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Abstract: In this paper, we propose a novel switched approach to perform smartphone-based 1

pedestrian navigation tasks even in scenarios where GNSS signals are unavailable. Specifically, when 2

GNSS signals are available, the proposed approach estimates both the position and the average 3

bias affecting the measurements from the accelerometers. This average bias is then utilized to 4

denoise the accelerometers data when GNSS signals are unavailable. We test the effectiveness to 5

denoise the acceleration measurements through the estimated average bias by a synthetic example. 6

The effectiveness of the proposed approach is then validated through a real experiment which is 7

conducted along a pre-planned 150m path. 8

Keywords: Pedestrian navigation; Adaptive Kalman filtering; Bias estimation. 9

1. Introduction 10

Smartphone-based pedestrian navigation systems (PNS) are significant tools for vari- 11

ous human activities, including healthcare monitoring [1–3], location-based services (LBS) 12

[4–6], and tourism management [7–9]. Generally, the primary technology available for PNS 13

is the Global Navigation Satellite System (GNSS), typically embedded in our smartphones, 14

which can provide continuous and relatively accurate location information, including 15

long-term operations in outdoor environments [10–13]. Furthermore, with advancements 16

in GNSS technology, services offering differential correction techniques for GNSS mea- 17

surements (some of which are free) are routinely used to obtain position estimates whose 18

accuracy is at the meter level [14,15]. However, in challenging environments such as ur- 19

ban areas, canyons, tunnels and indoors, the accuracy of GNSS signals may be degraded 20

or interrupted [16–23]. To address this problem, one option is to utilize 3D Map-aided 21

pedestrian positioning tools that have been previously developed to correct the GNSS 22

signals or mitigate their unavailability [24–26]. However, the creation and use of 3D city 23

maps can be costly (in economic and computational terms). Another option is to combine 24

multiple infrastructures such as WiFi, Ultra-Wideband (UWB), and optical tracking systems 25

(OTS) to enhance the accuracy of position estimates in a complementary manner [24,27–35]. 26

However, in urban areas characterized by dense buildings, tunnels, or overpasses, smart- 27

phones typically can only receive continuous and stable signals from “sourceless” systems, 28

specifically an IMU manufactured with low-cost micro-electromechanical system (MEMS) 29

technology [36–38]. 30

In such situations, IMU-based pedestrian navigation systems are the unique devices 31

that can provide information about the pedestrian position by means of strapdown integra- 32

tion algorithms (SA) [39–41]. However, the error in estimating the pedestrian position using 33

only IMU signals tends to increase over time primarily due to biases in accelerometers 34

which manifest as constant offsets. Even small biases, combined with small sensor measure- 35

ment noises from the accelerometers, accumulate over time during integration operations, 36

leading to severe errors in velocity and position estimates. Numerous studies have been 37

conducted to address this issue in IMUs. One well-known solution to this problem is the 38
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pedestrian dead reckoning (PDR) method [4,42–44]. The latter exploits the zero-velocity 39

updating (ZUPT) technique [16,45–48], which leverages the observation that foot speed 40

should be zero when the foot is in contact with the ground during walking. This approach 41

helps to mitigate errors that occur due to the bias in the measurements of the accelerations. 42

However, a limitation of ZUPT regards the strict requirements on sensor placement: the 43

IMU should be placed on the feet of the pedestrian, i.e. an impractical solution with the 44

sole use of the smartphone. Alternatively, one can use learning-based methods, such as 45

human motion pattern recognition [49–53]. The recent trade is to use artificial intelligence 46

(AI)-based algorithms [54–58] to compensate measurement outages, i.e. when the GPS 47

signal is unreliable. Empirical studies showed that AI-based algorithms can predict GPS 48

pseudo increments through online learning. The main limitation of this second solution is 49

that these methods are computationally expensive and, as a consequence, the execution of 50

these algorithms on a smartphone causes a rapid discharge of the battery. 51

The aim of this paper is to propose a switched approach to perform smartphone-based 52

pedestrian navigation tasks, even in scenarios where GNSS signals are unavailable, without 53

using algorithms whose computational cost is expensive or requiring invasive sensors. The 54

proposed approach computes the estimate of the pedestrian position in two different ways 55

switching from one to the other depending on the availability of the GNSS signals. When 56

the GNSS signals are available, the procedure estimates the pedestrian position and the 57

bias affecting the measurements coming from the accelerometers by means of an adaptive 58

Kalman filter. Such bias is averaged over a time window in order to prevent occasional 59

inaccurate estimates in some specific time steps. When the GNSS signals are unavailable, 60

the accelerometer signals are denoised through the average bias previously estimated. Then, 61

the pedestrian position is estimated using an adaptive Kalman filter. The experiments 62

showed that the estimated average bias contains useful information that can be exploited 63

when the GNSS is not available. Therefore, we envision that the estimated average bias 64

could be incorporated in the PDR technology, which relies on acceleration measurements 65

coming from the IMU device, in order to improve the so called “PDR pedestrian step 66

estimation” task. 67

The outline of the paper is as follows. In Section 2 we introduce the switched approach 68

for smartphone-based pedestrian navigation tasks. In Section 3.1, we test, through a 69

synthetic example, the validity to denoise the acceleration measurements through the 70

estimated average bias. In Section 3.2 we validate the proposed approach through a real 71

experiment which is conducted along a pre-planned 150m path and show that in both 72

GNSS-free environment and GNSS-denied environment the root mean square error of the 73

estimated pedestrian position is always less than 1 meter. Finally, in Section 4 we draw the 74

conclusions. 75

2. The proposed approach 76

Consider a pedestrian having a smartphone equipped with both the exteroceptive 77

sensor (GNSS) and the proprioceptive sensor (IMU), which comprises an accelerometer 78

and a rate gyro. We aim to address the following 2D pedestrian navigation problem: let 79

pk = [ pN,k pE,k ]
⊤ ∈ R2 [m] denote the position of the pedestrian relative to the east-north- 80

up coordinates system (ENU-system) at time k; given the available data at time k from the 81

smartphone sensors (i.e. GNSS and IMU), we want to compute an estimate, say pk|k [m], of 82

pk. 83

In the case the GNSS signals are available, the accuracy of the estimate pk|k is generally 84

satisfactory. However, in obstacle-dense environments, such as indoors, under dense tree 85

cover, or in urban canyon, GNSS signals often degrade or disappear entirely and the sole 86

onboard IMU signals do not provide enough information to obtain a reliable estimate of the 87

pedestrian position due to its cumulative error mainly caused by the constant bias affecting 88

the accelerometers. As a consequence, the resulting estimate pk|k based solely on the IMU 89

signals will be not enough accurate. 90
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Figure 1. The switched approach for pedestrian navigation.

In what follows we propose a switched approach to compute pk|k: the estimation is 91

performed in two different ways depending on whether the GNSS signals are available or 92

not. In the case the GNSS signals are available (i.e. we perform navigation using GNSS 93

signals), we exploit the GNSS and IMU data to estimate pk and the bias on accelerometers. 94

In order to obtain a robust estimate of the bias, we compute its average over a time 95

window of length N and the latter is denoted by b̄ [m/s2]. In the case the GNSS signals are 96

unavailable (i.e. we perform navigation without GNSS signals), the estimated average bias, 97

computed when the GNSS signals were available, is used to denoise the signals obtained 98

from the accelerometers. Using the “denoised” IMU data, we compute an accurate estimate 99

of pk. The switched scheme we propose is illustrated in Figure 1. In what follows, we 100

describe in detail the navigation tasks with and without navigation signals. In order to 101

streamline the presentation of these two tasks, we assume that the time instant in which 102

the switch happens is k = 1 for both the tasks. 103

2.1. Navigation using GNSS signals 104

The sensors available (i.e. able to provide information about the pedestrian position) 105

in the smartphome are: 106

• An inertial measurement unit whose axes are aligned with the principal axes of 107

the smartphone. The latter comprises two types of triaxial sensors that provide the 108

measurements expressed in the local coordinate system (L-system): an accelerometer 109

that measures the specific force am,k ∈ R3 [m/s2], and a rate gyro that measures 110

the angular velocity wm,k = [ ϕk/T θk/T ψk/T ]⊤ ∈ R3 [rad/s], where T is the IMU 111

sampling time, ϕk [rad] is the roll angle, θk is the pitch angle and ψk [rad] is the yaw 112

angle. 113

• A GNSS receiver that gathers the position measurements pm,k = [ pmN,k pmE,k ]
⊤ ∈ R2

114

[m] as well as the corresponding velocities vm,k = [ vmN,k vmE,k ]
⊤ ∈ R2 [m/s] both 115

expressed in the ENU-system. 116

The dynamic of the pedestrian is described by the following inertial-aided model [59]: 117

xk+1 = Axk + BaG,k + εk (1)

where

A =

 I2 TI2 0
0 I2 0
0 0 I3

 ∈ R7×7, B =

 0.5T2 I2 0
TI2 0
0 0

 ∈ R7×3,

In ∈ Rn×n is the identity matrix; xk = [ p⊤k v⊤k b⊤k ]⊤ is the state, in which pk ∈ R2 [m] and 118

vk ∈ R2 [m/s] are the position vector and the velocity vector at time k of the pedestrian 119
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in the ENU-system, bk ∈ R3 [m/s2] is the vector bias on accelerometers in the L-system. 120

Moreover, aG,k is the global acceleration in the ENU-system: 121

aG,k = Mk(am,k − bk) + gN (2)

where 122

Mk = Mϕk Mθk Mψk (3)

is the rotation matrix representing the orientation of the L-system with respect to the
ENU-system:

Mϕk =

 cos ϕk, 0, sin ϕk
0, 1, 0

− sin ϕk, 0, cos ϕk

, Mθk
=

 1, 0, 0
0, − cos θk, sin θk
0, sin θk, cos θk

, Mψk =

 cos ψk, sin ψk, 0
− sin ψk, cos ψk, 0

0, 0, 1

,

and gN is the constant gravity vector in the ENU-system. Finally, εk ∈ R7 is white Gaussian 123

noise with unknown mean qk and unknown covariance matrix Qk. It is not difficult to see 124

that the dynamic model (1) can be expressed as follows: 125

xk+1 = Ψkxk + Buk + εk (4)

where 126

Ψk = A − BMk[ 0 0 I3 ], (5)

and 127

uk = Mk(am,k + gN). (6)

The measurement model is defined as: 128

yk = Cxk + ϵk (7)

where

C =

[
I2 0 0
0 I2 0

]
,

yk = [ pm,k vm,k ]
⊤ and ϵk ∈ R4 is the white Gaussian noise with unknown mean rk and 129

unknown covariance matrix Rk. 130

Then, at time k an estimate of the position of the pedestrian in the ENU-system, i.e. 131

pk, and the vector bias bk on the accelerometers in the L-system can be obtained from the 132

state estimate xk|k of xk of the state space model (4)-(7). However, there is a main issue 133

to address, that is qk, rk and Qk, Rk are unknown. This latter is addressed by using the 134

adaptive Kalman filter [60–63] which computes both xk|k and the parameters characterizing 135

the noise processes. The resulting algorithm at time k = 1, 2, ... is the following: 136

1. Available information: 137

yk, xk−1|k−1, uk−1, wm,k, am,k, Pk−1|k−1, qk−1, rk−1, Qk−1, Rk−1.

2. Prediction step: 138

xk|k−1 = Ψk−1xk−1|k−1 + Buk−1 + qk−1 (8)
139

Pk|k−1 = Ψk−1Pk−1|k−1Ψ⊤
k−1 + Qk−1. (9)

3. Measurement noise parameters update: 140

rk = (1 − ηk)rk−1 + ηk

(
yk − Cxk|k−1

)
(10)

141

ek = yk − Cxk|k−1 − rk (11)
142

Rk = (1 − ηk)Rk−1 + ηk

(
eke⊤k − CPk|k−1C⊤

)
(12)
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where ek is the innovation, ηk = (1 − ρ)/(1 − ρk) and ρ ∈ [0, 1] is the forgetting factor. 143

4. Update step: 144

Kk = Pk|k−1C⊤
(

CPk|k−1C⊤ + Rk

)⊤
(13)

145

xk|k = xk|k−1 + Kk

(
yk − Cxk|k−1 − rk

)
(14)

146

Pk|k = (I − KkC)Pk|k−1. (15)

5. Process noise parameters update: 147

qk = (1 − ηk)qk−1 + ηk

(
xk|k − Ψk−1xk|k−1

)
(16)

148

Qk = (1 − ηk)Qk−1 + ηk

(
Kkeke⊤k K⊤

k + Pk|k − Ψk−1Pk|kΨ⊤
k−1

)
. (17)

6. Compute 149

pk|k = [ I 0 0 ]xk|k

bk|k = [ 0 0 I ]xk|k.

7. Compute the average value of the bias vector over a window of length N

b̄ =
1
N

k

∑
i=k−N+1

bi|i.

It is worth noting that the estimate of the average bias is b̄, i.e. the one computed in 150

Step 7. This averaging is performed in order to prevent occasional inaccurate estimates in 151

some specific time steps. Notice that, for the transients steps, i.e. k such that 1 < k < N, we 152

have that b̄ = 1
k ∑k

i=1 bi|i. 153

Remark 1. It is worth noting that the performance of the adaptive Kalman filter depends on how 154

much accurate the state space model (4)-(7) is. In the case the latter is not so much accurate, e.g. 155

when the sampling time T is not sufficiently small or the estimated covariance matrices are not so 156

accurate, then one could design an adaptive robust Kalman filter on the basis of the recent literature 157

about robust Kalman filtering [64–67]. These approaches postulate that the actual model belongs 158

to an ambiguity set which is a ball about the nominal model (i.e (4)-(7)) in the topology induced 159

by the Kulback-Leibler divergence. Its radius depends on the degree of accuracy of the nominal 160

model. Moreover, these filters can be generalized also to ambiguity sets which are balls defined 161

using more general topologies, see [68,69]. The appealing feature of these robust filters is that they 162

exhibit convergence properties in the case of constant parameters [70–72] and they can be efficiently 163

implemented since they have the same structure of the Kalman filter [73,74]. 164

2.2. Navigation without GNSS signals 165

In this scenario the GNSS signals are unavailable and the only source of information 166

comes from the onboard IMU. However, the error in the estimation of the pedestrian 167

position using only the IMU signals tends to increase over time. This error is due by the so 168

called integration drift, i.e. the error generated by the double integration of am,k: Even small 169

errors or biases in the measurements accumulate over time during integration, leading 170

to increasing errors in velocity and position estimates. It is worth noting that the drift 171

integration can be avoided by means of the pedestrian dead reckoning (PDR) technology, 172

[75]. However, the latter needs to estimate the number of steps during the walking of the 173

pedestrian. Such information requires the use of computationally expensive algorithms or 174

invasive sensors (e.g. put some sensors on the foots of the pedestrian). 175
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In order to overcome the aforementioned limitations we address the issue regarding 176

the integration drift using the average estimated bias in the L-system computed when the 177

GNSS signals were available, i.e. b̄. More precisely, we define the denoised measurement: 178

yk := am,k − b̄. (18)

Then, we consider the state space model (called “current” statistical model see, [76,77]): 179

xk+1 = Φk+1|kxk + Uk+1|k āk + ηk (19)

yk = Hxk + ϵk (20)

where xk = [ s⊤k ν⊤k a⊤k ]⊤, sk = [ sX,k sY,k sZ,k ]
⊤ ∈ R3 [m] is the 3D displacement 180

expressed in the L-system, vk = [ vX,k vY,k vZ,k ]
⊤ are the corresponding velocities; 181

ak = [ aX,k aY,k aZ,k ]
⊤ are the corresponding local accelerations in the L-system; 182

Φk+1|k =

 I3 TI3 α−2
k

(
αkT − I3 + e−αkT)

0 I3 α−1
k

(
I3 − e−αkT)

0 0 e−αkT



Uk+1|k =

 α−1
k

(
−T + αkT2

2 + α−1
k (I3 − e−αkT)

)
α−1

k (αkT − I3 + e−αkT)
I3 − e−αkT


H =

[
0 0 I3

]
(21)

where we recall that T is the IMU sampling time, αk > 0 is a diagonal matrix of dimension 183

3 and it represents a parameter whose value will be discussed later; ηk ∈ R9 is white 184

Gaussian noise with zero mean and covariance matrix 185

Σk =

 Q11,k Q12,k Q13,k
Q12,k Q22,k Q23,k
Q13,k Q23,k Q33,k

 (22)

where 186

Q11,k =
1
2 Λkα−5

k

(
I3 − e−2αkT + 2αkT +

2α3
k T3

3 − 2α2
kT2 − 4αkTe−αkT

)
Q12,k =

1
2 Λkα−4

k
(
e−2αkT + I3 − 2e−αkT + 2αkTe−αkT − 2αkT + α2

kT2)
Q13,k =

1
2 Λkα−3

k
(

I3 − e−2αkT − 2αkTe−αkT)
Q22,k =

1
2 Λkα−3

k
(
4e−αkT − 3I3 − e−2αkT + 2αkT

)
Q23,k =

1
2 Λkα−2

k
(
e−2αkT + I3 − 2αkT

)
Q33,k =

1
2 Λkα−1

k
(

I3 − e−2αkT)
and Λk > 0 is a diagonal parameter matrix of dimension 3 whose value will be discussed 187

later; ϵk ∈ R3 is white Gaussian noise with unknown mean rk and unknown covariance 188

matrix Rk; āk is the average value of the maneuvering acceleration over a window of length 189

N 190

āk =
1
N

k−1

∑
i=k−N

ai|i (23)

and ai|i is the estimate of ai at time i. Notice that, in the transient initial steps, i.e. for k such 191

that 1 < k < N, we have āk =
1
k ∑k−1

i=0 ai|i. 192

The aim of the state space model (19)-(20) is to provide an estimate xk|k = [ s⊤k|k ν⊤k|k a⊤k|k ]
⊤

193

of xk such that the estimate of the displacement sk|k is accurate. The latter will be accurate 194



Version August 12, 2024 submitted to Sensors 7 of 17

if the estimate ak|k of ak is accurate. From (19), it is not difficult to see that ak+1|k+1 is 195

computed according to the following a priori information about the evolution of ak: 196

ak+1 = exp(−αkT)ak + (1 − exp(−αkT))āk + ηa,k, (24)

that is the accelerations are a convex combination of their previous value and their average 197

value (on a window of length N). The parameter matrix αk > 0 tunes the influence of 198

ak and āk on ak+1: if the pedestrian displacement changes slowly over time, then the 199

diagonal elements of αk should be taken very large. Notice that, Λk tunes how much 200

the prior in (24) should influence the estimate of the accelerations. The choice of the 201

parameters αk−1 and Λk−1 can be computed by means of the Yule-Walker algorithm, see 202

[77,78] for more details, or in general a spectral estimation method which estimates an 203

autoregressive process of order one through a moment matching approach [79–82]. Here, 204

the moments are the covariance lags of order zero and one obtained from the time series 205

{ ai|i, i = k − N . . . k − 1 }. Then, we can use the adaptive Kalman filter [77] to compute 206

xk|k and the parameters characterizing the noise process ϵk. 207

Once sk|k = [ sX,k|k sY,k|k sZ,k|k ]
⊤ is computed, then the estimate pk|k = [pN,k|k pE,k|k ]

⊤
208

of pk can be computed from sk|k, pk−1|k−1 and wm,k (angular velocity measured from the 209

IMU unit) as follows 210

pN,k|k = pN,k−1|k−1 + dk cos(ψk) (25)

pE,k|k = pE,k−1|k−1 + dk sin(ψk) (26)

where
dk =

√
s2

X,k|k + s2
Y,k|k.

In plain words, the estimate of the pedestrian position is obtained updating the previous 211

one: the distance covered is obtained by sk|k while the direction by the yaw angle ψk, [83]. 212

The process of this trajectory generation is illustrated in Fig. 2. 213

Figure 2. Trajectory generation using the distance covered dk and the yaw angle ψk.

The resulting algorithm at time k = 1, 2, . . . is the following: 214

1. Available information: 215

yk, xk−1|k−1, pk−1,k−1 wm,k, Pk−1|k−1, rk−1, Rk−1.
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2. Compute the average value of the maneuvering acceleration āk as in (23) where ai|i is 216

obtained from xi|i. 217

3. Compute the parameters αk−1 and Λk−1 (and thus also Σk−1) using ai|i with i = 218

k − N . . . k − 1. 219

4. Compute xk|k−1 and Pk|k−1 as in (8) and (9) where Ψk−1, B and Qk−1 are substituted 220

by Φk|k−1, Uk|k−1 and Σk−1, respectively. 221

5. Compute rk and Rk as in (10)-(12) where C is substituted by H. 222

6. Compute xk|k and Pk|k as in (13)-(15) where C is substituted by H 223

7. Compute pk|k as in (25)-(26). 224

It is worth noticing that, the initial condition p0|0 is obtained by the last estimate of the 225

pedestrian position obtained in the previous navigation task (i.e. the one of Section 2.1). 226

3. Experiments 227

In this section, we verify the effectiveness and feasibility of the proposed switched 228

approach through both synthetic and real experiments. 229

3.1. Synthetic experiment 230

We firstly analyze the impact of the bias and noise affecting acceleration measurements 231

on the accuracy of pedestrian position estimation. Moreover, we also verify the validity to 232

denoise the acceleration measurements through the estimated average bias (as the method 233

proposed in Section 2 does). 234

We generate the IMU and GNSS measurements are follows. For simplicity, we only 235

consider the case where the acceleration is different from 0 only on the Y-axis, i.e. it is 236

equal to 0 on the other two axes. We generate the one-dimensional reference acceleration 237

in the L-system as in Fig. 3 (red line); the corresponding sampling time is T = 0.01s. 238

This reference describes a situation in which the pedestrian starts to run and then stops. 239

In order to verify the goodness of the estimated average bias on the position estimation, 240

we consider the idealistic setup where the gyro measurements are generated following 241

a Gaussian distribution with zero mean and a small covariance matrix 0.01I3. Then, we 242

generate the corresponding positions in the ENU-system. The GNSS signals are obtained by 243

corrupting the positions in the ENU-system adding white Gaussian noise with zero mean 244

and covariance matrix 0.005I2. Since the primary error sources in the accelerometer-based 245

pedestrian position estimation is the bias in the form of constant offset and random noise, 246

we generate the corresponding measured acceleration as shown by the blue line in Fig. 3, 247

which is generated as the sum of white noise (Gaussian with zero mean and variance equal 248

to 1), the reference acceleration (red line in Fig 3), and a bias (set as 1). 249
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Figure 3. Reference acceleration (red line) and the corresponding measured signal (blue line).
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We consider the case the GNSS signals are available. Thus, we apply the procedure of 250

Section 2.1 to estimate the average bias b̄. Here, the forgetting factor is set as ρ = 0.1 and 251

N = 100. The initial condition are set as: 252

x0|0 = [ 0 0 0 ]⊤, P0|0 = 0.01I, q0 = [ 0 0 0 ]⊤, r0 = [ 0 0 0 ]⊤, Q0 = 0.01I, R0 = I.

As shown in Fig. 4, the estimated average bias converges to its true value, i.e. 1. Moreover, 253

to further prove its effectiveness, we also set different reference values of bias, i.e. 0 and 2. 254

Fig. 5 shows that the average bias can be estimated in a satisfactory way also in these cases. 255
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0.5
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1.5

Figure 4. Estimated average bias when its true value is 1.
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(a)Estimated average bias when its true value is 0.
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(b)Estimated average bias when its true value is 2.

Figure 5. Average bias estimation.

To further assess the accuracy of the estimated average bias, we use the procedure
of Section 2.2, i.e. the one in the case the GNSS signals are not available, using the IMU
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signals of before and the bias estimated before (the case in which the true bias is equal to 1).
The forgetting factor is set as ρ = 0.1, N = 100 and the initial conditions as

x0|0 = [ 0 0 0 ]⊤, P0|0 = 0.01I, r0 = [ 0 0 0 ]⊤, R0 = I.

Moreover, we set p0|0 = [ 0 0 ]⊤. Fig. 6 shows that the estimated acceleration on the Y-axis. 256

We notice that the estimate is very accurate. Fig. 7 shows the displacement along the Y-axis 257

in the case the average bias is removed (i.e. our procedure), green line, and not removed, 258

blue line. We observe that our estimate is very accurate. Conversely, if we neglect the 259

influence of the average bias in accelerometer measurements and directly apply the raw 260

acceleration, then the resulting deviation is significant. 261
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Figure 6. Estimated acceleration and reference acceleration.
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Figure 7. Estimated displacement and reference displacement.

3.2. Real Experiment 262

An outdoor pedestrian navigation experiment was conducted using a smartphone, 263

named Huawei Mate 50 (where its axis orientation is illustrated in Fig. 8(a)). The smart- 264

phone was held as in Fig. 8(a) and kept as steady as possible by a pedestrian who followed 265
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a pre-planned path of approximately 150 meters, depicted in Fig. 8(b). The longitude and 266

latitude of this pre-planned path were sourced from Google Maps. These coordinates were 267

then converted to the ENU coordinate system, represented by the red line in Fig. 8(c). 268

Moreover, the GNSS raw measurements, i.e. the longitude and latitude of the pedestrian, 269

were collected by the GNSS receiver in the smartphone (Huawei Mate 50) using “MATLAB 270

Mobile”. These coordinates were also converted to the ENU coordinate system, represented 271

by the blue points in Fig. 8(c), where lost segments are marked using a different line 272

color and style. Hereafter, we shall call these GNSS measurements in the ENU coordinate 273

system as GNSS measurements. Note that, the sampling time of GNSS (TGNSS = 1s) is 274

much larger than that of IMU (T = 0.01s). Theretofore, we apply the causal zero-order 275

hold interpolation to align the GNSS signals with IMU signals. We estimate the position 276

of the pedestrian using the switched approach of Section 2, leveraging GNSS and IMU 277

signals from the smartphone. Here, the initial conditions as well as the parameters, i.e. 278

ρ and N, are set as in Section 3.1. It is worth noticing that the yaw is provided by the 279

IMU and it is always available. We have found that the raw measurements of the gyro are 280

of reasonable quality under our instrument setups: we only performed a simple online 281

denoising operation (i.e. a low pass causal filtering operation) on these raw measurements. 282

(a)Axis orientation of the smartphone.

Beijing Technology and 
Business University

(b)The pre-planned path. Dashed style
means that the pedestrian is walking on an
underpass.
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(c)The reference trajectory and GNSS measurements in the ENU
system. The pedestrian started at the black circle, moving clockwise,
following the red path.

Figure 8. Description of the experiment.

In the first phase the GNSS signals are available and thus the navigation procedure 283

with GNSS signals of Section 2.1 is applied. Fig. 9 shows the estimated average bias b̄ 284

during this phase. At the end of this phase we have b̄ = [2.034, 1.579,−0.439]⊤. This is 285

the average bias used in the second phase in which the GNSS signals are not available (it 286

corresponds to the first lost trajectory, see Fig. 8(c)) and thus the navigation procedure 287

without GNSS signals of Section 2.2 is applied. In the third phase the GNSS signals are 288

available (it corresponds to red segment between the first and second lost trajectory, see 289

Fig. 8(c)) and thus the procedure of Section 2.1 is applied; at the end of this phase we have 290

b̄ = [2.129, 1.378,−0.427]⊤. This is the average bias used in the fourth phase in which the 291
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GNSS signals are not available (it corresponds to the second lost trajectory, see Fig. 8(c)) and 292

the navigation procedure of Section 2.2 is used. Finally, in the last phase the GNSS signals 293

are available and thus we apply the procedure of Section 2.1. Note that, the initial condition 294

p0|0 used in the second phase and the fourth phase are given by the final estimates of the 295

state provided in the first phase and the third phase. 296
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Figure 9. Estimated vector bias b̄ in the L-system (first phase).

Fig. 10 shows the estimated pedestrian position during the first and second time when 297

the GNSS signals are lost (it corresponds to the first and second lost trajectory in Fig. 8(c), 298

respectively). We can see such estimate is very accurate even thought the GNSS data are 299

not available. As a sanity check, we also estimated the pedestrian position using the IMU 300

signals without b̄ and the resulting estimate is highly inaccurate due to cumulative errors. 301

The overall pedestrian position estimates obtained by our method are shown in Figure 11. 302

We see that the accuracy achieved by the proposed algorithm is very good. Finally, Table 1 303

compares the Root Mean Square Error (RMSE) of the two lost trajectories and the whole 304

trajectory; as we can see the RMSE is always less than 1 meter. 305
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Figure 10. Position estimation in the ENU-system in the GNSS-denied environment.

Table 1. RMSE for the pedestrian position estimation along the East and North directions and in the
two dimensional space.

East North 2D
First lost trajectory 0.7146 0.0921 0.7764
Second lost trajectory 0.6909 0.2038 0.8877
Whole trajectory 0.2910 0.0571 0.3135
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Figure 11. The overall pedestrian position estimation in the ENU-system.
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4. Conclusions 306

In this paper, we presented a switched scheme to perform a smartphone-based pedes- 307

trian navigation task. The proposed approach estimates in real-time the position of the 308

pedestrian also in the case the GNSS signals are unavailable. More precisely, when GNSS 309

signals are available, the proposed approach estimates both the position and (the average 310

value of) the bias affecting the measurements coming from the accelerometers. This es- 311

timated average bias is used to denoise the accelerometers data when the GNSS signals 312

are not available. Unlike the PDR technology, our approach does not require the use of 313

computationally expensive algorithms or invasive sensors and thus it can be easily embed- 314

ded in a smartphone device. Synthetic and real experiments demonstrate the validity and 315

effectiveness of the proposed method in both GNSS-free environment and GNSS-denied 316

environment. 317

This study also showed that the estimated average bias contains useful information 318

that can be exploited when the GNSS is not available. So, an interesting question is whether 319

this average bias can be incorporated in the PDR technology, which relies on acceleration 320

measurements coming from the IMU device [84,85], in order to improve the so called “PDR 321

pedestrian step estimation” task. 322
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