opposite limit of large exploration
efficiency f →∞, the metapopulation capacity is proportional
to the average out-degree of the network (Materials andMethods).
This clearly shows that the topological features of the dispersal
network affect a species’ persistence. In particular, we expect
more densely connected networks to have larger metapopulation
capacity, whereas species in highly fragmented landscapes are
more prone to extinction (SI Appendix). This result had been
pinpointed earlier for patchy landscapes (10, 43, 44) and for
dendritic metapopulations (53, 54) using the original kernel, and
it is reinforced by the present results employing a more general
framework.

Effects of Network Topology. In Fig. 2, we study how the
topological features of the dispersal network affect both species
survival and dynamics. We first focus on the simple case of
a ring network, which represents a one-dimensional model
with periodic boundary conditions. We find that the kernel
elements Kij decay exponentially with the network distance
dij, in striking similarity with the HO effective kernel where
this decay was phenomenologically assumed (Fig. 2A). Notably,
the characteristic decay length increases with f , leading to a
stronger effective coupling between patches at large distances.
This suggests a direct relation between the exploration efficiency f
and the average dispersal distance, �, appearing in the HO model
(Materials and Methods and SI Appendix, Fig. S2).

Crucially, we are now able to study how changes in the
underlying dispersal network topology are reflected in the
metapopulation model. In particular, small-world networks (55)
introduce long-range connections between patches that may
be otherwise very far apart. In Fig. 2B, we show that such
connections have a deep impact on the kernel elements Kij,
which are not solely a function of the network distance dij, i.e.,
of the minimum number of edges that connect the two patches.
Rather, at fixed dij, we have a distribution of values of Kij. This
effect becomes especially relevant at higher f , and it is a direct
consequence of the fact that Kij encodes contributions from all
possible paths between patch j and patch i. Thus, it will depend
on the entire network structure rather than on distance alone.
Although on average the kernel

〈
Kij
〉

still displays an exponential
behavior with the network distance, heterogeneity in the network
structure induces heterogeneity in the elements of the kernel
matrix at fixed dij. In other words, for a given pair of patches i and
j, there are two contributions to the kernel Kji: an approximately
exponential decay like in the original HO model and an entropic
contribution associated with the multiplicity of paths connecting
i and j. Such a contribution emerges naturally and was not present
in previous approaches.

In the case of Barabasi–Albert dispersal networks (56), few
patches behave as hubs, connecting to a large number of other
nodes and resulting in a scale-free degree distribution. This
highly heterogeneous structure translates into very diverse kernel
elements at equal distances, as we show in Fig. 2C. This is not
surprising, since being closer or farther from a hub introduces
significant differences in the number of steps an explorer needs
to take before reaching farther parts of the network.

Furthermore, topological features also affect the survival of
a species. In particular, the metapopulation capacity increases
with the heterogeneity of the network (Fig. 2D). This effect
is particularly significant at intermediate values of exploration
efficiency f , where the fine structure of the dispersal network is
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Fig. 2. Effects of network topology on the effective dispersal kernel. (A) Behavior of the kernel elements Kij as a function of the network distance dij (in
log-linear scale) in ring networks (sketched on the left). The kernel decays exponentially with dij regardless of the patches’ identities, and larger values of f imply
a larger characteristic length of such decay. (B and C) Behavior in small-world and Barabasi–Albert networks. At the same distance dij , there are, in general,
multiple values of Kij , which depend on all possible paths between patch i and j. Scatter points represent their average 〈Kij 〉, and the shaded area is the area
between their maximum and minimum value. (D and E) The metapopulation capacity as a function of f (at fixed � = 10) and the average stationary population
〈�st
〉 as a function of e/c (at f = 0.5) show that, in general, survival is favored by more heterogeneous topologies. (F–H) Dynamical evolution of the population

density in different patches �i (shaded lines) and its average (solid line) at e/c = 6. The stationary population shows localization in heterogeneous topologies,
e.g., with a larger population in the hubs of Barabasi–Albert networks.

most relevant. Conversely, in the limit f → ∞, explorers can
reach all patches before attempting colonization (SI Appendix).
The relevance of dispersal network structure at intermediate
values of f consequently affects the average stationary population
as well (Fig. 2E). Such differences across diverse dispersal
topologies result not only in distinct extinction thresholds but
also in different approaches to extinction. For instance, in small-
world networks, a species’ decay to extinction is slower than in
a ring, which could have a significant impact when demographic
stochasticity is considered.

Finally, we observe marked differences in both the total
population and the population in each patch. In Fig. 2 F–
H, we show that settlement is more favored in nodes with a
higher degree, and hubs in particular. Overall, heterogeneity and
long-range connections drive faster colonization dynamics and
strongly boost the total population. These results imply that
the same species may colonize and survive in, for example, a
small-world dispersal network, but go extinct in a ring topology
at the same value of extinction threshold, e/c. Such beneficial
effects on survivability are not unexpected. However, our results
arise in a global metapopulation model derived from purely
local microscopic dynamics, demonstrating its fundamental
improvements over previous approaches (see SI Appendix for a
comparison with the HO model).

Effects of Modularity and Fragmentation. A crucial aspect of
dispersal networks that has important ecological implications is
the presence of multiple weakly interconnected communities,
with each community consisting of strongly connected patches.
This modular structure (Fig. 3A) reflects that of ecological
corridors, with few corridors between ecosystems for species to
move across. Understanding dynamics in such structures is a key
ingredient in habitat conservation efforts (58).

In Fig. 3B, we show that a modular dispersal network is
associated with a block-like metapopulation kernel, where
patches belonging to the same community are more strongly
coupled. Notably, the metapopulation capacity increases with
the probability of connection between different communities
(Fig. 3C ). Thus, more connections between ecosystems allow
for easier dispersal, thereby increasing survivability. It is a
natural consequence of the entropic effect alluded to above,
which is associated with the multiplicity of corridors connecting
ecosystems. Hence, sparsity is detrimental to a species, whereas
more dense networks are less prone to extinction (SI Appendix).

The modular structure of the network is also reflected in the
dynamics. This point represents a crucial difference between
our microscopic model and the HO model (see Material and
Methods for details on the comparison). Fig. 3 D and E show
that the dynamics in the microscopic model immediately reflects
the different communities, with patches of a given community
being colonized together. On the contrary, this is completely
absent in the dynamical evolution predicted by the HO model,
since only the patch distances are considered. As a consequence,
pair of patches at the same distance are equivalent in the HO
model regardless of the communities they belong to, whereas such
topological information is naturally encoded in our approach.

This fundamental difference is especially relevant to under-
stand the resilience of the metapopulation model in events of
landscape fragmentation (59). In particular, the presence of
ecological corridors favors a larger total population, both in HO
and our microscopic model (Fig. 3 F and G). However, since the
HO effective kernel does not distinguish between communities,
the total population in the absence of intercommunity connec-
tions drastically decreases. On the contrary, in our microscopic
model, the settled population in each community does not
solely depend on the presence of corridors among them. We
can also study in detail the effect of landscape fragmentation
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A

B
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Fig. 3. Effects of modularity and fragmentation on the metapopulation model. (A) A modular network composed of six realizations of Erdös–Rényi networks
(50, 57) with the same wiring probability Pintra = 0.05, i.e., with the same average intracommunity degree. Patches belonging to different communities are
connected with a low probability Pconnection = 0.2. (B) The matrix kernel displays a block structure, with larger elements between patches belonging to the
same community. (C) The metapopulation capacity increases with the connection probability between communities, suggesting that persistence is higher in
more dense networks. (D and E) Evolution of the settled population �i in each patch and comparison with the HO model. Each color represents patches in
different communities. In our model, a clear separation between different communities is maintained, whereas the HO kernel fails to distinguish among them.
(F and G) Comparison of the total population in the modular network (dashed black line) and the isolated network (solid black line), where all links across
communities have been removed, in our and in the HO model. Notably, the HO model overestimates the effects of fragmentation, predicting a much lower
total population. (H) Effect of fragmentation on the metapopulation capacity on a modular network with 11 communities. As we randomly isolate communities
from the network, the metapopulation capacity decreases, showing that a fragmented landscape hinders survival. The gray lines represent a single realization
of the stochastic disconnection process, showing significant drops when the network fragments.

by randomly disconnecting communities from the rest of the
network. Fig. 3H shows the decreasing metapopulation capacity
of the whole network with increasing fragmentation. Hence,
isolation is detrimental to survivability, and the metapopulation
capacity eventually saturates to that of the weakest isolated
community. Remarkably, this shows that although the overall
change to the total population may not appear significant (Fig.
3F ), fragmentation—and sparsity in general—drastically reduces
a species’ persistence.

Effects of Landscape Topography. Topography plays a vital role
in shaping the ecological features of real landscapes (60), from
hindering the movement of species in mountain regions to
impacting the behavior of fishes inhabiting lakes located far
apart in terms of water flow. The presence or absence of such
topographic features could significantly alter the effective distance
between two areas. We now exploit our microscopic approach to
study how elevation gradients affect metapopulation models.

HydroSHEDS Digital Elevation Models (DEM) (61) provide
elevation data at 15 arc-second resolution obtained from the
NASA Shuttle Radar Topography Mission. We select two
mountainous areas of interest (Fig. 4 A and B): a part of Ene
River in Peru, in the Andes region, and the Kauriala River in
Nepal, in the Himalayas. These areas show geographic features
that could potentially have ecological effects—the Ene region
displays a fractal-like flow channel structure, and the Kauriala
region includes a bottleneck-like passage between two zones of
high elevation. In each region, we construct a grid of points at
the latitudes and longitudes where elevation data exist. From this
grid, we construct the exponential HO kernel using an elevation-
dependent distance matrix with a characteristic migration dis-
tance � (Materials and Methods). Our model, however, allows for
biased exploration. Thus, in our case, we consider exploration
along the elevation gradient, with a downhill diffusion rate much
larger than the uphill one (Materials and Methods).

Fig. 4 C and D show the stationary population density at each
grid point for increasing dispersal parameter—� and f —for the
chosen regions (see SI Appendix for the dynamical evolution). At
low dispersal parameters, the resulting metapopulation capacity is
low, and in both models, the only surviving population is in low-
lying areas. With increasing dispersal, it becomes easier and easier
to move against the elevation difference. Hence, perhaps unsur-
prisingly, species with different dispersal parameters experience
the topography differently. While both models predict similar
qualitative behaviors, there are stark differences in the stationary
populations. In the HO model, species immediately occupy low-
lying areas at significantly high population densities with respect
to higher-elevation zones. Conversely, in the microscopic model,
the densities increase smoothly along the elevation gradient.

This difference is a direct consequence of the fact that, in
the HO kernel, the dispersal between two points at different
elevations is the same regardless of whether the species is
trying to colonize uphill or downhill. This naturally leads to
a preference for connected regions at similar elevation levels
but does not take into account the fine topographic structure
that arises from changes in the elevation gradients. Hence,
only the overall topography is qualitatively reflected in the
stationary population densities, which is strongly biased toward
colonizing uniformly regions at the same elevation. This is in
clear contrast with our model, where downhill exploration is
intrinsically favored and thus allows for elevation gradients to be
encoded into the dynamics through the entropic contribution
due to the multiplicity of paths between two points. As a result,
species are able to settle along the fractal-like flow channel
structure in the Ene region and are forced to move across
the bottleneck of the Kauriala region. The reflection of the
topographic structure is not only limited to the DEM, as it does
follow the dendritic river network constructed from elevation
data. Therefore, the influence of topography is clearly reflected
in the species dynamics.
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A B
DC

Fig. 4. Stationary populations in Digital Elevation Models (DEMs). In the microscopic model, we consider a directed dispersal network, where moving against
the altitude gradient is less favored. The HO kernel, instead, is intrinsically unbiased and only takes into account the absolute altitude differences. (A and B)
Topography and DEM of a region of the Ene River in Peru, South America, and of the Kauriala River in Nepal. (C) Comparison between the stationary population
at different values of f and � for the first DEM. The microscopic model is able to take into account the altitude gradient, and thus better reflects the features of
landscape topography. Remarkably, the stationary population consistently reflects the fractal-like structure of the underlying river network, even at different
values of f . Conversely, the HO model is only able to capture rough topographic features, and the population density is extremely high in low-laying areas even
for small dispersal parameters. (D) Same, but the Kauriala River. Notice that the bottleneck created by mountains is captured by the stationary population.
Importantly, while we can keep the same value of f in our model, the value of � needs to be tuned to each DEM for the HO model to give meaningful predictions.

In principle, this allows for a deeper understanding of how
changes to the landscape topography directly affect metapopu-
lation models, e.g., changes in river flow due to natural or an-
thropogenic causes, landslides changing the elevation of a region,
urbanization creating more flat areas, etc. When topography is
involved, the basic assumption of unbiased colonization would
become invalid, further highlighting the need for a consistent
microscopic description.

Discussion. In this work, we have derived a general metapopula-
tion model that incorporates key features of dispersal networks
and a detailed microscopic dynamics of settlers and explorers. We
have found that the metapopulation capacity, which determines
whether a species survives or goes extinct, is manifestly dependent
on the template for ecological interactions. In particular, dense
and heterogeneous networks with hubs and long-range connec-
tions favor survival, whereas sparse and fragmented templates are
detrimental. Crucially, our approach encompasses asymmetric
dispersal, allowing for the study of real landscapes and biased
colonization. With respect to the original metapopulation model
proposed by Hanski and Ovaskainen (41), our model explicitly
displays settlement along dendritic corridors and better captures
the topographic features of the underlying landscape.

In future works, it will be critical to explore the interplay
between the topology of complex dispersal networks and both
dynamical and stationary metapopulation patterns. We expect
this to be particularly relevant in the presence of regions that are
suboptimal for survival due to natural or anthropogenic causes.
Most notably, the reflection of the dendritic connectivity of river
networks in DEMs ultimately stems from downhill colonization
being favored, thereby highlighting how our model presents
a tractable approach to characterize how metapopulations are
affected by physical constraints, trade-offs and universality in
river and optimal channel networks (62, 63). It will also be
of particular interest to understand whether and how the exact
microscopic kernel can be well approximated by some suitable

phenomenological kernel that depends solely on the distance, as
in the HO model (42).

Additionally, our current study does not factor in the cost asso-
ciated with the explorers’ birth. We believe that this aspect may be
essential to understanding the trade-offs between exploration and
colonization. Expanding the model further could involve incor-
porating informed exploration, where explorers take into account
which parts of the network are more favorable to settlement. This
could be achieved by including either information about patches
in the colonization step or by considering previously taken
diffusion paths. Such scenarios will lead to vastly different results,
suitable to model diverse ecological processes. Incorporating
different dispersal strategies in the microscopic processes would
also allow us to study competition between different strains or
species as well, potentially including evolutionary effects (64).
In all these cases, stochastic effects may be readily included by
considering higher orders of the Kramers–Moyal expansion of
the master equation governing our model, or a van Kampen
system-size expansion (65). It would be of particular interest to
compare these results against the recent open-systems approach
to ecology, where the environment plays a significant role in
determining the type of noise in the dynamics (66, 67). The
timescales at play—e.g., the one of the dispersal mechanism—
would then play a central role in shaping the modeling approach.
Finally, we note that our approach has strong parallels with
spatially explicit epidemiological models (45–48, 68, 69). Its
notable advantage is that asymmetric spreading emerges naturally
from the microscopic dynamics, a desirable feature in models of
several diseases, e.g., sexually transmitted diseases or pathogens
whose spread is influenced by mobility patterns (49). The very
concept of metapopulation capacity (41) finds a direct parallel in
the maximum eigenvalue of suitable Jacobians pinpointing the
stability of disease-free equilibrium in spatially explicit models of
disease spread, see for example, ref. 11.

Overall, deriving the metapopulation dynamics from explicit
microscopic reactions allows for a deeper and quantitative
investigation of the relevant processes underlying colonization
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and spreading, a facet that was not straightforward to achieve
in previous models. Further, current metapopulation models
typically require the choice of a specific colonization kernel,
tailored to suit the problem at hand and often distance-dependent
(70). While such choices may yield good results, they inherently
remain phenomenological in nature and miss the entropic
effect associated with the multiplicity of paths connecting
different regions. In contrast, here we derive a spectrum of
interesting and ecologically relevant phenomena by explicitly
modeling the microscopic dynamics of dispersal. This enables
the incorporation of more complex dispersal mechanisms and
unravels the direct relation between the underlying ecological
template and the emergence of effective metapopulation kernels.
While the simplicity of our approach yields itself to a range
of theoretical studies, the diverse range of predictions presents
excellent grounds to test against decades of observational studies
in this field.

Materials and Methods
Microscopic equations. We denote a settled individual in patch i with Si and an
explorer with Xi. The microscopic model is defined by the microscopic reactions

Si
ei
−→ �i, Si

Cij
−→ Si + Xj

Xi
Dij
−→ Xj, Xi +�i

�/M
−−→ Si, Xi + Si

�/M
−−→ Si

[3]

where the first line specifies the dynamics for an individual of the settled
population of the i-th patch, Si, and the second line that of explorer individuals,
Xi. We assume that, at the microscopic level, colonization is a local process, so
that Cij ∝ Aij, and that each patch has a finite number of colonizable sites M. We
are interested in the number of individual of the settled population, which we
denote by [Si], and of explorers, [Xi], whose dynamics is described by a master
equation for the probability p( E[S], E[X], t), where E[S] = ([S1], . . . , [SN]) and
E[X] = ([X1], . . . , [XN]) (65). In particular, we are interested in the averages

〈
Si
〉
(t) =

∞∑
[Si]=0

[Si] p([Si], t),
〈
Xi
〉
(t) =

+∞∑
[Xi]=0

[Xi] p([Xi], t).

We define�i =
〈
Si
〉
/M and xi =

〈
Xi
〉
/M, i.e., the density of settled population

and explorers, respectively. The leading order of the Kramers–Moyal expansion of
the master equation (SI Appendix) leads to the following deterministic evolution
equations of � and x:

�̇i = −ei�i + �(1− �i)xi

ẋi = −

�xi −
N∑

j=1

Cji�j

+

N∑
j=1

(
Djixj − Dijxi

)
,

[4]

where Dij = DAij, Cij = ci h(D/�)Aij and Aij are the elements of the adjacency
matrix describing the dispersal network.

Quasistationary Approximation. We assume that the dynamics of the
explorers is faster thanthatof thesettledpopulation.Thisseparationof timescales
allows us to perform a quasistationary approximation, which amounts to set
ẋ = 0. This is equivalent to setting the value of the explorers’ densities equal
to their instantaneous stationary state, as determined by the current values of
the settled population’s densities. Crucially, this approximation is exact in the
stationary limit—i.e., the effective dynamics obtained from the quasistationary
approximation has the same stationary state as the complete one for the entire
ecosystem (explorers and settled population).

To get the effective dynamics for �, we rewrite the previous equation for the
explorers at quasistationary as

N∑
j=1

Cji�j(t) = �
N∑

j=1

[
�ij + fLji

]
xj(t), [5]

from which we can get the density of explorers xi as a function of� (SI Appendix).
Notice that this expression is still local in the dispersal network, that is, the two
sums in Eq. 5 receive nonzero contributions if and only if j is connected to i. The
matrix kernel appearing in Eq. 1 then is given by

K̂T = h (f)
(
I + f L̂T

)91
ÂT , [6]

where f = D/�, I is the identity matrix, and L̂ = Â − q̂ is the out-degree
Laplacian matrix of the dispersal network, with qij = �ij

∑
k Aik .

Effective Kernels as Sums Over Paths. The effective kernel derived from the
dispersal network can be written in terms of F̂ = (I + f L̂T ), which represents
the dispersal part of the kernel. Its inverse can be computed exactly in a range of
different ways (SI Appendix). One possibility, which generalizes to more complex
models, is to employ the Woodbury matrix identity (71). It allows us to formally
write the kernel as

K̂T := h(f)F̂91ÂT = h(f)
∞∑

n=0

(−1)nf n(L̂T )nÂT , [7]

provided that the inverse of F̂ exists. We can interpret the sum in Eq. 7 in terms
of its analytic continuation (SI Appendix), leading to the same result as in Eq. 2.
Remarkably, this infinite sum has a deep physical meaning. We can grasp its
significance if we consider regular networks where every patch is connected to
exactly q other patches—e.g., a two-dimensional grid. In this case, we have

(F̂91)ij =

∞∑
n=0

f n

(1 + fq)n+1
(Ân)ji =

∞∑
n=0

ppath(n)Npath
ij (n), [8]

where ppath(n) is the probability associated to a path of length n, and

Npath
ji (n) = (Ân)ji is the number of paths of length n connecting j and i. Hence,

the effective coupling between two patches quantified by the metapopulation
kernel represents the total contribution of all possible paths taken by the
unobserved explorers. For general networks, a similar argument holds since
the n-th power of the Laplacian depends on the powers of the adjacency matrix
as well.

Metapopulation Capacity. We write the birth rate of explorers from patch i
to patch j as Cij = cih(f)Aij, where h(f) encodes the feasibility of exploration.
Indeed, explorers’ birth occurs in neighboring patches and thus implicitly
includes a step of diffusion. Hence, in the limit f → 0, exploration should
not possible and h must vanish. Similarly, as f → ∞, we require that h
converges to a finite parameter � which corresponds to the maximal dispersal
capacity of the species. A simple parametric form for h is a Monod function of
the form

h(f) =
�

1 + 1/f
, [9]

although our results are qualitatively unchanged provided that h satisfies the
limiting behaviors outlined above. As stated in the main text, � thus quantifies
the feasibility of exploration at large f . If � is small, exploration is hindered even
when f →∞.

If we take ei = c/A and ci = cA for all i = 1, . . . , N, we find that the
metapopulation capacity in the f →∞ limit converges to

�M
f→∞
−−−→ A2 �

N

N∑
i=1

qi, [10]

where qi =
∑

j Aij is the weighted out-degree of patch i (SI Appendix). Eq. 10
shows that the metapopulation capacity depends manifestly on the topology of
the dispersal network.
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Comparison with Hanski’s Model. Hanski’s effective metapopulation kernel
appearing in the HO model (41) is defined as

KH
ij = exp

[
−

dij

�

]
, [11]

where � is the average migration distance of the species, dij is the distance

between patch i and j, and KH
ii = 0. In order to compare our model with the HO

one, thus, we need to set an appropriate value for �. We do so by taking

� = −
〈d̂〉〈

log K̂
〉 , [12]

where

〈d̂〉 =
1

N(N− 1)

N∑
i=1

∑
j 6=i

dij,

is the average distance and

〈K̂〉 =
1

N(N− 1)

N∑
i=1

∑
j 6=i

Kij,

is the average matrix kernel in our model. The resulting� is a nonlinear function
of both f and � and is exact in the case where K̂ decays exponentially with the
distance, e.g., in ring networks (SI Appendix).

Biased Exploration in DEMs. DEMs assign to each pixel i at a given latitude
and longitude an elevation zi. We consider that each pixel is directly connected
to its nearest and next-nearest neighbors, and the corresponding diffusion
coefficient is

Dij = Dg(zj − zi), [13]

where g is a generic function of the elevation difference. It is reasonable to
expect that downhill diffusion should be favored, and uphill diffusion should be
suppressed. To this end, we take

g(zj − zi; �) = a + b exp
[
−�(zi − zj)

]
,

where the parameters a and b are set in such a way that g ∈ [0, 1], and � sets
the stiffness of the exponential suppression of uphill diffusion. With this choice,
the dispersal network is both weighted and directed. Other functional forms for
g with different properties may lead to different behaviors of the model, and
one can assume that g itself may be a species-dependent strategy.

In the HO model, we consider that dij is the three-dimensional Euclidean
distance between pixels, taking into account their elevation. For simplicity and
to take into account the topographic features of the DEM, we assume that the
grid of pixels is equally spaced with a spacing Δx = Δy equal to the median
elevation. In this way, the planar distance in the grid space and the elevation
distance along the vertical direction are of the same order of magnitude, and
the resulting distance matrix can be used to build the HO kernel.

Data, Materials, and Software Availability. Code, scripts and DEM data have
been deposited in Microscopic Metapopulation Model (https://doi.org/10.5281/
zenodo.8143931) (72).
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