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Digital data is a basic form of research product for which citation, and the generation of credit or
recognition for authors, are still not well understood. The notion of data credit has therefore recently
emerged as a new measure, defined and based on data citation groundwork.

Data credit is a real value representing the importance of data cited by a research entity. We can
use credit to annotate data contained in a curated scientific database and then as a proxy of the
significance and impact of that data in the research world. It is a method that, together with citations,
helps recognize the value of data and its creators.

In this paper, we explore the problem of Data Credit Distribution, the process by which credit is
distributed to the database parts responsible for producing data being cited by a research entity.

We adopt as use case the IUPHAR/BPS Guide to Pharmacology (GtoPdb), a widely-used curated
scientific relational database. We focus on Select-Project-Join (SPJ) queries under bag semantics, and
we define three distribution strategies based on how-provenance, responsibility, and the Shapley value.

Using these distribution strategies, we show how credit can highlight frequently used database
areas and how it can be used as a new bibliometric measure for data and their curators. In particular,
credit rewards data and authors based on their research impact, not only on the citation count. We
also show how these distribution strategies vary in their sensitivity to the role of an input tuple in
the generation of the output data and reward input tuples differently.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Citations are an essential component of scientific research that
llow us to find research products and create and understand
heir relationships. They form a basis to give credit to authors,
apers, and venues [1–3]. Citations are used, among other things,
o decide on tenure, promotion, hiring, and funding of grants for
esearchers [4–7].

Science and research are increasingly digital, and numerous
urated databases are at the core of scientific research efforts [8].
t is therefore generally accepted that data must be cited and
itable [9,10], and that data citations should contribute to the
cientific reputation of researchers, scientists, data curators, and
reators [11,12]. It is also accepted that data citations should be
ounted alongside traditional citations and contribute to biblio-
etrics indicators [13,14].
A central problem with data citation is how to attribute credit

o data creators and curators [15]. How to handle and count
he credit generated by data citation and how it contributes
o traditional and new bibliometrics are long-standing research
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issues [16,17]. However, data citations and their related biblio-
metrics do not always fully reward the creators of data used in a
database, even when correctly applied. Data is often cited at the
‘‘database level’’ or the ‘‘webpage level’’. In the first case, even
though only a data subset was used, the whole database ends up
being cited, and therefore all credit goes only to the key personnel
of the database. In the second case, the database has a website
with webpages that can be individually cited. The webpages are
built using data extracted from the database, which is aggregated
by topic and layout to resemble a traditional research paper.
Often the creators and curators of the webpage’s data are not
credited or only marginally credited for their work [18].

Recently, the idea of Data Credit Distribution (DCD) [19–21] has
merged, built on top of methodologies for data citation. Data
redit is a value that is computed based on the importance of
he data being cited in a research entity (typically a paper), and
s a proxy for the impact of the data on the citing entity. The
CD problem consists of distributing this credit to elements in
he databases that are responsible for the generation of the data
eing cited. The goal of DCD is to improve and expand the reach
f data citation, rather than being an alternative to it.
In this paper, we consider data credit as a measure of value

or data in a (curated) scientific database. Credit is a real value

hat can be assigned to data of any kind and at any level of
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ranularity. Therefore, the concept of ‘‘data’’ is left intentionally
ague, although we focus on relational databases in this paper.
redit acts as a proxy for the value of data based on the measure
f citations, accesses, clicks, downloads, or other surrogates for
ata use.
We define DCD as the process, method, or algorithm used to

ssign credit to a given datum or dataset. It differs from the tra-
itional citation setting since:

1. When a paper p1 cites another paper p2, a +1 citation
‘‘credit’’ is given to p2, and to all its authors. It does not
matter why or how p1 cites p2,1 the result is always +1
to the citation count of p2 and of its authors. A different
credit distribution strategy can assign a quantity of credit
to p2 and its authors that is proportional to the role played
by p2 in p1. Hence, we can weight the importance of the
cited entities and assign credit according to their role.

2. Traditional citations are atomic: a citation from p1 to p2
can never be broken into pieces and assigned in part to
p2 and in part to other papers or data that contributed to
p2. In contrast, with data credit, we use a non-atomic real
value, which can be divided and distributed to multiple
components of a database.

3. Credit can be transitive, that is, it can be propagated through
one cited entity to other entities cited by it that contributed
to its content. Citations, traditionally, are not.

We study the DCD problem in the context of relational
atabases (RDBs) since they are widely used2 and are the main
ocus of current work in data citation methods [8,23,24]. RDBs
re also frequently a test-bed for new methods that can be
dapted to other databases, e.g., graphs or document databases.
he ‘‘portions" of data in an RDB that can be credited can be
efined at different levels of granularity, in particular: (i) the
hole database, (ii) tables, (iii) tuples, and (iv) attributes. The
bility to specify different levels of granularity in a relational
atabase allows us to define the DCD problem at a particular level
f granularity. In this paper, we focus on DCD at the tuple level.
The DCD process that we use is summarized in Fig. 1:

tep 1 Scientists and experts create and curate the information
contained in a scientific database. These are called the
‘‘Data Curators’’.

tep 2 Other researchers use the data in their research, and
when possible, cite them.

tep 3 The citation to the data generates credit, that can be used
as a proxy for the impact of the data on the citing paper.
This credit is represented as a real value k ∈ R>0.

tep 4 Given the database instance I and the query Q , the data
provenance of Q (I) is computed as a form of metadata that
captures how Q used I to generate the output [25].

tep 5 Provenance is input to the Credit Distribution Strategy
(CDS, also referred only as Distribution Strategy, DS). CDS is
a function f that takes as input the credit k, distributes it to
the data in the input database I , and is defined on the basis
of citation policies decided at the database administration
level or at the domain community level.

1 Note that there is vast research on this topic and many alternative
roposals, but none of them currently work at a large scale.
2 The ‘‘relational database market alone has revenue upwards of $50B’’ [22].
2

Step 6 Once the CDS is computed, it is used to distribute the
credit k to the parts of the database that are responsible
for the generation of Q (I). Transitively, this credit is also
divided and given to the corresponding authors of those
data.

This paper expands the work in [26] where we first defined
the problem of DCD in relational databases, and proposed a viable
Distribution Strategy (DS) based on lineage – the simplest form
of data provenance. The lineage of a tuple t in the output Q (I)
is defined as the set of all and only the tuples in the database
instance I that are ‘‘relevant’’ to the production of t and indicated
as Lt . The corresponding strategy equally redistributes the credit
k to the tuples in the lineage set, thus each tuple receives credit
k/|Lt |,.

One may argue that this DS is too simplistic, since lineage
does not convey any information about the role or importance of
input tuples in the query. Therefore, one may desire to give more
credit to the tuples that are more important to the production of
the output, i.e. those tuples that, if removed, would prevent the
output tuple from appearing in the final result, or those tuples
used more than once by the query.

Therefore, in this paper, we expand the ideas in [26] by
proposing new DSs based on another form of data provenance:
how-provenance [27]. We also propose other two DS based on
the concepts of responsibility [28] and the Shapley value [29,30].
We focus on SQL queries under the bag semantics assumption.

We discuss why one provenance form may be preferred to
another depending on the application and its goals. We show
that the DS based on responsibility gives more credit to tu-
ples that are essential to the production of the result set. In
contrast, the how-provenance-based DS considers the different
ways in which a tuple is used. Finally, we present an alternative
take on the problem with the Shapley-based DS that models
the distribution process as a competitive game in which tu-
ples that contribute more to the generation of the output are
correspondingly rewarded more.

We use a well-known curated database called the IUPHAR/BPS3
Guide to Pharmacology [31] – GtoPdb4 – to evaluate the DSs.
GtoPdb contains expertly curated information about diseases,
drugs, cellular drug targets, and their mechanisms of action.
We chose GtoPdb for two main reasons: (i) it is a widely-used
and valuable curated relational database, (ii) many papers in
the literature use, and cite, its data (i.e., families, ligands, and
receptors). Real queries used in papers can therefore be seen as
data citations that can be used to assign data credit.

We perform four sets of experiments. In the first, real queries
are extracted from papers published in the British Journal of Phar-
macology (BJP), that represent data citations to GtoPdb, and are
used to distribute credit in the database using the three different
provenance-based DSs. In the second and third experiment we
analyze the behavior of the different DS when complex citation
queries are employed. In the fourth set of experiments we use
both real and synthetic queries to assess the difference between
traditional citation and the notion of credit distribution in terms
of rewarding those responsible for the data, e.g. data curators.

Contributions of this work include:

• Three Distribution Strategies based on how-provenance, re-
sponsibility and the Shapley value.

• An in-depth analysis of the effects of credit distribution on
real-world curated data and of the differences between the
three proposed Distribution Strategies.

• A comparison between the behavior of traditional citations
and data credit in rewarding data curators.

3 International Union of Basic and Clinical Pharmacology/British Pharmacol-
gy Society.
4 https://www.guidetopharmacology.org/.

https://www.guidetopharmacology.org/
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Fig. 1. Overview of the credit distribution pipeline.
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Outline. The rest of the paper is organized as follows: Section 2
presents background material and related work. Section 3 de-
scribes the GtoPdb use case. Section 4 presents the forms of
provenance used in the paper. Section 5 describes the credit
distribution problem and the proposed distribution strategies. In
Section 6 we present the experimental evaluation, followed by a
discussion of our design decisions in Section 7. Section 8 draws
some conclusions and outlines future work.

2. Background

Data in research. Research transitioned to the fourth paradigm
of science [32], that is, data-intensive scientific discovery, where
data are essential for scientific advances as well as for traditional
publications [33].

The scientific community is promoting an open research cul-
ure [34], founded on methods and tools to share, discover, and
ccess experimental data. A striking example is the FAIR prin-
iples (Findable, Accessible, Interoperable, and Reusable) [35],
hich every database should enforce. In particular, data should
e accessible from the articles, journals, and papers that cite or
se them [2]. The need for reproducibility of experiments through
he used data; the availability of scientific data; and, the con-
nections between data and the scientific results are all needed
aspects to operationalize the fourth paradigm, and relevant for
data citation [36].

Data citation: Principles and motivations. Data Citation principles
were proposed in [37], and later summarized and endorsed by
the Joint Declaration of Data Citation Principles (JDDCP) [38]. The
principles are divided into two groups [39]. The first group is
about the role of data citation in scholarly and research activities
such as the (i) importance of data (why data citation is important
and why data should be considered as first-class citizens); (ii)
credit and attribution to the creators and curators of the data;
(iii) evidence; (iv) verifiability; and interoperability, with these last
three requiring data citation methods to be flexible enough to
operate through different communities. The second group defines
the main guidelines to establish a data citation systems, and
contains principles such as the (i) unique identification of the data
3

being cited; (ii) (open) access to data; (iii) guarantee of persistence
and availability of citations even after the lifespan of the cited
entity; the (iv) specificity of a citation, i.e. it must lead to the data
set originally cited.

The main motivations for data citation are outlined in [39]
and range from data attribution and connection to data sharing,
impact and reproducibility.

2.1. Data citation in relational databases

Relational databases have been the target of data citation
methods since the surge of the data-centric research paradigm.
The RDA ‘‘Working Group on Data Citation: Making Dynamic Data
Citable’’5 [40] (hereafter, RDA-WGDC) has developed guidelines
for citing large, dynamic, and changing datasets which have now
moved on into adoption phase. The datasets considered by the
Working Group are often relational.

The RDA-WGDC [41] reported that there are various imple-
mentations of its guidelines for Data Citation on MySQL/Postgres
relational databases. Some of these databases are: DEXHELPP6
(Social Security Records); NERC (ARGO Global Array); EODC (Earth
Observation Data Centre) [42]; LNEC (River dam monitoring);
MDS (Million Song Database) [43]; CBMI7 (Center for Biomedi-
cal Informatics); VMC (Vermont Monitoring Cooperative); CCA.8
(Climate Change Center Austria); VAMDC (Virtual Atomic and
Molecular Data Center) [44,45]

More examples of work on data citation in relational databases
are [8,46–48]. The website https://fairsharing.org/. keeps an up-
dated list of curated and scientific databases (many of which
are relational or graph-based) following FAIR guidelines. These
databases are citable since they are compliant with the most
recent guidelines, and they are in the vast majority of cases ac-
cessible via dynamically created webpages. In all these databases

5 https://www.rd-alliance.org/groups/data-citation-wg.html.
6 http://www.dexhelpp.at/.
7 https://medicine.missouri.edu/centers-institutes-labs/center-for-
iomedical-informatics.
8 https://ccca.ac.at/startseite.

https://fairsharing.org/
https://www.rd-alliance.org/groups/data-citation-wg.html
http://www.dexhelpp.at/
https://medicine.missouri.edu/centers-institutes-labs/center-for-biomedical-informatics
https://medicine.missouri.edu/centers-institutes-labs/center-for-biomedical-informatics
https://ccca.ac.at/startseite
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t is, therefore, possible to implement DCD on top of the existing
nfrastructures for citing data.

Data citation techniques are primarily applied to relational
atabases because of their pervasiveness as well as the ‘‘identi-
iability’’ of the portions of data that are to be cited: the whole
atabase, a relation, a tuple, or even an attribute. Many papers [8,
7,49] consider more complex citable units, recognizing that of-
en the views of a database are the ones to be cited. Generally,
view is a query on the database. To this end, [46] suggested
ecomposing the database into a set of views, where each view
s associated with its citation.

At present, the most common practices to cite databases in-
lude:

1. A database cited as a whole, even though only parts of the
databases are used in the papers or datasets. Alternatively,
the so-called ‘‘data papers’’ are cited, being traditional pa-
pers that describe a database [50].
In this case, all the credit from the citations goes to the
database administrators or to the authors of the data pa-
pers.

2. Subsets of data, obtained by issuing queries to a database,
are individually cited. This is the solution adopted by the
RDA-WGDC [40]. In this case, the credit generated from
citations is distributed among the contributors of the por-
tions of data being cited, and/or to the database adminis-
trators.

3. The database is accessible via a series of webpages that ar-
range the content of the database by topic or theme. Exam-
ples in the life science domain include the Reactome Path-
way database [51], the GtoPdb [31], and the VAMDC [45].
Every single Webpage is unequivocally identifiable and can
be individually cited.

.2. Data credit

Data credit is related to data citation: they both aim to rec-
gnize the work of data creators and curators. Data credit can be
een as a by-product of data citation, since credit attribution is
mpossible without the presence of data citations.

In this framework, Katz [20] suggests the need for a modified
itation system that includes the idea of transient and fractional
redit, to be used by developers of research products as software
nd data. Two considerations are made: (i) research objects such
s data and software are currently not formally rewarded or
ecognized by the community; (ii) even in traditional papers, the
ontribution of each author to the work is hard to understand,
nless explicitly specified in the paper. This is even more true
or data, where different groups of people work on the same
atabase.
In [20] credit is defined as a ‘‘quantity’’ that describes the

mportance of a research entity, such as papers, software, or data,
entioned in a citation. It also proposed the idea of a distribution
f credit from research entities, such as papers or data, to other
esearch entities through citations. Therefore, when discussing
ata credit, we need to consider credit computation – i.e., the pro-
ess to compute the quantity of credit generated by the citation –
nd credit distribution – i.e., the process to distribute credit and to
ssign it to the entities that contributed to the creation/curation
f the cited data. In this paper we focus on the latter.
These two processes are done by exploiting the structure of

he citation graph, a directed graph whose nodes are publications
nd edges are citations. This graph is the model at the core of
ystems such as Google Scholar and the Web of Science. We add
o this that the concept of credit can be built on top of the existing
nfrastructure handling traditional and data citations.
4

Katz [20] further explores the idea of a distribution of credit
from research entities (i.e., papers and data) to other research
entities through citations that connect them. Thanks to the idea
of ‘‘credit distribution’’, some problems related to traditional ci-
tations can be addressed:

1. Credit rewards research entities that to date are not (for-
mally) recognized (a goal shared with data citation).

2. Credit can reward authors proportionally to their role in
generating the entity. The more an author contributes to
a paper, the more credit is given to him. Zou and Peterson
[1] work on something similar with their zp-index, which
includes in its formulation the position (and thus the role)
of a publication author to represent its impact in the work
itself.

3. Credit can be transitively channeled through a chain of
papers citing each other, thus enabling the rewarding of
older papers that are no more cited, since other papers
summarize or report their content but are nevertheless
crucial in a research area for the influence of their content.

Fang [19] presents a framework to distribute the credit gener-
ated by a paper to its authors and to the papers in its reference
list in a transitive way. Let us consider the citation graph as the
graph where the nodes are papers and the links are the citations
among them. In this graph, every paper is a source of credit,
which is then transferred to the neighboring nodes. The quantity
of credit received by each cited paper depends on its impact/role
in the citing paper. So far, this theoretical framework is limited to
papers, but it can be easily extended to a citation graph including
both papers and data.

Zeng et al. [21] proposes the first method to compute credit
within a network of papers citing data. Adopting a network flow
algorithm, they simulate a random walk to estimate a score for
each dataset, leveraging real-world usage data to compute the
credit. This is the first step towards an automatic credit compu-
tation procedure. This proposal is, however, limited to assigning
credit to whole datasets, and it does not deal with the granularity
of data. It does not work to assign credit to a single research entity
within a dataset. Differently from Zeng et al. [21], we do not treat
the credit computation process, but we focus on the distribution
process.

2.3. Data provenance

To distribute credit, we base our methods on the data prove-
nance bodywork. Data provenance is information that describes
the origin and the process of creation of data. It can also be
seen as metadata pertaining to the derivation history of the
data. It is particularly useful to help users to understand where
data are coming from, and the process they went through. Data
citation and data provenance are closely linked [18] since both
are forms of annotations on data retrieved through queries. Data
provenance has been widely studied in different areas of data
management. In this paper, we focus on provenance for database
management systems (DBMS). For further details on data prove-
nance, please refer to surveys like [25,52].

Cheney et al. [25] presents four main types of data citation
for DBMS: lineage [53], why-provenance [54], how-provenance [27]
and where-provenance [54].

Let us start with the first three provenances. Given a database
instance I , a query Q , and the result Q (I), consider one tuple t
of the output. Its provenance is information about its generation
through the tuples of the input that are used by Q . Different types
of provenance convey different levels of information. Since these
three provenances are computed for each tuple of the output,
they are also referred to as tuple-based.
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Where-provenance, differently from the other three, is attribute
ased, so we do not take it into account in this work since we
onsider the tuple as the finest citable unit.
Green et al. [27] defined the semiring model which captures

ll of the above provenance models – lineage, why-provenance,
ow-provenance and where-provenance – and expresses set se-
antics, bag semantics and some extensions of the relational
odel. For data credit distribution, the results achieved with

ineage and why-provenance are subsumed by those obtained
sing how-provenance, which we focus on in this work.

.4. Causality and responsibility

We also consider the notions of causality and responsibility,
s defined in [28]. Causality is an enrichment of lineage, and
t is the attribution of a certain degree of importance to the
uples of the lineage based on their role in the generation of
he output. Responsibility is a value given to the tuples of the
ineage to rank them based on their degree of causality (the more
mportant the role of a tuple in generating the output, the higher
ts responsibility).

While computing responsibility for general queries is hard [55],
eliou et al. [28] proved a dichotomy result for conjunctive
ueries: for each query without self-joins, either its responsibility
an be computed in PTIME in the size of the database or checking
f it has a responsibility below a given value is NP-hard.

.5. Shapley value

The Shapley value was introduced in 1952 [56], framed as
cooperative game played by a set A of players, and defined
y a wealth function v that assigns to each coalition set B ⊆

the wealth v(B). The question behind the Shapley Value is
ow to quantify the contribution of each player to the overall
ealth. Informally, the Shapley value is defined as follows [29]:
ssume that we select players randomly one by one and without
eplacement, starting with the empty set. Every time a player a is
elected, its addition to the coalition B produces a change in the
ealth of the coalition from v(B) to v(B∪ {a}). The Shapley value
f a is the expectation of change that a causes in this probabilistic
rocess.
The Shapley value has been widely used, e.g. in economics,

aw, environmental science, and network analysis, and has strong
heoretical justifications. However, its use in databases as a metric
or quantifying the influence of a tuple on the output of a query
thereby presenting an alternative to responsibility) has only re-
ently been considered [29]. The initial theoretical analysis in [29]
howed lower bounds on the complexity of the problem, but did
ot suggest a feasible implementation. However, very recently,
n efficient implementation for Boolean queries has been pro-
ided [30], both in terms of an exact computation (it works well
or most queries) and in inexact one (it is extremely fast and
rovides the same ranking of tuples as the exact computation,
ut not necessarily the same values).

. Use case: GtoPdb

The IUPHAR/BPS Guide to Pharmacology [31] (GtoPdb9) is a
well-known scientific relational database that contains expertly
curated information about diseases, drugs in clinical use, their
cellular targets, and the mechanisms of action on the human
body. It is curated and maintained by the GtoPdb Committee
and 96 subcommittees, comprising 512 scientists collaborating

9 https://www.guidetopharmacology.org/.
5

with in-house curators who draw the information contained in
the database from high-quality pharmacological and medicinal
chemistry literature. Roughly 1000 researchers from all over the
world have contributed to the database, and the curators wanted
to give recognition to these contributors. This led to some early
work on data citation [49].

GtoPdb is relational, but its logical structure is hierarchical as
shown in Fig. 2. The information contained in the database is also
organized into webpages focused on specific diseases, targets or
ligands, and families for easier access by users. As depicted in
Fig. 2, the database can be thought of as a tree where the root
is the database; the first level consists of all targets, ligands, and
diseases; and the lower levels consists of specific targets, ligands
and diseases. In this paper, we focus on targets; thus the figure
at the third level shows examples of family types, at the fourth
level of specific families of targets (a finer level of granularity),
and finally, at the last level, the single targets (also known as
receptors).

GtoPdb provides access to the webpages corresponding to all
these nodes through URLs. The webpages corresponding to target
families all present a similar structure, as shown in Fig. 3 for
the ‘‘Adenosine receptors’’ family. Each page has an Overview, a
brief text describing the content of the page; a list of Receptors
comprising the family; a section of comments about the family;
the References, a list of the papers consulted by the curators of the
page, similar to a reference list of a paper; the further reading list,
reporting papers that an interested reader may want to consult to
obtain more insight on the family; and a final section called How
to cite this family page, containing text snippets useful to cite the
specific page or the whole database. Fig. 3 shows the SQL query to
build the corresponding sections (apart from the References sec-
tion). Therefore, each family page can be considered a full-fledged
traditional publication, consisting of title, authors, abstract (the
overview), content, and references.

In practice, many papers in the literature only reference GtoPdb
(the root) without including a reference to the specific page being
cited. That is, they only cite a paper describing GtoPdb as a whole
(e.g., [31]) and refer to targets, ligands, diseases, etc. only by
name. Thus, citations to specific families are de-facto ‘‘hidden’’
to citation systems such as Google Scholar, and useless for the
computation of bibliometrics.

In certain ‘‘lucky’’ cases, as with papers available in PDF and
published in the British Journal of Clinical Pharmacology10 (BJCP),
when a family, ligand, receptor name, etc. are used, they have
a hyperlink pointing to the corresponding webpage in GtoPdb.
Therefore, the citations to the families can be detected and
counted using the URLs reported in the papers. However, these
citations to GtoPdb webpages are not counted as such by citation
systems, so they are not converted into credit for curators and
collaborators.

For our running example, consider Table 1. This simplified
version of GtoPdb contains three tables: family, contributor
and contributor2family. The first table, family, has tuples
representing families with three attributes: the id of the family,
its name, and type. Table contributor contains people who
have helped generate the data in the database. The third table,
contributor2family, serves as a link between the families and
the people who contributed to them. For instance, ‘‘John Smith’’
(c1) contributed to ‘‘Dopamine Receptors’’ (f1) as well as to the
‘YANK Family’’ (f4). Throughout the rest of the paper, we will
se the id attribute of these tables as the provenance token of its
orresponding tuples, that is, as a symbol that serves to identify
tuple when talking about provenance.

10 https://bpspubs.onlinelibrary.wiley.com/journal/13652125.

https://www.guidetopharmacology.org/
https://bpspubs.onlinelibrary.wiley.com/journal/13652125
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Fig. 2. Partial map of the GtoPdb hierarchical structure grouping the targets into families and family types.

Fig. 3. Basic web-page structure of ‘‘Adenosine receptors’’ family (ID 3), with queries used to retrieve the information contained in every section, except references.
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Table 1
Example of a database consisting of three tables. family
contains receptor families; contributor contains the
name and country of contributors; contributor2family
connects contributors to the families they contributed to.
family
id Name Type

f1 Dopamine Receptors gpcr
f2 Bile Acid Receptor gpcr
f3 FAK Family enzyme
f4 YANK Family enzyme

contributor2family
id family_id contributor_id

c2f1 f1 c1
c2f2 f1 c2
c2f3 f2 c3
c2f4 f4 c1

contributor
id Name Country

c1 John Smith UK
c2 Jim Doe UK
c3 Hans Zimmerman Germany
c4 Roberta Rossi Italy

4. Provenance, responsibility, and shapley value

We now introduce how-provenance, causality, responsibility,
nd the Shapley value function. In the following we use the notion
f the lineage of an output tuple [25,53]. The lineage set L of a
uple o ∈ Q (I) is the set of all and only the tuples in the database
nstance I that are used by query Q to produce the output tuple
.

.1. How-provenance

How-provenance was first defined in [27] to capture the in-
ormation about how the source tuples are used exploiting a
emiring algebraic structure. It takes the form of a polynomial,
alled provenance polynomial, where the variables are taken from
he set X of identifiers of the tuples (provided that each tuple in
has an identifier) and the coefficients are drew from the set of
atural numbers N.11
In the following, we rely on the commonly-adopted notation

f [25]. Let D be a finite domain of data values {d1, . . . , dn} and
a collection of field names (also attribute names). We use U, V

o denote finite subset of U .
A tuple t is a function U ↦→ D, from the attributes {A1, . . . , An} ∈

to the data values in D, written as (A1 : d1, . . . , An : dn). A tuple
assigning values to each field name in U is called U-tuple. We
write Tuple for the set of all tuples, U-Tuple for the set of all U-
uples. We write t.A or t • A for the value of the A-field of t and
[U] for the restriction of tuple t over U ⊆ V to field names in
. We write t[A ↦→ B] for the result of renaming field A to B in t
assuming B is not already present in t).

A relation or table r : U is a finite set of tuples over U . We call
a finite collection of relation names. A schema R is a mapping

R1 : U1, . . . , Rn : Un) from R to a finite subsets of U (assigning to
every relation name a set of attributes). A database or instance
is a function I : (R1 : U1, . . . , Rn : Un) mapping each Ri : Ui ∈ R
o a relation ri over Ui.

A tuple location is defined as a tuple in one relation of the
atabase tagged with its name. A tuple location is indicated with
R, t), where R is the relation in the database, and t is the tuple in

11 This semiring is commonly referred as N[X] in the literature.
 o

7

R. With reference to the running example of Table 1, (family, ⟨f1,
opamine Receptors, gpcr⟩) is the tuple location of the first
uple in the family relation. The set of all the tuple locations in
is called TupleLoc.
A semiring K is a set equipped with two operations, typi-

ally denoted with the symbols + and ·, satisfying the following
xioms [57, pg. 26]:

1. The set K is a commutative monoid for the operator + with
a neutral element 0. Therefore, it has these properties:

(a) (a + b) + c = a + (b + c) (associative property)
(b) 0 + a = a + 0 = a
(c) a + b = b + a (commutative property)

2. The set K is a monoid with identity element 1. Therefore, it
has these properties:

(a) (a · b) · c = a · (b · c) (associative property)
(b) 1 · a = a · 1 = a (1 is the neutral element)

3. Multiplication is distributive on addition, i.e.:

(a) a · (b + c) = (a · b) + (a · c)
(b) (a + b) · c = (a · c) + (b · c)

4. Multiplication by 0 annihilates K , i.e. ∀x ∈ K , 0 · x = x ·0 =

0.

The key idea in Green et al. [27] is to use the two opera-
ors + and · to represent two basic transformations that source
uples undergo as a result of applying a relational query to a
atabase [25]. Two tuples may either be joined together (a join is
epresented with the · operator) or merged via union or projec-
ion (represented with the + operator).

Now we formally introduce the mathematical framework be-
ind how-provenance [27]. Let K be a set containing an element
, U a set of attributes and U − Tuples the set of tuples with
ttributes in the set U (each such tuple is called, for brevity, U-
uple). A K−relation is a function R : U−Tuples ↦→ K which maps
very U-tuple in an element in K such that its support, defined
s supp(R) = {t | R(t) ̸= 0}, is finite. Thus, it is possible to see the
-relation as a finite function that models a relation R, tagging
ach tuple in R with an element of K and each tuple that is not
n R with 0.

efinition 4.1 (Operations on the Algebraic Structure (K , 0, 1, +, ·)
27]).

Let (K , 0, 1, +, ·) be an algebraic structure with two binary
perations + and · and two distinguished elements 0 and 1.
he operations of the positive K -relational algebra are defined as
ollows:

1. Empty relation. For any set of attributes U , ∃∅ : U −

Tuples ↦→ K |∅(t) = 0.
2. Selection Let R : U-Tuples ↦→ K and σ be a selection

predicate that maps each U-Tuple to either 0 or 1. Then
σθ (R) : U-Tuples ↦→ K is defined by (σθ (R))(t) = R(t) · σ (t).

3. Projection Let R : U-Tuples ↦→ K and V ⊆ U . Then πV (R) :

V -Tuples ↦→ K is defined by (πV (R))(t) =
∑

t=t ′[V ]∨R(t ′)̸=0 R(t
4. Union Let R1, R2 : U-Tuples ↦→ K . Then R1 ∪ R2 : U-Tuples

↦→ K is defined by (R1 ∪ R2)(t) = R1(t) + R2(t).
5. Natural join Let R1 : U1-Tuples ↦→ K and R2 : U2-Tuples

↦→ K . Then R1 ⋊⋉ R2 : U1 ∪ U2-Tuples ↦→ K is defined
by (R1 ⋊⋉ R2)(t) = R1(t1) · R2(t2), where t1 = t[U1] and
t2 = t[U2].

It is observed in [27] that if the K -relational semantics satisfies
he same equivalence laws as positive relational algebra operators

ver bags, i.e. union (+) is associative, commutative and has
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Table 2
Notations used in this paper.
I Database instance
L, Lt Lineage set of an output tuple t
Γ Contingency set
ρt Responsibility of tuple t
Q A query
Q̄o Boolean query such that Q̄o(I) = 1 if o is present in Q (I)
H Provenance polynomial
Mi A monomial in H
tj A tuple in Mi
c(H) Sum of H’s coefficients
e(Mi) Sum of Mi ’s exponents
mc(Mi) Mi ’s coefficient
te(tj,Mi) Exponent of tj in Mi
γ (tj,H) Set of monomials in H containing tj

Table 3
Result of Q1 over the database instance in Table 1 with
the how-provenance polynomial of each output tuple.
id Name

o1 Dopamine Receptors
o2 YANK Family
how-provenance
o1: f1 · c2f1 · c1 + f1 · c2f2 · c2
o2: f4 · c2f4 · c1 .

dentity ∅ and join (·) is associative, commutative and distributive
ver union, and projection and selection commute with each
ther, as well as with union and join, then (K , 0, 1, +, ·) must be
commutative semiring.
Let us consider the algebraic structure (N(TupleLoc), 0, 1, +, ·),

here N(TupleLoc) is the set of polynomials whose coefficients
re the natural numbers and the variable are from the set TupleLoc
he how-provenance of an output tuple is a function H =

ow(Q , I, o) that returns a polynomial in N(TupleLoc) called prove-
ance polynomial. The following definition is adapted from [25] by
onsidering the case applying to our work, i.e., Q K (I) with K = 1.

Definition 4.2 (How-Provenance). Let Q be an SPJRU query. Let I
be a database instance, and t be a tuple in Q (I). Then, the how-
provenance of t according to Q and I , denoted as How(Q , I, t), is
an element of the set N(TupleLoc) defined as follows:

How({u}, I, t) =

{
1, if t = u,
0 otherwise.

How(R, I, t) =

{
(R, t), if t ∈ R,
0 otherwise.

How(σθ (Q ), I, t) = θ (t) · How(Q , I, t)
How(ρA↦→B(Q ), I, t) = How(Q , I, t[B ↦→ A])

How(πV (Q ), I, t) =
∑

u∈supp(Q ),u[V ]=t How(Q , I, t)
How(Q1 ⋊⋉ Q2, I, t) = How(Q1, I, t[U1]) · How(Q2, I, t[U2])
How(Q1 ∪ Q2, I, t) = How(Q1, I, t) + How(Q2, I, t)

Here {u} is a query expression describing a constant, singleton
relation, not a relation value per se. These constants correspond
to K -relations that assign 1 to u and 0 to all other tuples. The
summation in the projection case is finite since the support of a
K -relation is assumed to be finite. In the selection rule, θ is seen
as a function θ : U-Tuples ↦→ {0, 1}.

Example. Let us consider the following SQL query Q1, applied to
the database described in Table 1, asking for the names of families
curated by researchers based in the United Kingdom (UK):

Q1: SELECT DISTINCT f.name
FROM family AS f JOIN contributor2family AS c2f
ON f.id = c2f.family_id
8

JOIN contributor AS c ON c2f.contributor_id = c.id
WHERE c.country = ’UK’

Table 3 shows the two output tuples of query Q1 annotated
with their respective how-provenances. Tuple o2 was produced
by a join of the input tuples f4, c2f4, and c1. The three provenance
tokens are therefore ‘‘multiplied’’ together. The case of o1 is
slightly more complex. It can be obtained by the joins of two
different sets of tuples, so there are two monomials combined by
+ representing these alternative derivations.

Provenance polynomials may also have monomials whose ex-
ponents and/or coefficients are greater than one, for example,
3f1 ·c2f1 ·c1+ f1 ·c2f 32 ·c32 . This is a polynomial of a tuple produced
by a query where the result of the join between the tuples f1, c2f1,
and c1 is produced three times and then merged (e.g. as the result
of a union), and the tuples c2f2 and c2 are used three times in the
operation described by the second monomial (e.g., with nested
queries).

4.2. Causality and responsibility

A formal study of causality was introduced in [55,58] and later
expanded by Meliou et al. [28] to explain the causes of answers
and non-answers to queries. In the following, we refer to the
definition of causality and responsibility provided in [28]. In par-
ticular, we only focus on answers to a query since non-answers
are not relevant in our context.

There are two types of ‘‘cause’’ tuples: counterfactual and
actual. Let o be a tuple in the result of query Q on the database
instance I , and t a tuple in its lineage. We call t a counterfactual
cause if, by removing t from I , o is also removed from the output
(i.e., t is essential for the generation of o).

We call t an actual cause if there is a set of tuples Γ ⊆ I called
a contingency set, such that t is a counterfactual cause in I − Γ .
In other words, t is an actual cause if, even when removed from
I , there is another set of tuples of the lineage that guarantees the
presence of o.

Computing the causality of tuples is NP-complete for general
queries [59], but for conjunctive queries it can be computed in
PTIME, as showed by Meliou et al. [28].

The notion of responsibility measures the degree of causality
as a function of the size of the smallest contingency set [55]. This
allows us to rank lineage tuples based on their degree of causality
in generating the output.

Definition 4.3 (Responsibility [28]). Let o be an output tuple in the
result of query Q on I , and let t be a cause for o. The responsibility
of t for the answer o is:

ρt =
1

1 + minΓ |Γ |

where Γ ranges over all contingency sets for t .

Note that a counterfactual cause will have the maximum re-
sponsibility of 1, and that the larger the minimum contingency
of an actual cause is, the smaller its responsibility will be since
there are alternatives to guarantee the presence of the answer o.

Example. Let us consider Table 4, where we reported the result
set of Q1 and the tuples of the lineages with their responsibility
values. Focusing on o1: the lineage tuple f1 is a counterfactual
cause, since its contingency set is empty (when removed from
the database, o1 disappears from the result set). Consequently, its
responsibility is 1. All the other tuples of the lineage are actual
causes. c1, for example, has as minimal contingency set {c2f2},
thus its responsibility is 0.5. For the output tuple o2, all the tuples
of the lineage are counterfactual causes, thus their responsibility
is 1.
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Table 4
Result of Q1 over the database instance in Table 1 with
the responsibilities of lineage tuples.
id Name

o1 Dopamine Receptors
o2 YANK Family
Responsibility
f1 = 1, c2f1 = 0.5, c2f2 = 0.5, c1 = 0.5, c2 = 0.5
f4 = 1, c2f4 = 1, c1 = 1 .

Table 5
Result of Q1 over the database instance in Table 1 with
the Shapley values of the tuples of the lineage. In this case
Dn corresponds to the lineage.
id Name

o1 Dopamine Receptors
o2 YANK Family
Shapley value
f1 =

7
15 , c2f1 =

2
15 , c2f2 =

2
15 , c1 =

2
15 , c2 =

2
15

f4 =
1
3 , c2f4 =

1
3 , c1 =

1
3 .

.3. Shapley value

We rely on the definition provided in [30]. Let Q be a Boolean
query and f ∈ D be a fact, the Shapley value of f in D intuitively
represents the contribution of f to the query result.12 The higher
the value, the more f helps in satisfying Q . Formally, the Shapley
value is defined as follows:

Shapley(Q ,D, f ) =

∑
E⊆D\{f }

|E|!(|D| − |E| − 1)!
|D|!

(
Q (E ∪{f })−Q (E)

)
The sum is performed on all possible subsets of D that do not

ontain f . The value (Q (E ∪ {f }) − Q (E)) is the ‘‘wealth" brought
by f when added to E. Thus, the Boolean query is used as a wealth
function v: its value is 1 only when the set E∪{f } makes the query
true, and the set E makes it false, i.e., when the addition of the
fact f is determinant to making the Boolean query true. The value
|E|!(|D| − |E| − 1)! is the number of all the possible permutations
over D where the facts in E come first, then f is added, and
then all the remaining facts. Thus, the value |E|!(|D|−|E|−1)!

|D|!
can be

hought as a weight for the wealth brought by f when added to
.
To extend this definition to non-Boolean queries, we adopt the

pproach in Deutch et al. [30]: the Shapley value of the fact f
or the answer t̄ to Q (x̄) is the value Shapley(Q [x̄/t̄],D, f ), where
[x̄/t̄] is the Boolean query defined by Q [x̄/t̄](D) = 1 if and only

f t̄ is in the output of Q (x̄) on D, and 0 otherwise. In other words,
he definition of Shapley(q,D, f ) is extended to queries Q (x̄) with
ree variables by considering the Boolean query Q [x̄/t̄] as a value
unction. This query can be seen as a function that takes as input
set of facts and returns 1 if this set is a witness for t̄ , and 0
therwise.

xample. Let us consider Table 5, that shows the Shapley values
or the lineage’s tuples of o1 and o2, results of query Q1. We
note that, to compute the Shapley value of an input tuple f it is
sufficient to compute and sum the values |E|!(|D|−|E|−1)!

|D|!
for all the

ossible sets E such that E ∪ {f } is a witness and E is not. Thus,
suppose we want to compute the Shapley value of the tuple f1.
Let us call Q̄1,o1 the Boolean query such that Q̄1,o1 (D) = 1 if and
only if o1 is in the output of Q1 on D, and Lo1 is the lineage of o1.
Then the Shapley value of f1 with respect of o1 is given by:

12 We ignore the distinction between endogenous and exogenous facts, since
n our setting they are all assumed to be endogenous.
9

Shapley(Q̄1,o1 , Lo1 , f1) =
2!2!
5! +

2!2!
5! +

3!
5! +

3!
5! +

3!
5! +

3!
5! +

4!
5!

=
7
15

where for the first element of the sum the corresponding E is
c2f1, c1}, for the second element it is {c2f2, c2}, for the third
c2f1, c2f2, c1}, for the fourth {c2f1, c1, c2}, for the fifth {c2f2, c2, c1
or the sixth {c2f1, c2f2, c2}, and for the seventh {c2f1, c2f2, c1, c2}.
very other possible subset E would make the factor equal to 0.
ote that in this case we consider D = Lo1 , the lineage of o1, since
hese are the only facts in all the database that contribute to the
eneration of o1.
Similarly, for tuple c1 (and the other tuples of the lineage), the

omputation is:

Shapley(Q̄1,o1 , Lo1 , c1) =
2!2!
5! +

3!
5! +

3!
5!

=
2
15

We can see that for all the tuples of o2’s lineage the cor-
responding Shapley values are equal to 1/3, since they are all
equally responsible for the generation of the output. Thus the
sum of the Shapley values of all the tuples in an output tuple’s
lineage is always equal to 1 when using a Boolean query as wealth
function.

5. Credit distribution and distribution strategies

We now give formal definitions of data credit and Data Credit
Distribution (DCD), and present the three different Distribution
Strategies (DSs) base on how-provenance, responsibility, and
Shapley value. We also show how these strategies distribute
credit in the IUPHAR example presented above.

5.1. Data credit and data credit distribution

Given a database instance I , a recipient of credit is a unit
f information within I; in this work, we focus on tuples as
ecipients. Data credit is a value k ∈ R>0. Every recipient in a
database is annotated with a quantity of credit as a proxy for its
importance.

Given a DS, DCD takes a database instance I , a quantity of
credit k, query Q (I), and it divides k among the tuples in I .

Definition 5.1 (Tuple Level Data Credit Distribution (DCD)). [26]
Given a query Q over I and k ∈ R>0, the tuple level DCD is

defined by the function fI,Q : TupleLoc × R>0 → R≥0 such that
fI,Q (t, k) = h where 0 ≤ h ≤ k and

∑
t∈TupleLoc fI,Q (t, k) = k. The

unction fIQ is the distribution strategy (DS).

As we can see, the DS is a function that annotates each tuple
n the database with a real value, which is a fraction of the
iven quantity k. The only constraint is that the sum of the credit
nnotations on tuples is k.
In the following, we use information provided by data prove-

nance to define distribution functions. For simplicity, we assume
that the credit k is distributed equally across the set of output
tuples, and discuss how the credit ko of one output tuple o, is
distributed across the instance I .

5.2. A how-provenance based distribution strategy

The how-provenance-based DS first distributes the credit to
the monomials of the polynomial accordingly to the weight repre-
sented by their coefficients, then to the tuples of each monomial
accordingly to the weights represented by their exponents.

To define the DS more formally, we introduce some notation
and illustrate it using the provenance polynomial H shown in
Fig. 4. This notation is also summarized in Table 2 for reference.
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Fig. 4. Illustration of notation used to define the how-provenance based DS.

We call c the function that, given a polynomial, returns the
sum of its coefficients; e.g., c(H) = 3 + 1 = 4. We call e the
unction that, given a monomial, returns the sum of its exponents,
.g., e(M2) = 1 + 3 + 3 = 7. mc is the function that takes a

monomial as input and returns its coefficient; e.g., mc(M1) = 3.
te is a function that takes as input a tuple and a monomial, and
returns the exponent of the tuple in the monomial, if present;
e.g., te(c2,M2) = 3. Finally, γ takes as input a tuple and the whole
polynomial, and returns a set of monomials containing that tuple;
e.g., γ (f1,H) = {M1,M2}, γ (c2,H) = {M2}.

Definition 5.2. How-Provenance-Based Distribution Strategy
Let I be a database instance, Q a query over I, o ∈ Q (I) an

output tuple, H be the provenance polynomial for o, and ko the
credit given to o. The credit given to tuple t in I is:

fI,Q (t, ko) =
ko

c(H)

∑
M∈γ (t,H)

mc(M)
te(t,M)
e(M)

Going back to the example of Table 3, consider o1 with prove-
ance polynomial f1c2f1c1 + f1c2f2c2. The how-provenance-based
S firstly divides the credit between the two monomials. Since
he coefficients of each monomial are 1, the credit is split in half.
f they were, for example, 1 and 2 respectively, 1/3 of the credit
ould go to the first monomial, and 2/3 to the second. Since in
ur example each variable has exponent 1, the credit is further
ivided equally among the three variables. Thus, at the end of the
omputation, f1 receives 1/3, and the other tuples receive 1/6.
As a further example, let us consider a query Q2 over GtoPdb,

sking for the families of type gpcr that have researchers located
n the UK as contributors.

Q2: SELECT DISTINCT F.name
FROM family as F JOIN
(SELECT DISTINCT f.name AS name
FROM family AS f JOIN contributor2family AS c2f ON f.id = c2f.family_id
JOIN contributor AS c ON c2f.contributor_id = c.id
WHERE c.country = "UK") AS R ON F.name = R.name
WHERE F.type = "gpcr"

The result of Q2 is shown in Fig. 5, and consists of one tuple,
xs1, annotated with its how-provenance. As we can see, the how-
rovenance shows that f1 is used twice: first in the join of the
nner query, and second in the join of the outer query.

Fig. 6 shows how the DS based on how-provenance behaves
n the polynomial from query Q1 (Fig. 6.a) and that from query
2 (Fig. 6.b).
In Fig. 6.a, tuple f1 receives credit 1/3 and the other tuples

eceive 1/6, while in Fig. 6.b tuple f1 receives credit 1/2 and the
thers receive 1/8. This is reasonable since Q2 relies on f1 more
han Q1, and it shows how how-provenance is sensitive to the
uples’ role in a query.
10
.3. Responsibility-based distribution strategy

As described in Section 4.2, causality and responsibility is
ew information that is added to lineage. One option for a
esponsibility-based DS is to assign the responsibility of each
uple in the lineage of an output tuple as its credit. In this way,
esponsibility is both a way to compute credit and to distribute
t. Referring to the example of Table 4, in the case of output tuple
1, f1 receives credit 1 and the other tuples receive credit 0.5.
However, we want a DS that is also a function of the input

redit value k. So, we define a new DS that is a function of the
uantity of credit ko that assigns to each tuple of the lineage
portion of this credit weighted by its normalized quantity of

esponsibility. This function gives a bigger portion of credit to
uples that are higher in the responsibility ranking.

efinition 5.3 (Responsibility-based Distribution Strategy). Let Q a
query over the database instance I, o ∈ Q (I) an output tuple, L the
lineage of o, ko the credit given to o and ρt is the responsibility
of a tuple t ∈ L. The credit distributed to tuple t is:

fI,Q (t, ko) = ko
ρt∑
t ′∈L ρt ′

.

Fig. 7 shows the responsibility and credit assigned to the
tuples of the lineage of the output tuple o1 of Table 4. Assuming
that ko1 = 1, f1 receives credit 1/3, while the others receive credit
1/6.

5.4. Shapley value-based distribution strategy

As with responsibility, the Shapley value can be seen both as a
method to generate and distribute credit. Moreover, it can be seen
that, using the definition of Shapley value for Boolean queries
given in Section 4.3, the sum of the Shapley values of all the tuples
of the lineage L of an output tuple o is 1.

Definition 5.4. Shapley Value-Based Distribution Strategy
Let Q be a query over a database instance I, o ∈ Q (I) an output

tuple, and ko the credit given to o. The credit distributed to a tuple
t in I is:

fI,Q (t, ko) = ko · Shapley(Q̄o, I, t)

where Q̄o is the Boolean query such that, given the set of facts D,
Q̄o(D) = 1 if and only if o is in the output of Q on D.

As shown in Table 5, tuple f1 in o1’s lineage takes credit
7/15 when ko1 = 1, while the other tuples of the lineage take
credit 2/15. This DS still rewards f1 more than the other tuples,
since it is more important than the other tuples of the lineage.
However, this DS behaves differently from the other two previous
strategies. In particular, f1 is rewarded more with this DS than
with the others.

In the case of o2 there is only one monomial in the provenance
polynomial and all the three tuples appearing in it are counter-
factual causes. The consequence, in this type of cases, is that the
three distributions behave in the same way. Here, all three tuples
of o2’s lineage receive credit 1/3.

6. Experimental evaluation

To understand the trade-offs between these Distribution Strate-
gies (DSs), we perform five sets of experiments using queries over
target families presented on the GtoPdb website. The first set of
experiments uses real queries extracted from citations to GtoPdb
published in the British Journal of Pharmacology. The second
set uses synthetically produced provenance polynomials, corre-

sponding to more complex queries, in order to better highlight
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Fig. 5. Result of query Q2 applied on the database of Table 1 and its different provenances. The reported numbers are the credit distributed through the process.
Fig. 6. Comparison of different distributions obtained with the how-provenance-based DS with queries Q1 and Q2.
Fig. 7. Example of distribution of credit using the responsibility-based DS, assuming ko = 1.
he differences between the DSs. The third set of experiments
onsiders the accrual of credit over time by the three strategies,
gain using synthetic queries. The fourth set of experiments
hows how the DSs compare to traditional citations in giving
redit to data curators using both real and synthetic queries. In
he last set of experiments we report the execution time required
o compute how-provenance, responsibility and Shapley values of
he output tuples.

The source code for the experiments is written in Java and sup-
orted by a PostgreSQL database. For purposes of reproducibility,
he source code and all queries are available at https://bitbucket.
rg/dennis_dosso/credit_distribution_project.

.1. Real-world queries

Examples of real queries are drawn from papers published in
he British Journal of Pharmacology (BJP).13 Each time a paper in
his journal cites a webpage from GtoPdb, it reports the URL of the
age. From this URL, the query used to obtain the webpage data
an be determined. We considered all 889 papers in BJCP citing
he IUPHAR/BPS Guide to pharmacology [31] as of October 2020,
nd extracted all webpage URLs to GtoPdb contained within the
aper.14
The queries that we inferred are those used to build target

amily webpages within GtoPdb. An example was given in Fig. 3,

13 https://bpspubs.onlinelibrary.wiley.com.
14 The IUPHAR/BPS Guide is a journal that describes the structure and
volution of GtoPdb. At the time of writing, it had received more than 1200
itations on Google Scholar.
11
where we show how the structure of the ‘‘Adenosine receptors’’
family can be mapped into queries over the underlying database.
In GtoPdb, all target family pages share a similar structure; the
only difference is that individual sections, such as ‘‘contribu-
tors’’ or ‘‘further readings’’, may be missing. Therefore, the same
queries can be used to build all of the target family pages by
changing the family id used in the query (for example, in Fig. 3,
it is 3). Note that the queries are fairly simple SPJ SQL queries. A
total of more than 12K different queries were built in this way.
Without loss of generality, we give each tuple in the output of a
query a credit of 1.

Results. Fig. 8 shows the heat-maps obtained by the distribution
of credit according to the three DS on one of the tables in the
underlying database, family, which is often joined with other
tables in the database to build the webpages. Each cell in a
heat-map represents a tuple of the family table and the color
indicates the amount of credit attributed to such tuple. It can be
seen that the result of credit distribution over family is the same
for all three strategies. The same result is also obtained with the
other tables of the database used by the queries shown in Fig. 3.

The reason why credit distribution is the same for all strategies
is that the queries are all simple SPJ queries, which use one tuple
from each table only once and do joins on key attributes (these
are always 1-to −1 joins). Under these conditions, each output
tuple presents: (i) a how-provenance that is a single monomial
with coefficient one and exponent one in each variable; (ii) all
tuples are counterfactual causes when considering responsibility,
thus they have responsibility 1, and (iii) all tuples have the same
importance in the production of the output tuples according to

https://bitbucket.org/dennis_dosso/credit_distribution_project
https://bitbucket.org/dennis_dosso/credit_distribution_project
https://bitbucket.org/dennis_dosso/credit_distribution_project
https://bpspubs.onlinelibrary.wiley.com
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Fig. 8. Comparison of four DS on the same table family using the distribution given by the queries retrieved from papers. Each cell is a tuple. (For interpretation
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heir Shapley value. Hence, for these queries, the DSs behave in
he same way: credit is uniformly distributed among the tuples
f the lineage.
To illustrate this, consider one of the queries in Fig. 3 which is

sed to build the output webpage:

Q3: SELECT c.first_names, c.surname
FROM contributor2family AS cf JOIN contributor AS c ON
cf.contributor_id = c.contributor_id
WHERE f.family_id = 3

Q3 returned 10 tuples from the version of GtoPdb used. The
irst tuple, <Bertil B., Fredholm>, has c939 · c2f496 as its
rovenance polynomial. c939 represents the provenance token of
tuple in contributor, and c2f496 the provenance token of a

uple in table contributor2family. Also, both these tuples are
ounterfactual causes and have a responsibility of one. Therefore,
he credit assigned to these tuples is 1/2 using all five DS. This
appens for all the tuples in the output of each query of GtoPdb,
hus making the distributions equivalent over all outputs.

However, this is not the case with more complex queries.
s we showed in the previous section, when two or more tu-
les are merged as a result of a projection or union, the credit
istributions will differ between the strategies.

.2. Synthetic queries

To see what happens with more complex queries, we syntheti-
ally generated provenance polynomials in which the coefficients
12
nd exponents could be greater than one, and picked them at
andom from a uniform distribution. The queries involve three
toPdb tables: family, contributor2family, and contribu-
or. The polynomials were generated as follows: first, the num-
er of monomials was decided by randomly choosing a number
etween one and six. Then, we randomly chose a tuple from
he family table, one from the contributor2family table
nd one from the contributor table; these are the variables
f the monomial. We then chose a coefficient for the monomial
between one and three) and an exponent for each tuple (be-
ween one and four). For the next monomial, we decided if we
anted to keep the same tuple from the table family as first tuple
f the new monomial. To do so, we generated a random float
umber between zero and one. If the number was above 0.2, we
hanged the family tuple. This number was chosen arbitrarily to
btain polynomials that presented a certain ‘‘variation’’ in their
onomials, i.e., to make sure that not all monomials started with

he same tuple.
An example can be seen in Fig. 9, which shows a sample syn-

hetic provenance polynomial (the how-provenance), the causal-
ty of the tuples of the lineage, together with their responsibility,
nd, finally, the Shapley values of the lineage tuples. The resulting
redit distribution for each DS is also shown.
As an example of how the distribution strategies behave with

hese synthetic queries, consider tuple f5 in Fig. 9. This tuple
eceives the highest quantity of credit using responsibility-based
istribution and less credit using, in order, the Shapley value and
ow-provenance. On the other hand, tuple f is rewarded more by
1
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Fig. 9. Sample synthetic provenance polynomial (how-provenance) and corresponding responsibility and Shapley values, together with the corresponding credit
distributions. The sum of Shapley values is equivalent to the quantity of credit being distributed (assuming that the input credit is equal to 1).
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the Shapley value, then, in order, how-provenance and responsi-
bility. This difference is explained considering the different role of
the tuples in the generation of the output and the characteristics
of the distributions.

Responsibility creates a ranking among lineage’s tuples de-
cribing the importance of their role in generating the output. As
uch, the responsibility-based DS gives more credit to f1, f5, c2f17
and c18 due to their higher responsibility values. ‘‘Importance’’ is
connected to their corresponding minimal contingency sets. For
example, f1 has a minimal contingency set (one of the many)
{f5}, with cardinality 1. On the other hand, c1 has, as minimal
ontingency set (one of the many) {f5, c2}, with cardinality two.
his means that c1 is the ‘‘least important’’ amongst the tuples
ith minimal contingency sets of lower cardinality, and this is
eflected in the different quantities of credit being distributed.

The Shapley value behaves similarly, but it rewards tuple f1
he most and then f5, c2f17, c18, and last all the other tuples of
he lineage. Although both Responsibility and the Shapley value
reate a ranking of the tuples based on their role in the generation
f the output, the corresponding functions behave differently
ue to the syntax of the query. For this reason each different
istribution strategy highlights a slightly different aspect that can
e considered as ‘‘important’’ when distributing the credit.
Despite being synthetic, these provenance polynomials are

ealistic: they can be obtained by any nested query with join
nd union operations that use the same tuple multiple times (in
hich case the exponents are larger than one), and the same
ombination of operations more than once (in which case the
oefficients of monomials are larger than one).

esults. The results of credit distribution on the family table us-
ng 10 K randomly generated synthetic provenance polynomials
re shown in Fig. 10. We set the maximum value in the heat maps
o the highest value reached by a tuple in all five distributions
i.e., 7.7, with the Shapley value-based DS).

There is consistency between the strategies in that tuples
hich are highly rewarded by one strategy are also highly re-
arded by the others. This shows that the four DSs consistently
eward certain tuples more than others.
13
Table 6
Results of the pairwise Kendall Tau confidence value on all the DSs on the
family table (the p-vales are all below 0.05).

how resp. Shapley

how 1.0 0.74 0.74
resp. 0.74 1.0 0.89
Shapley 0.74 0.89 1.0

Table 6 reports the pairwise Kendall τ correlation values15
or the three DSs computed on the family table. As we see,
he distribution based on how-provenance is the one that cor-
elates less with the other two strategies, while it seems that
he DSs based on responsibility and the Shapley value are more
orrelated one with the other. This may be explained because,
hile how-provenance captures how the tuples are used, the
ther two strategies are concerned with the importance of the
uples in the lineage of the query (responsibility) and the role that
he tuples have in the query seen as a coalition game (Shapley
alue). Hence, the three DSs represent different viewpoints about
he ‘‘importance’’ of a tuple, and this reflects on their distribu-
ions. Moreover, we have to consider that how-provenance is
provenance, and our approach uses its information to obtain a
etric, while Responsibility and Shapley value are metrics. The
ain difference between the three resides in the definition of

he metric itself. The definition of Shapley value resides on the
oncept of coalition and in the different possible combinations
n which a coalition is built. Responsibility, on the other hand,
s based on the concept of minimal contingency. The metric
hat we derived in this paper from how-provenance, instead,
xploits the information in the polynomial to obtain a value
etric that is not based on the concept of a set (respectively,
oalition and contingency). This may be a further explanation of
hy how-provenance correlates the least with the other twos.

15 The Kendall’s τ coefficient is a statistic used to measure the ordinal
association between two measured quantities [60]. Intuitively, it is high between
two variables when observation have a similar rank.



D. Dosso, S.B. Davidson and G. Silvello Information Systems 109 (2022) 102060

T

e
i
w
t

S
m
b
i

c
b
p
t

s
s
r
r
(
u
T
u

Fig. 10. Comparison of three DS on the same table family after the distribution computed using 10 K synthetic and randomly generated provenance polynomials.
he tuples in the blue rectangles are used as example in the discussion connected to Fig. 11.
Considering the three heat-maps reported in Fig. 10, it is
vident that there are many similarities. However, upon closer
nspection, it is possible to see that they are behaving differently,
ith certain tuples rewarded more with one strategy than with
he others.

The heat-map reporting the distribution produced by the
hapley value is the one that, at a closer inspection, shows
ore evident differences. Although the tuples that receive the
iggest quantities of credit are the same, the hue of these tuple
s different.

We note that the how-provenance-based DS gives an average
redit of 4.18 to each tuple in the table, while the responsibility-
ased 4.13, and the Shapley-based 4.40. Moreover, how-
rovenance distributed a total of about 3331 units of credit to
he family table, while responsibility assigned 3290, and the
Shapley value 3505 (the difference of credit is due to the fact that,
depending on the DS, other tables used in the joins are rewarded
more).

To better understand the differences between DSs, in the next
ubsection we consider the accrual of credit over time. In doing
o, we will focus on the ten tuples shown within the large yellow
ectangles in Fig. 11. Each small rectangle within a large yellow
ectangle is a tuple, and we number them from 1 (top) to 10
bottom). These ten tuples were cherry-picked because they allow
s to see the evolution of the distribution of credit through time.
here are other tuple sets that could have been selected driving
s to the same considerations.
14
6.3. Credit accrual over time

Since credit accrues over time, we simulate the passage of
time by varying the number of queries executed, and look at the
‘‘snapshots’’ of credit for each of the strategies using synthetic
queries. The results are shown in Fig. 11.

In this figure, four groups of heat-maps are shown. Each group
represents a ‘‘snapshot’’ taken after 1 K, 2 K, 5 K and 10 K prove-
nance polynomials have been considered for credit distribution.
The ten tuples in each heat-map are those highlighted in the
yellow boxes of Fig. 10 from the family table.

The polynomials used are the same as the experiment of the
previous section. The range of credit in each map goes from 0
(no credit) to 7 (the maximum quantity of credit reached – using
how-provenance – on one of the tuples of the considered window
at the ‘‘snapshot’’ with 10 K queries). The color hue of the legend,
as can be seen, still ranges from 0 to 7.7.

By the end of 1 K queries, credit differentials between tuples
as well as between strategies can be seen. For example, tuple
3 is usually rewarded the most credit by all three strategies.
Moreover, it can be seen that tuple 1 receives a higher quantity of
credit when how-provenance is adopted, showing how this form
of provenance behaves differently from the others in this context.
Moving to 2K queries, it is possible to see that tuples 3 and 7 are
still the most rewarded by the strategies.

By the end of 5 K queries, tuple 7 emerges with the highest
value of credit with all three DSs, a position which is strengthened
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Fig. 11. Comparison of the distribution of credit performed by the five DSs on a subset of 10 tuples taken from the family table, simulating the passing of time.
he number at the top of each group of heat-maps represents the number of polynomials whose credit has been distributed. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
ith 10 K queries. Moreover, with the passing of time, tuple 3
eases to be amongst the most rewarded ones and new tuples,
uch as 6 and 9, emerge as being particularly rewarded at 5 K,
hile at 10 K tuples 6 and 7 are the most rewarded. The DS that
ewards the more tuple 7 is the one based on how-provenance
credit 7.03), followed by the Shapley value (credit 6.64). This is
ue to the fact that tuple 7 had, among some of the polynomials
eing used for the experiments, a high responsibility but it did
ot appear in all the monomials of the provenance polynomials.
his changed slightly the distribution.
To sum up, the DS based on how-provenance highlights which

uples in the database are used by a query. It distributes credit to
he tuples based on their role in the queries. In particular, tuples
hat were used more frequently and in many different ways
eceive more credit. The distributions based on responsibility
nd the Shapley value are more concerned with the importance
f individual tuples in generating the output. Responsibility, in
articular, is concerned in the role of the tuple as an actual
r counterfactual cause, and will reward tuples that are more
‘fundamental’’ for the output. On the other hand, the Shapley
alue sees tuples as players in a coalition game where all the
uples of the lineage ‘‘work’’ toward the production of the output.
he tuples whose role is more important in the game defined by
he query are rewarded with higher quantities of credit.
15
These three DSs may be useful for finding ‘‘hotspots’’ in the
database based on the role of tuples. The preference of one over
the others depends on the type of sensitivity to the role of a
tuple in queries that is required by the context as dictated by the
preferences of the users or the peculiarities of the application at
hand.

6.4. Credit vs citations

In the last set of experiments, we compare traditional citations
to the proposed credit distribution strategies to see the difference
in reward for data authors and curators. Using both real-world
and synthetic queries, we distribute credit to the authors respon-
sible for the data under the different strategies. Our results show
that credit rewards authors of data that is cited fewer times, but
that has a higher impact on the query results.

To do so, we need to identify a set of authors and queries that
cite data curated by them. Considering GtoPdb, each target family
page has a list of curators, representing the people who are co-
creators and curators of the data comprising the page. This list
can be obtained using the last query shown in Fig. 3. Each time a
target family page is cited, we assign one citation to each author
associated with the page. The authors also receive credit in the
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Fig. 12. Radars presenting the top 20 authors citation-wise and credit wise, together with their (normalized between 0 and 1) values of citations and credit. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
mount assigned to the data used by the query to construct the
ebpage, equally divided between the authors of the webpage.

esults: Real-world queries. As described in Section 6.1, we con-
ider real-world queries taken from papers published in the BJP
hich reference webpages in GtoPdb. Since for these queries
here is no difference in the distribution of credit between the
Ss, only one value for credit is used.
The results are shown in the radar plots of Fig. 12, in which

ach number on the outer circle (e.g. 475, 1774 and 3665) rep-
esents an author (id) and the blue (red) line represents the
ormalized value of credit generated by citations (credit), respec-
ively. The first radar plot, Fig. 12.a, shows the top 20 authors
n terms of citations, ordered in a clockwise direction, whereas
ig. 12.b orders the authors based on credit. Comparing the author

ids used in the outer circles of these two plots, it can immediately
be seen that the ‘‘top authors’’ are very different using these two
metrics, although there is some overlap (for example, authors
1774, 475, and 4012).

Diving a bit deeper to focus on the red and blue areas in each
of the plots reveals that there is a significant difference between
citations and credit: The top 20 authors in terms of citations do
not have the highest values of credit (Fig. 12.a). Conversely, the
authors with the highest values of credit do not necessarily have
a large number of citations (Fig. 12.b). For example, author 536
has the highest value of credit, but is not even in the top 20
authors in terms of citations. This means that authors like 536,
822, and 3342 in Fig. 12.b receive much more credit from their
relatively few citations than authors like 475, who receives the
largest number of citations. That is, the data underlying certain
webpages is more ‘‘valuable’’ in terms of credit than a citation to
the webpage.

The reason for the difference between citations and credit is
partly due to the experimental setup: each output tuple carries
a credit of 1, and there can be many tuples used to generate a
webpage. Thus a webpage that is created from more tuples will
have a higher credit value than one created from fewer tuples.
Furthermore, authors who collaborated with fewer people will
receive a biggest share of the equally divided credit. However, all
authors will receive a citation of one.

Credit distribution therefore rewards authors differently than
traditional citations: an author who has curated larger quantities
of cited data and collaborated with fewer co-authors, will receive
16
larger quantities of credit. Thus, credit rewards them for their
larger contribution to the database.

Results: Synthetic queries. We used the same synthetic polyno-
mials described in Section 6.2, and we distributed credit with
the first 100, 1K, and 10K of them. Since these polynomials are
created by randomly selecting tuples from three tables, they
usually correspond to a set of data curated by authors who, in
reality, did not collaborate. To make the size of the author set
more realistic, we therefore created 20 synthetic authors, and
randomly assigned one author to blocks of consecutive tuples
in the database, with the size of each block varying between 10
and 40, to simulate different quantities of work performed by an
author. Every time an author appears as curator of one or more
tuples used in a polynomial, we assign them one citation. They
also receive three kinds of credit, each one using a different DS.

Fig. 13 shows three radar plots, one for the results obtained
with 100 polynomials, one with 1K polynomials, one with 10K
polynomials. Each plot shows the top 20 authors in terms of
citations (hence the authors and clockwise ordering is the same
in each of the plots), and additionally shows the normalized val-
ues of citation (blue line), how-provenance-based credit (yellow
line), responsibility-based credit (green line), and the Shapley
value-based credit (red line).

As can be seen, given the synthetic nature of the queries, the
correlation between the number of citations and the quantity of
credit assigned to the authors appears to be a much stronger
than with the real-world queries of Fig. 12. In fact, for Fig. 13.a
the linear correlation between the citation number and all three
types of credit is always above 0.94 with p-values in the order of
3e − 8.

What these figures show is that, in certain cases, authors who
do not have a large number of citations receive more credit than
others, as for example authors 17, 18 and 10 in Fig. 13.a, and
especially when credit is distributed using how-provenance. This
again shows how credit gives a different perspective on the role
of data and authors by going beyond the limitations of traditional
citations.

It is worth noting that, when scaling up to 1K and 10K polyno-
mials, the credit distributions become almost identical (the linear
correlation for the values of Fig. 13.c is more than 0.99 with a p-
value of 1.32e− 32). This is consistent with what we observed in
Fig. 10.
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Fig. 13. Radars presenting the 20 synthetic authors with corresponding citation and quantities of credit distributed through the 3 DSs (all values normalized between
and 1) through different numbers of polynomials (respectively, 100, 1K and 10K). The order is the one defined by figure a, i.e. descending order of citations obtained

rom 100 polynomials. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 7
Average execution time (ms) to compute how-provenance, responsibility and
Shapley values of one output tuple. The accompanying z-values were computed
with confidence of 95% and α = 5.

how-provenance Responsibility Shapley

Real queries 57.29 ± 0.25 58.16 ± 0.02 85.18 ± 0.24
Synthetic queries – 1.48 ± 0.05 39.79 ± 2.87

6.5. Execution time

We studied the time required to compute the how-provenance,
esponsibility and Shapley value of the output tuples used in
he previous experiments on GtoPdb, for both real and synthetic
ueries. All experiments were carried out on a MacBook Pro with
2.4 GHz processor Intel Core i5 quad-core and 8 GB of memory
t 2133 MHz.
Recall that we first compute the how-provenance of real

ueries, obtaining a total of 58,037 polynomials. For synthetic
ueries, we directly produce the polynomials so it was not neces-
ary to compute the how-provenance, whereas responsibility and
hapley values of the output tuples were computed starting from
hese polynomials.

Table 7 reports the average time required to compute how-
rovenance, responsibility, and Shapley values of one output
uple, both in the case of real and synthetic queries (here, we con-
ider all 10,000 produced synthetic polynomials when computing
he average). All times are reported in milliseconds. The time
eported in the table to compute how-provenance is obtained
sing the code provided in [61], while the responsibility and
hapley value times are the result of the sum of this time with the
ime required to compute them starting from how-provenance.

From this table, we can see that the overhead required to com-
ute responsibility is small, while the overhead for the Shapley
alue is larger, primarily due to the need to compute the power
et of the lineage. We also note that the execution times for a
ingle tuple are relatively small, but become sizeable when the
ueries present a large result set and, in particular, for tuples with
ig lineage sets.
What we can see from these results is that how-provenance

s efficient and gives an informative distribution of credit for
PJ queries. Responsibility is still efficient, and gives a slightly
ifferent perspective on credit distribution. The Shapley value
dds significant computational overhead, but is still feasible for
mall/medium databases and SPJ queries. Moreover, recent work
17
is investigating new efficient and approximated ways to compute
the Shapley value.

In the following Sections we provide a bigger picture of com-
puting how-provenance, responsibility and Shapley value for
queries beyond SPJ, based on the latest findings in the literature.

7. Discussion

Before concluding, we discuss some design decisions: the fo-
cus on Credit Distribution (as opposed to Credit Generation), the
choice of Distribution Strategies and, finally, how the concept
of Game Provenance can open up new possibilities for Credit
Distribution in new contexts and for new classes of queries.

7.1. Credit generation

Credit Generation is the task of generating the credit to be
distributed by a DS. Credit Generation presents a series of issues
shared by traditional citation practices. For instance, defining
the quantity of credit generated for a given citation is still an
open problem. Different types of citations may generate different
amounts of credit. Data cited as previous work or as useful for
previous work may generate less credit than other data exten-
sively used to produce the results presented in a paper. The
computation of credit could be done manually (although we
must consider the complexity of the task, human biases, and the
resources required to carry it out) or automatically, but it must be
based on a shared definition of impact, which is still not agreed
upon for data or traditional citation. For this reason, we used a
uniform credit assignment function.

There is also the problem of transitive credit distribution, i.e.,
how to transitively propagate credit from one cited unit to an-
other unit that was used to produce the one being cited. For this,
a graph of cited units that propagate credit between the units
depending on influence could be used. How to propagate credit
is an open and non-trivial problem that needs to consider the
importance and impact of a citation in a work, be it a paper or
data, and how to eventually compute the quantity of credit to be
propagated.

Finally, in our experiments we assumed that the credit carried
by an output tuple is one. Thus, each tuple in the output has equal
importance. As described above, this assumption may be revised
and different credit to different output tuples could be assigned.
Note that from the distribution model viewpoint no change is
required since the DCD is defined for a generic value k.
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.2. Choice of distribution strategies

In this paper we presented three different DSs, so the natural
uestion is which one to use. This depends on the task at hand.
hen we want to highlight the tuples being used in the database
y a workload, the lineage-based DS proposed in [26] may be
ufficient. When we also want to know the relative impact of
uples in the context of the query, the other DSs should be
sed since they give a better understanding of the importance of
ata.
In the real-world-based experiments presented in the paper,

he three DSs behaved the same, which was due to the specific
ature of the data and the queries being used. However, the how-
rovenance of a query will differ from the lineage of the same
uery whenever the output tuples can be computed in more
han one way by the query. This is usually true when join and
rojection operators are used in the query. This means that how-
rovenance DS may be preferred to the simple lineage-based one
hen more complex provenance polynomials may be expected.
To address the question of what types of queries are likely

o extract cited data, we turn to the results of published studies
n the characteristics of query workloads and the complexity
f their queries [62–64]. These studies show that operations
uch as inner-/outer-joins and projections occur in many queries.
herefore how-provenances may become quite complex in some
nstances and provide a distribution of credit that is significantly
ifferent from the one obtained with lineage.
From the perspective of computational complexity, all three

Ss are similar since we focused on SPJ queries, although there is
slightly larger overhead with the Shapley value (see Section 6.5).
owever, the tests were conducted on a relatively small database
sing a rather naïve algorithm to compute responsibility and the
hapley values. Hence, on a big database, the Shapley value might
ecome prohibitively expensive to use. On the other hand, faster
lgorithms to calculate the Shapley value are being investigated
nd might speed up the process at least for a specific class of
ueries (e.g., SPJ) [30].
Going beyond SPJ queries, Green et al. [27] proposed the

rovenance semiring framework for SPJRU (Select, Project, Join,
ename, and Union queries), and Amsterdamer et al. [65] showed
ow to extend the framework to aggregate queries. This makes
he DS based on how-provenance also suited for these important
ypes of queries.

Responsibility is harder to compute for general queries (NP-
omplete). Meliou et al. [28] proved a dichotomy result for
onjunctive queries: for each query without self-joins, either
ts responsibility can be computed in PTIME in the size of the
atabase, or checking if it has a responsibility below a given value
s NP-hard. Queries with self-joins are NP-hard in general. This
akes responsibility harder to be utilized for credit distribution

n a real-world application, since for this problem it is necessary
o actually know the responsibility value, not simply the ranking
mongst tuples.
The Shapley Value has (at least) four properties that are widely

elieved to be important:

1. Efficiency: The sum of the Shapley values of all agents
equals the value of the grand coalition, so that all the gain
is distributed among the agents.

2. Symmetry: If i and j are two actors who are equivalent in
the sense that v(S ∪{i}) = v(S ∪{j}) for every subset S ⊆ N
that contained neither i nor j, then their Shapley values are
the same.

3. Null player: The Shapley value of a null player i in a game v

is zero. A player i is null if v(S∪{I}) = v(S) for all coalitions
S such that i /∈ S.
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4. Linearity: If two coalition games described by gain func-
tions v and w are combined, then the distributed gains
should correspond to the gains derived from v and the
gains derived from w, that is: Shapi(v + w) = Shapi(v) +

Shapi(w) for every i ∈ N . Also, for any real number a,
Shapi(a · v) = a · Shapi(v).

Livshits et al. [29] studied the computational complexity of
calculating the Shapley values in query answering. They showed
lower bounds on the complexity of the problem, with the excep-
tion of the sub-class of self-join free SPJ queries called hierarchical
queries, where they gave a polynomial-time algorithm (which,
however, do not appear to be useful for real world scenarios [30]).
Very recently, Deutch et al. [30] proved that the Shapley value can
be efficiently (polynomial-time) reduced to probabilistic query
answering. This not only applies to hierarchical queries, but to
general SPJ queries. This means that one can compute Shapley
values using a query engine for probabilistic databases, for ex-
ample, the practically effective Knowledge Compilation [66]. More
recisely, the approach in [30] shows that their approach can
xactly compute the Shapley value quickly in most cases while,
n other cases, the relative order given by the Shapley value may
e obtained. This new work makes the Shapley value a viable
olution for Credit Distribution for many queries.
We can conclude that, given the current state-of-the-art in

omputing provenances, the how-provenance-based DS is, at the
oment, one of the most informative and cost-efficient type of
rovenance that can be used. The other forms of information such
s responsibility and Shapley may still be used in the majority
f cases, that may incur in computational problems, in particular
ith large databases and query logs.

.3. The case of game provenance and query evaluation games

ame provenance. Köhler et al. [67] described the notion of game
rovenance, i.e. a form of provenance in the context of games.
A generic game is modeled as a graph G = (V ,M), where

he set of nodes V represents the possible positions in the game,
hile the set M ⊆ V ×V represents the possible moves from one
osition to another. A play π is a sequence (finite or infinite) of

edges M that describes the subsequent moves performed by two
players, I and II, that play one after the other. The player that
finds themselves in a position where no move is possible loses
(π is lost by that player), at which point the other player wins (π
s won by that player).

Since any First-Order (FO) query ϕ(x̄) on an input database
nstance D can be expressed as a non-recursive Datalog¬ (Datalog
ith negation) program Qϕ , Köhler et al. [67] observe that the
valuation of Q (D) can be seen as a game between players I and
I who argue whether an atom A ∈ Q (D).

[67] also shows that game provenance coincides with semiring
rovenance (i.e., how provenance) for positive queries but that,
nlike semiring provenance, it naturally extends to full FO queries
ith negation. This provenance can be represented as a particular
ype of tree, called operator tree.

Therefore, game provenance opens up new possibilities for
redit distribution. First of all, new DSs based on the information
rovided by the operator trees of queries can be devised. These
ew DSs can be based on the operator tree topology, propagating
he credit as a flux through its nodes and edges, devising new
ethods and dynamic for the distribution. Second, new DSs for

he class of FO queries with negation may be devised. In par-
icular, as shown in [68], these operator trees can also be used
or why-not provenance, i.e., to explain the absence of a fact from
he query output. In this case, new strategies may produce credit
orresponding to ‘‘missing’’ facts in the query output. This, in
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urn, may allow to assign credit to ‘‘missing’’ facts in the database
nstance whose absence is critical for the missing output fact. This
nformation can be useful for the database administrators to un-
erstand if some valuable information is missing, and help them
ecide whether and where to allocate the necessary resources to
reate/add those data if possible/sensible.

. Conclusions and future work

This paper expanded on our previous work on data credit and
ata credit distribution based on the notion of lineage in [26]
y defining three new distribution strategies based on how-
rovenance, responsibility, and the Shapley Value. The how-
rovenance-based DS considers the frequency with which a tuple
r combination of tuples is used in the query through the infor-
ation contained in a provenance polynomial. In this case, the
ow-provenance-based DS is more sensitive than the lineage-
ased DS to the role and importance of tuples. The second DS
xploits the notion of responsibility, a real value that ranks the
ineage tuples based on their degree of causality in generating the
utput. The third DS is based on the Shapley value function, used
o rank the facts of the database, seen as players, in producing
he required result. To do so, the wealth function in the Shapley
alue’s definition was adapted for general free-variable queries
n the database.
To show the differences between the three new DSs, we per-

ormed extensive experiments based on GtoPdb, a curated sci-
ntific relational database, using both real and synthetic queries.
n the first set of experiments, we used select-project-join (SPJ)
ueries extracted from citations to webpages in GtoPdb found in
apers published in the British Journal of Pharmacology. Using
hese ‘‘real’’ queries, we distributed credit to tuples in differ-
nt tables of the database, highlighting tuples that were more
requently used. We showed that, with these queries, the three
trategies produce the same distribution. This is because the SPJ
ueries were fairly simple, and did not use self-joins. Therefore
he formulas underlying the different DSs had the same output.

In the second set of experiments, we synthetically produced
ore complex provenance polynomials, corresponding to more
omplex queries, that resulted in exponents and coefficients in
he provenance polynomials that were greater than (or equal to)
. These experiments highlighted the differences between the
hree DSs. While the DS based on lineage presented in [26]
ewards all the tuples used by a query equally, the strategy based
n responsibility gives more credit to tuples that are more critical
o the query. Responsibility considers the relative importance
f a tuple in the generation of the output. The DS based on
he Shapley value similarly rewards the tuples based on their
articipation. The more impactful the role of a tuple, the higher
ts reward in credit. This distribution proved to be different from
he previous two and to reward even more tuples that are used in
ore than one monomial. How-provenance is even more sensi-

ive to the tuple’s role: it also considers the frequency with which
tuple or a set of tuples is used.
In the third set of experiments, we showed how the differ-

nces between the DS are compounded over time, i.e. when more
nd more queries are processed by the system.
In the fourth set of experiments we compared traditional

itations to authors to the credit accrued to them via the DSs. We
howed how, in both real-world and synthetic scenarios, credit
ewards authors who contribute/curate data that has the highest
mpact, and therefore receives the biggest quantity of credit, and
ot necessarily the data with the highest citation count. In this
ense, credit appears to be an useful new measure to discover
ata and their corresponding curators that have a high impact in
he research world, even when they are cited few times or do not
19
appear at all in the data that are cited (i.e., the case of data used
to build the output of a query but that is not visualized in the
output itself).

In the last set of experiments we showed how, on GtoPdb, all
the approaches present reasonable execution times, but we noted
how the computation of Shapley value may become unfeasible on
bigger databases and with bigger queries. Very recent works such
as [30] showed that it is still possible to compute the Shapley
value in polynomial time in many cases.

In future work, we plan to explore different strategies to
generate and distribute credit. In this paper we assumed that each
output tuple carries credit 1. In more sophisticated scenarios we
can employ different strategies to compute credit, that reflect the
importance of cited data. Other, more sophisticated, strategies
could also be used to decide how credit is distributed between
the authors, beyond the uniform distribution used here, in a
way to reflect the work performed by them on the cited data.
There are also a number of other intriguing applications for credit
over relational databases. One such application is data pricing,
hich gives a price to a query submitted by a user who wants
o buy the produced information. Currently, a common strategy
sed for data pricing is based on query rewriting: A database
tores a set of views with their price. When a new query arrives,
he system rewrites it using the stored views to obtain a query
rice, a process that can be computationally expensive. We plan
o distribute credit through carefully planned and representative
ueries, and use credit information to define a new, faster, and
otentially more flexible pricing function.
Another application is data reduction [69], which addresses the

roblem of reducing the vast – and rapidly expanding – amount
f data that is being produced. Data credit can help address this
roblem by identifying ‘‘hotspots’’ and ‘‘coldspots’’ of data. A hot
pot is data in a database (e.g. a tuple) with a high quantity
f credit, which is therefore valuable for the set of queries that
xecute frequently over the data and distribute the credit. A cold
pot is data with a low quantity of credit which can therefore be
onsidered as less important, and could be deleted, summarized,
r moved to cheaper and/or less efficient memory.
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