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Abstract

After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early
stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-
imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the
international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic
proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on
epidemic models that integrate the wide range of features characterizing human mobility and the many options available
to public health organizations for responding to a pandemic. Here we present a comprehensive computational and
theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly
integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is
validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1
pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their
position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility
restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value
and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing
the invasion dynamics of the epidemics at the metapopulation level.
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Introduction

The human mobility flows that determine the spreading of
infectious diseases and the control measures based on limiting or
constraining human mobility are considered in the contingency
planning of several countries [1]. The target of these control
measures is the decrease of travel to/from the areas affected by the
epidemic outbreak and the corresponding decline of infected
individuals reaching countries not yet affected by the epidemic.
While the effects of slowing down the international propagation of
an epidemic can be statistically evaluated based on available data
and bootstrap techniques [2], the impossibility of disentangling the
role played by travel from other contributing factors in the spread
of an epidemic [3] has generated discussion about the appropriate
strategy for mobility restrictions. In this context the only way to
systematically gauge uncertainty and the effectiveness of compet-
ing control strategies is through data-driven modeling efforts [4–

9]. Unfortunately, most previous works have focused on synthetic
pandemic influenza scenarios and only a few empirical examples
are available to validate models and evaluate the effectiveness of
travel restrictions in general [10–12].

In the recent 2009 H1N1 pandemic (H1N1pdm), control
measures included travel bans to/from Mexico, the screening of
travelers on entry into airports, and travel advisories against non-
essential travel to Mexico [1]. The aggregation of data on the
H1N1pdm therefore represents an unprecedented opportunity to
calibrate and validate a modeling approach to the global spread of
epidemics that integrates detailed information on human mobility
and travel. In the present work, we use the Global Epidemic and
Mobility model (GLEaM) [13] that, fully integrating high resolution
demographic and mobility data, allows the calibration to the
H1N1pdm data of the invasion during the early stage of the
epidemic and the exploration of hypothetical scenarios in which
reductions in the international travel to/from Mexico with different
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timing and magnitude are considered. Interventions acting on
mobility are found to be scarcely efficient in delaying the invasion
process of the pandemic. This computational evidence can be
explained within a simplified theoretical framework in terms of a
phase transition between invasion and non-invasion dynamics of the
metapopulation system, where the critical value is crucially affected
by the topological fluctuations of the mobility network.

Methods

Model description
The Global Epidemic and Mobility model is based on a

metapopulation scheme [4,8,9,14–20] in which the world is
divided into geographical regions defining a subpopulation
network where connections among subpopulations represent the
individual fluxes due to the transportation and mobility infra-
structure. GLEaM is composed of three different layers [13]: (i) the
population layer that integrates census areas for a total of 3,362
subpopulations around major transportation hubs in 220 countries
of the world with a resolution up to Ju6Ju [21]; (ii) the human
mobility layer that integrates both commuting flows collected from
various sources in more than 30 countries and airline traffic flows
provided by the International Air Transport Association (IATA)
database [22]; and (iii) the disease dynamics layer that implements
a refined SEIR-like model [23] taking into account the specific
etiology of the H1N1pdm [18].

The model simulates short-range mobility between subpopula-
tions with a time scale separation approach that defines the
effective force of infections in connected subpopulations
[13,18,24,25]. The airline mobility from one subpopulation to
another is modeled by an individual based stochastic procedure in
which the number of passengers of each compartment traveling
from a subpopulation j to a subpopulation l is an integer random
variable defined by the actual data from the airline transportation
database [8]. The infection dynamics takes place within each
subpopulation. We adopt a SEIR-like model [23] in which we
consider separate compartments for symptomatic traveling and
not traveling, as well as asymptomatic individuals in each
subpopulation. More in detail, a susceptible individual in contact
with a symptomatic or asymptomatic infectious person contracts
the infection at rate b or rbb [26,27], respectively, and enters the
latent compartment where he is infected but not yet infectious.
After an average latency period e21, each latent individual
becomes infectious, entering the symptomatic compartments with
probability 12pa or becoming asymptomatic with probability pa

[26,27]. The symptomatic cases are further divided between those
who are allowed to travel (with probability pt) and those who
would stop traveling when ill (with probability 12pt) [26].
Infectious individuals recover permanently with rate m. A
schematic representation of the compartmental structure is
reported in Figure 1. All transitions defining infection dynamics
and mobility processes are modeled through binomial and
multinomial stochastic variables to mimic the discrete and
stochastic nature of the epidemic spreading [8,13] that is
extremely relevant especially at the start of the outbreak (see the
SI for details). The time resolution of both mobility and infection
dynamics is of one day. Seasonal effects are taken into account by
applying a sinusoidal rescaling of the reproductive number
according to the time of the year and the hemisphere of location
of the subpopulation [4]. In particular, the scaling factor ranges
from amin during the summer season to amax during the winter
season. Here we consider amax = 1.1, whereas amin assumes the
best estimate value obtained from the calibration of the model to
the H1N1pdm invasion data (see next Subsection) [18].

Model calibration
The model is calibrated on the H1N1pdm data. The initial

conditions of the epidemic are set near La Gloria, Mexico, on 18
February 2009 in agreement with the information published in
official reports and with previous works [18,28,29]. Infection
parameters describing the transmission potential and the duration
of the stages of the disease are obtained through a maximum
likelihood procedure based on the empirical data of the H1N1
international seeding events (see Figure 1A). In particular, we use
the reproductive number R0 = 1.75 with the generation interval set
to 3.6 days (average latency period e21 = 1.1 days and average
infectious period m21 = 2.5 days). Through a maximum likelihood
approach, the above estimates are obtained that best reproduce
the actual chronology of newly infected countries (additional
details can be found in Ref. [18]). The estimation method is
computationally intensive as it involves a Monte Carlo generation
of the distribution of arrival time of the infection in each country
based on the analysis of 1 Million worldwide simulations of the
pandemic evolution with the GLEaM model. The best estimate of
the reproductive number refers to the reference value that has to
be rescaled by the seasonality scaling function. The minimum
scaling factor amin determines the strength of the seasonality effect
on the disease transmission. Here we consider amin in the range
[0.6–0.7], that is the best estimate obtained in Ref. [18] from the
correlation analysis on the chronology of 93 countries seeded
before June 18. The calibration of the model also takes into
account the effects obtained by the control sanitary measures
adopted in Mexico during the early stage of the epidemic [18,30].
A thorough sensitivity analysis of the model calibration with
respect to the disease natural history, initial conditions and other
uncertainties in the data is reported in Ref. [18].

Travel-related interventions and simulated scenarios
During the early stage of the outbreak, several countries

implemented a variety of travel-related interventions (see Text S1
for country-specific measures and implementation details). Such
measures, in addition to a spontaneous reaction of individuals to
the health emergency, led to a reduction in the international traffic
to/from Mexico of about 40% observed during the month of May,
followed by smaller reductions in the following months, and
resulting in a slow return to normality in about 3 months [31] (see
Text S1). Here we consider as a reference scenario the one produced
by the best estimates able to reproduce the initial chronology of
newly infected countries (i.e. the baseline scenario), where in addition
we take into account the empirically observed drop in air traffic,
following the data reported in Table 2 of Text S1. The reference
scenario is then compared to a set of hypothetical scenarios in
which increasingly larger restrictions in individual mobility are
considered, as well as different starting dates for the implemen-
tation of such restrictions. In addition, we also test scenarios in
which country-specific air travel bans are applied, and scenarios in
which ground mobility along the border between Mexico and the
US is restricted (see Text S1).

It is important to stress that, contrary to previous approaches
based on samples of airline mobility data [4,9], GLEaM
simulations take into account the full air travel database and the
role of intra-country mobility as well as border commuting flows
(e.g. across the US-Mexico border [18]). GLEaM allows for the
detailed simulation of the time evolution of the spreading pattern
by reproducing the infection dynamics and computing the number
of travelers in each compartment. It is therefore possible to track
the movement of H1N1 cases and analyze the statistics associated
with arrival times, case importation, and local transmission based
on many realizations that incorporate the relevant stochastic
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effects. The efficacy of travel-related measures is therefore
measured on the timing of seeding events and resulting delays.

Results and Discussion

Reference scenario
Figure 2 summarizes the simulation’s accurate reproduction of

the observed relative magnitude of imported cases in the local
epidemics of newly-affected countries that validate the model.
Panels A, B show cases in the United Kingdom and Germany,
respectively, during the early phase of the outbreak when case-
based surveillance was deployed in order to detect imported H1N1
cases and monitor local H1N1 transmission [32,33]. Computer
simulations also allow us to explore the level of stochasticity
associated with the importation of infectious individuals. We keep
track for each time step of each realization of the contribution of
imported cases to the total prevalence in the country defined as the
ratio Q of imported cases versus the total number of infectious
individuals in the country. Since at the early stage of the epidemic
there are usually large fluctuations in the number of imported local
transmission cases, we measure the probability in time of observing
a given ratio Q by averaging over 2,000 realization of the global

simulation. Panels 2C, 2D show the time behavior of the
probability distribution P(Q) clearly illustrating that the importa-
tion of cases dominates the initial phase of the epidemic in each
country, which is soon followed by a sustained local transmission.
The contribution of imported cases is observed at 100% with a
finite probability only during the months of April-May, after which
the probability distribution progressively shrinks around small
values of Q, showing how the local H1N1 transmission starts to
dominate the epidemic.

Travel restrictions and the H1N1pdm spatial spread
The good agreement of the model with the actual data from the

H1N1pdm allows us to assess the effect of the observed decline in
travel flows to/from Mexico by comparing the results obtained in
the reference scenario with a version of the model in which no
travel reduction is considered. Compartmentalization permits
tracking of the arrival of detectable (i.e. symptomatic) and non-
detectable (i.e. latent or asymptomatic) infected individuals in a
given country. By defining the arrival time as the date the first
symptomatic case arrives in the country under study, it is possible
to quantify the delay in the spreading of the epidemic. It is quite
impressive to notice that the 40% drop in travel flows observed in

Figure 1. Modeling the 2009 H1N1 pandemic spread with GLEaM. A, Illustration of the global invasion of the 2009 H1N1 pandemic during
the early stage of the outbreak. The arrows represent the seeding of unaffected countries due to infected individuals traveling from Mexico. The color
code indicates the time of the seeding. The map shows the layer of the worldwide air transportation network, which is incorporated into GLEaM. B,
Compartmental structure in each subpopulation of GLEaM. Each individual is classified by one of the following discrete states: susceptible, latent,
symptomatic infectious who can travel, symptomatic infectious who are hampered in their travels by the severity of the illness, asymptomatic
infectious, and permanently recovered/removed [23,26]. We assume that the latency period is equivalent to the incubation period and that no
secondary transmissions occur during the incubation period. In addition, the asymptomatic individuals are assumed to be less infectious with respect
to the symptomatic ones, with a relative infectiousness rb, that is half the infectiousness of symptomatic individuals. All parameter values are reported
in Table 3 of the SI.
doi:10.1371/journal.pone.0016591.g001
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reality only led to an average delay in the arrival of the infection in
other countries (i.e. the first imported case) of less than 3 days (see
Text S1 for more details). We then test whether an additional
decrease in travel flows of magnitudes larger than the observed
40% would have provided an additional benefit in slowing down
the propagation of the H1N1 virus across the world. We consider
drops in the air travel flows connecting Mexico with the rest of the
world starting on April 25 following the international alert,
optimistically assuming a prompt implementation by authorities
with no further delays. We also assume that the reduction is kept
constant across time, differently from the empirically observed
decline that successively decreased to become negligible in about 3
months.

Figure 3 shows changes induced by travel restrictions on the
simulated chronology with respect to the reference case by
tracking the arrival time probability distribution. Results are
reported in panels A, B of Figure 3, where application of the
interventions is shown to reduce the probability values right after

the peak of the distribution, with almost no change in the date of
the peak. If we focus on the first arrival from Mexico, considering
all possible seeding events (i.e. latent, asymptomatic, and
symptomatic), we observe similar reductions in the rate of increase
in the cumulative probability distribution of the seeding event,
pointing to a slower rate of importation (see Figure 3C, D).
However, the resulting change is not able to halt the spread.

By considering the time at which the cumulative probability for
the seeding from Mexico has reached 90%, we can calculate the
delay induced by larger reductions in air travel. Figure 4A shows
the delays obtained for a selection of countries. Even given the
unlikely assumption of a 90% travel reduction, the resulting delay
would be on the order of 2 weeks, confirming results from previous
studies [4,5,8,9]. This time could be used to finalize the response
by the public health infrastructure of unaffected countries
following the international alert, thus gaining time to enhance
surveillance systems and allocate resources. Unfortunately, this
timescale is insufficient to develop and distribute a vaccine.

Figure 2. Importation of cases. A,B, Simulation results of the fraction Q of imported cases in United Kingdom (A) and Germany (B). The quantity
Q is a measure of the relative weight of case importation with respect to local transmission events. The gray shaded areas show the 95% and 50%
reference ranges of the simulation results obtained from 2,000 stochastic realizations. The surveillance data are indicated by red dots. C,D, Time
evolution from April to November 2009 in the United Kingdom (C) and Germany (D) of the probability distribution to observe in any given realization
of the epidemic the ratio Q between imported cases and the total number of cases. The probability distribution is obtained from the simulation of
2,000 stochastic realizations. Large values for the quantity Q are observed with high probability only in the early phase of the respective country’s
epidemic. The observed non-zero probability for a fraction of imported cases equal to zero at the early stage is due to the fact that the epidemic is
imported in some cases by non-detectable individuals, such as latent and asymptomatic infectious individuals.
doi:10.1371/journal.pone.0016591.g002
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Anticipation of travel reductions following local epidemiological
alerts in Mexico or the onset of symptoms from the first case in the
US would lead to similar results (see panel B of Figure 4).

The exponential increase of cases in the outbreak region
explains the negligible impact of travel restrictions over the course
of the pandemic. Given two coupled populations with determin-
istic infection dynamics, the delay DtDt is a logarithmic function of
the applied travel reduction of magnitude a, Dt~{tln 1{að Þ,
where t is the timescale of the epidemic’s exponential growth in
the seed population [34,35]. The exponential increase of cases in
the outbreak region is therefore responsible for the relatively
limited delay induced by strong and lasting travel reductions.
When a~65%, a~80% or a~95% the corresponding delays
become approximately 1, 1.6, and 3 times, respectively, the
timescale t that is typically on the order of a few days. The
logarithmic relation also explains more realistic situations in which
the epidemic origin is characterized by spatial heterogeneity and
intra-region mobility that is not subject to travel restrictions (see

Text S1 for the complete analytic treatment in this case). This is
the case of the H1N1 pandemic, which initially diffused within
Mexico before reaching international hubs and propagating
internationally.

Global invasion threshold
Another important question concerns the degree to which

mobility restrictions are able to achieve containment at the source
of the pandemic, especially in combination with timely mitigation
policies in the country of origin. To this end we consider a simplified
modeling framework based on a metapopulation scheme describing
a network of subpopulations (nodes) coupled with mobility processes
(links, see Figure 5A) whose features reproduce the topological and
mobility properties of real-world transportation systems [36,37]. We
assume: (i) the large-scale heterogeneity found in the airline
transportation network where the number of connections k departing
from each airport (i.e. the degree of the node) follows a power-law
distribution P(k)&k{c; and (ii) that the observed correlations

Figure 3. Effects of restrictions in the air travel to/from Mexico on the probability distributions of the seeding events. Travel
measures imposing a reduction of a~60% and a~90% are compared to the reference scenario where the observed drop in air travel to/from Mexico
is taken into account. A,B, Probability distributions of the arrival time (defined as the date of arrival of the first symptomatic case) in the United
Kingdom (A) and Germany (B) for different values of a. Here we consider the importation from any possible source country, not only Mexico. The
vertical dotted line indicates the observed arrival time in the country, as obtained from official reports, and the vertical solid line indicates the starting
date of the travel restrictions, April 25, 2009, the day after the international alert. The probability distributions are obtained from 2,000 stochastic
realizations and data are binned over 7 days. Even when imposing a~90%, the peak of the probability distribution is not delayed with respect to the
real scenario. C,D, Cumulative probability distributions of the first seeding event from Mexico to the United Kingdom (C) and Germany (D) for
different values of a. Here we consider any source of infection in the seeding event, including symptomatic cases and non-detectable infected cases,
such as latent and asymptomatic, as allowed by the computational approach. The distributions are computed over 2,000 stochastic realizations. The
effect of travel restrictions is very limited in delaying the time at which the cumulative distribution reaches the unit.
doi:10.1371/journal.pone.0016591.g003
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between topology and traffic, relating the number of passengers wij

traveling from airport i to airport j to the degrees ki and kj of the two
subpopulations is expressed by SwijT~w0 kikj

! "1=2
, with w0

representing the mobility scale of the system [38].
Disregarding the high-resolution details of numerical approach-

es, this synthetic metapopulation model can now be analyzed,
defining a new theoretical framework that allows for the study of
epidemic containment. Starting from a single subpopulation
infected at time t~0, it is possible to describe the invasion
dynamics at the subpopulation level in a Levins-type approach by
considering the microscopic dynamics of infection and of
individual travel [37]. The system is characterized by a
subpopulation reproductive number R*. Analogous to the
reproductive number R0 at the individual level, R* indicates a
threshold behavior of the system: if R*.1 the epidemic reaches
global invasion; otherwise, it is contained at its source. It is possible
to derive an expression for the global invasion threshold in a
branching process approximation [39,40]. Under the assumption
that subpopulations having the same number k of connections are
equivalent (i.e. the degree-block approximation, see Text S1), we
define D0

k as the number of diseased subpopulations of degree k at
generation 0 (i.e. at the beginning of the branching process).

During the entire duration of the outbreak experienced by the D0
k

subpopulations, each of them can in principle seed some of the
neighboring subpopulations thus leading to a number D1

k of
diseased subpopulations of degree k at generation 1, for various
values of the degree k. By iterating the seeding events, it is possible
to describe the evolution of the number Dn

k of diseased
subpopulations with degree k at generation n, yielding:

Dn
k~

X

k0
Dn{1

k0 (k0{1)P(kjk0) 1{R
{lk0k
0

# $
1{

Xn{1

m~0

Dm
k

Vk

 !

ð1Þ

The r.h.s. of Eq. (1) describes the contribution of the
subpopulations of degree k’ at generation n-1 to the infection of
subpopulations with degree k at generation n. Each of the Dn{1

k

has (k’21) possible connections along which the infection can
proceed (21 takes into account the link through which each of
those subpopulations received the infection). In order to infect a
subpopulation of degree k, three conditions need to occur: (i) the
connections departing from nodes with degree k’ point to
subpopulations of degree k, as indicated by the conditional

Figure 4. Delaying effects in the international spread. A, Delay in the case importation from Mexico to a given country compared with the
reference scenario as a function of the travel reduction a. The delay is measured in terms of the date at which the cumulative distribution of the
seeding from Mexico (see Figure 2) reaches 90%. The dotted line shows the logarithmic behavior relating the delay as a function of the imposed
restrictions. The largest delay, gained when imposing a~90%, is less than 20 days for all countries. The model also considers the implementation of
sanitary interventions in Mexico during the early stage that was able to damp the exponential increase of cases in the outbreak zone. Travel
restrictions would therefore lead to a larger impact during this phase due to the mitigating effect on the local epidemic. If a country is seeded during
this phase, the resulting delay induced by the travel restrictions would be larger, thus creating the observed differences in the resulting delays by
country. B, as in A, where earlier dates for the start of the intervention are considered, has a fixed a~90%: April 25, corresponding to the day after
the international alert; April 16, corresponding to the epidemic alert in Mexico; March 28, corresponding to the onset of symptoms of the first case in
the US; and 6 weeks before the international alert. In all these scenarios and for different countries, the delay is always less than 20 days, highlighting
that even the enforcement of strong travel reduction as early as possible would have had little effect.
doi:10.1371/journal.pone.0016591.g004
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probability P(kjk0); (ii) the reached subpopulations are not yet

infected, as indicated by the probability 1{
Pn{1

m~0

Dm
k

Vk

% &
, where

Vk is the total number of subpopulations with degree k; (iii) the
outbreak seeded by lk0k infectious individuals traveling from k’ to k
takes place, and the probability for this event to happen is given by

1{R
{lk0k
0

# $
[41]. The latter term is the one that relates the

microscopic dynamics of the local infection occurring within a
subpopulation to the coarse-grained view that describes the disease
invasion at the metapopulation level. It depends on the details of
the diffusion process of individuals as well as the individual travel
behavior and its interplay with the disease stages. The expression
of lk0k for the compartmental model here considered is derived in
Text S1; by plugging it in to Eq. (1) we can derive the expression
for the global invasion threshold (more details are reported in Text
S1):

R#~g(R0):h e,m,pa,ptð Þ:f w0; P kð Þð Þ; ð2Þ

where g is a function that depends on the reproductive number
only; his a combination of the infection parameters e, m, pa and pt;
f is a function of the mobility scale w0 and of various moments of
the distribution of the number of connections kof each airport. Eq.
(2) shows that R* thus depends on the disease parameters, as well
as the topology and fluxes of individuals’ mobility.

The effect of interventions like travel restrictions, mitigation,
etc., are unfortunately damped by the large topological fluctua-
tions of human mobility patterns. The function f is expressed by

f w0; P kð Þð Þ~w0
Sk2hz2T{Sk2hz1T

SkT
(Text S1), so that the

topological heterogeneities encoded in P(k) lead to very large
values of the ratio Sk2hz2T{Sk2hz1T

! "'
SkT, which suppresses

reduction in the travel flows in w0, leading to values of R* well
above the threshold at 1 as shown by the 3D plot reported in
Figure 5B. Similar conclusions apply for entry screening at
the airports modeled by a reduction in the traveling probability pt,
and the modeling of effective containment policies, reducing R0

and the total number of cases. The large heterogeneity of
human mobility patterns is therefore responsible for why travel
restrictions are largely ineffective for containing an emerging
pandemic.

Our analysis of the 2009 H1N1 pandemic shows that the
observed decline in air travel to/from Mexico was of too small a
magnitude to impact the international spread. Stricter regimes of
travel reduction would have led to delays on the order of two
weeks even in the optimistic case of early intervention. It is unlikely
that given the ever-increasing mobility of people travel restrictions
could be used effectively in a future pandemic event.
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modeling framework based on a metapopulation scheme. At the macroscopic level the system is composed of a heterogeneous network of
subpopulations. At the microscopic level, each subpopulation contains a population of individuals. The infection dynamics are described by a simple
compartmentalization (compartments are indicated by different colored dots in the picture). Within each subpopulation, individuals are mixed
homogeneously and can migrate from one subpopulation to another following the mobility connections of the network. In this way the disease can
spread at the subpopulations level. B, Plot of the global invasion threshold R* described by Eq. (2). Here, R* is plotted as a function of the basic
reproductive number R0 and the traffic reduction a, which is the parameter representing the percentage of variation in the total traffic w0 in Eq. (2).
Only in the case of extremely low values of R0 or extremely large values of a is it possible to reduce R* below the threshold.
doi:10.1371/journal.pone.0016591.g005

H1N1 Pandemic and Travel Restrictions

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e16591



References

1. Influenza A(H1N1) - measures adopted by governments worldwide. http://iata.
org.tr/whatwedo/safety_security/safety/health_safety/measures.htm (2010).

2. Cowling BJ, Lau LL, Wu P, Wong HW, Fang VJ, et al. (2010) Entry screening to
delay local transmission of 2009 pandemic influenza A (H1N1). BMC Infect
Dis10: 82.

3. Viboud C, Miller MA, Grenfell BT, Bjørnstad ON, Simonsen L (2006) Air travel
and the spread of influenza: important caveats. PLoS Med 3: e503.

4. Cooper BS, Pitman RJ, Edmunds WJ, Gay N (2006) Delaying the international
spread of pandemic influenza. PloS Med 3: e12.

5. Hollingsworth TD, Ferguson NM, Anderson RM (2006) Will travel restrictions
control the international spread of pandemic influenza? Nature Med 12:
497–499.

6. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, et al. (2006)
Strategies for mitigating an influenza pandemic. Nature 442: 448–452.

7. Germann TC, Kadau K, Longini IM, Jr., Macken CA (2006) Mitigation
strategies for pandemic influenza in the United States. Proc Nat Acad Sci U S A
103: 5935–5940.
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