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Abstract 

Differences in lifespan between populations, e.g. between females and males, are often measured by 

differences in summary statistics, such as life expectancy, which generally show an advantage of 

females over males across the whole age span. However, such statistics ignore the fact that two 

lifespan distributions are generally not mutually exclusive and that not all females outlive all males. 

Here we use a novel measure of inequality in lifespans: the outsurvival probability, which is 

interpreted as the probability of males to outlive females. The measure accounts for the similarities 

in lifespan between populations. It also considers the interaction between the mean and variance of 

two lifespan distributions and their combined effect on between-populations inequalities. Our results 

show that the probability of males outliving females varied between 25% and 50%, across 44 

countries and regions since the middle of the 18th century. Thus, despite the usually male lower life 

expectancy and higher death rates at all ages, males have a substantial chance of outliving females. 

Our suggested approach is generalizable to any pair of populations.  
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1. INTRODUCTION 

The female survival advantage has been observed over time across many human populations and is 

rooted in a complex combination of biological and behavioral factors (Austad & Fischer, 2016; 

Crimmins et al., 2019; Gjonça et al., 2005; Preston & Wang, 2006; Rogers et al., 2010). Females have 

been found to have longer survival and lower death rates than men in most modern populations 

(Austad & Fischer, 2016; Barford et al., 2006; Beltran-Sanchez et al., 2015; Gjonça et al., 2005; Luy 

& Gast, 2014) and even under extreme mortality conditions (Zarulli et al., 2018). In addition, females 

experienced lower lifespan variation than males (Aburto et al., 2020; Colchero et al., 2016). Sex 

differences in mortality have often been identified by comparing life expectancy and lifespan 

variation between females and males, which respectively summarize the average length of life and 

the spread of lifespans within populations.  However, the use of life expectancy and lifespan variation 

ignores the fact that lifespan distributions are generally not mutually exclusive. Indeed, two lifespan 

distributions can overlap, such that individuals can have similar lifespans even if they belong to 

different populations. Despite females having higher life expectancy and lower lifespan variation than 

males, not all females outlive all males. In addition, while the degree of overlapping between two 

lifespan distributions largely depend on the mean and on the variation around it, life expectancy and 

lifespan variation are generally analyzed independently, overlooking their combined effect on 

inequalities between sexes.  

To overcome these shortcomings, previous research has suggested investigating how different 

are two lifespan distributions, using, for example, the Kullback-Leibler divergence (Edwards & 

Tuljapurkar, 2005). Stratification indexes, based on how much two lifespan distributions overlap, 

have also been used to study mortality differences between socioeconomic groups (Shi et al., 2020; 

Zhou & Wodtke, 2019). The interpretation of these indexes can, however, be cumbersome and not 

demographically meaningful.  
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In this article, we use a novel and straightforward measure, the outsurvival probability (Vaupel 

et al., 2020), which quantifies the probability that individuals in one population outlive those in 

another population, for randomly paired individuals. We show that this measure considers both the 

overlap between two lifespan distributions and the interaction between the mean and variance of each 

distribution. We computed the outsurvival probability to study sex differences in mortality in 44 

populations covering over 200 years of data. Our results highlight that, despite sometimes large 

differences in life expectancy, there are important similarities between males’ and females’ lifespan 

distributions. 

 

2. METHOD 

2.1 THE CONCEPT 

Consider two populations under the four scenarios based on lifespan distributions with mean and 

standard deviation (SD) defined in Figure 1. When looking at scenario A, the first population (in red) 

has a smaller mean lifespan and larger SD than the second population (in blue). An inference from 

these summary statistics would be that individuals in the first population are worse off than 

individuals in the second. However, more individuals survive to (and die at) high ages in the first 

population, as illustrated by the red band to the right of the figure, suggesting a certain advantage in 

health and mortality at older ages. At the same time, the first population has a disadvantage at younger 

ages. Thus, only some individuals in the first population are worse off than some individuals in the 

second. Randomness plays a salient role in the mortality process and many individuals in both 

populations might end up having similar lifespans. The mean and SD statistics tend to provide a 

dichotomic perspective on inequalities between two populations and neglect the similarities and 

overlaps in lifespan between populations. The outsurvival probability, 𝜑𝜑, instead, captures these 

dimensions by measuring the probability that an individual from a population with high mortality will 
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outlive an individual from a population with low mortality (Vaupel et al., 2020). In scenario A, this 

statistic is 48%. If both distributions were equal, 𝜑𝜑 would be 50%, meaning that individuals in both 

populations have an equal probability to outlive each other. 

 

 

Fig. 1 Four scenarios of interactions between lifespan distributions and corresponding statistics. 

 

We also show that values of 𝜑𝜑 depend on both the differences in life expectancies and the spread 

of the lifespan distributions. Consider the two populations in scenarios B and C. The difference in 

mean lifespan is the same in both scenarios, i.e. 15 years. However, in scenario C the first population 
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has a larger SD, which implies more individuals surviving to older ages, despite greater inequalities, 

and thus a greater potential to outlive individuals from the second population. Indeed, 𝜑𝜑 is higher in 

scenario C (19%) than in scenario B (14%).  

 Now compare scenario B to scenario D. This time, the second population in D has a smaller 

SD, with fewer individuals dying at younger ages, making it more difficult for individuals in the first 

population to outlive them. This reduces 𝜑𝜑 to 12%.  

The last two comparisons highlight that for the same difference in life expectancy, larger 

lifespan variation in both populations generally results in larger 𝜑𝜑. The comparison of scenarios A 

and C also show that small differences in life expectancy leads to larger value of 𝜑𝜑.  

 

2.2 FORMALIZING THE APPROACH 

Let 𝑑𝑑𝑖𝑖(𝑥𝑥), 𝑖𝑖 = 1,2, denote the lifespan distribution at age x in two populations. The cumulative 

distributions are represented by 𝐷𝐷𝑖𝑖(𝑥𝑥), such that such 𝐷𝐷𝑖𝑖(𝑥𝑥) =  ∫ 𝑑𝑑𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑 𝑥𝑥
0 and the survivorship is 

denoted by ℓ𝑖𝑖(𝑥𝑥), with ℓ𝑖𝑖(𝑥𝑥) = 1 −  𝐷𝐷𝑖𝑖(𝑥𝑥). The probability that the individual from the first 

population will outlive the individual from the second population is (Vaupel et al., 2020): 

 𝜑𝜑 = ∫ 𝑑𝑑2(𝑥𝑥)ℓ1(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0 . (1) 

It can be shown that this statistic relates to the joint probability density function of two lifespan 

distributions, which gives the probability of realizations of two lifespans and thus is related to the 

overlap of the two distributions. Assume two populations of individuals, with age at death x and y, 

respectively. Assume the two populations are independent, meaning that the length of life x does not 

depend on the length of life y and vice versa. This implies that the joint probability density function, 

𝑑𝑑1,2(𝑥𝑥,𝑦𝑦), equals the product of the marginal densities so that  𝑑𝑑1,2(𝑥𝑥,𝑦𝑦) = 𝑑𝑑1(𝑥𝑥) 𝑑𝑑2(𝑦𝑦). We are 

interested on calculating the probability (φ) of individuals in the first population outliving those in 

the second population. This implies that 0 ≤ 𝑦𝑦 < 𝑥𝑥  so: 
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(2) 

More details about equation (2) and its relation to equation (1) are provided in Appendix B. 

Equation (2) is equivalent to matching at random individuals from each population and calculating 

the proportions of individuals from the first population outliving the paired individual from the 

second. We performed such analysis via simulation of individuals from a specific lifespan distribution 

and estimated the corresponding statistics (see Appendix C). Equivalent results were found.  

Equation (2) is also equivalent to the expected failure probability in stress-strength interference 

(SSI) model, which assesses the probability that the stress (population 1) exceeds the strength 

(population 2) of a material (An et al., 2008). If the distributions of both populations follow a Normal 

distribution with mean 𝜇𝜇𝑖𝑖 and standard deviation 𝑠𝑠𝑖𝑖, SSI model has shown that the probability of 

failure is P(Z) with 𝑍𝑍 =  − 𝜇𝜇2− 𝜇𝜇1

�𝑠𝑠12+ 𝑠𝑠22
 (EL-Sayed S & Constantin, 2011). This relation formalizes what 

is illustrated in section 2.1: φ is sensitive to the difference in the means and to the level of variation 

in both distributions. However, lifespan distributions are not normally distributed and additional 

moments could also affect the value of φ.  

 

2.3 DISCRETE APPROXIMATION  

In a discrete time setting, similar equivalences can be found. Let 𝑑𝑑𝑛𝑛 𝑥𝑥
𝑖𝑖  be the life table deaths between 

age x and x+n in population i and 𝐷𝐷𝑛𝑛 𝑥𝑥
𝑖𝑖  the cumulative distribution. For a given age-group width of n, 
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the probability of individuals in the first population outliving those in the second population can be 

found by: 

 𝜑𝜑 ≈  � 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

2  + 𝑑̅𝑑
𝜔𝜔

𝑥𝑥=0

=  � 𝑑𝑑𝑛𝑛 𝑥𝑥−𝑛𝑛
2  𝑙𝑙𝑛𝑛 𝑥𝑥

1  +  𝑑̅𝑑
𝜔𝜔

𝑥𝑥=0

  (3) 

with  𝑑̅𝑑 =  ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0

2
  and ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥

1 𝑑𝑑𝑛𝑛 𝑥𝑥
2𝜔𝜔

𝑥𝑥=0   being the probability that individuals in both populations 

died in the same age-group. The latter statistic is sensitive to the width of the age-groups such that 

smaller age-groups result into smaller values, with lim
𝑛𝑛 →0

∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0 = 0. In the Appendix C, we 

compared the discrete and continuous approaches and find that both approaches yield comparable 

results.  

 

3. DATA 

We used life tables by sex for all available countries and years from the Human Mortality Database 

(HMD, 2020). Subnational data were used for Germany with separate analysis for East and West 

Germany; and the United Kingdom for England-Wales (total population), Scotland and Northern 

Ireland, totalizing 44 populations. The earliest year with available data was 1751 (for Sweden). 

Information about the available populations and years are provided in Appendix A. We compared 

females and males’ life tables in each country/region. 

 

4 RESULTS 

Figure 2 shows the outsurvival probability of males over females (𝜑𝜑) since 1850 for all HMD 

countries. The probability of males outliving females has, in all points in time and across all 

populations, varied between 25% and 50%, with only one exception: Iceland in 1891 (51.3%), an 

exceptional year when female life expectancy was lower than male life expectancy. Before the First 

World War, 𝜑𝜑 was slowly decreasing, on average from 47.3% in 1850 to 46.0% in 1913. Afterwards, 
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𝜑𝜑  declined faster. In 1930, the mean 𝜑𝜑  across populations was 45.4% (ranging from 42.8% (France) 

to 48.4% (Netherlands)). By 1985, the mean 𝜑𝜑  was 35.5% (ranging from 31.2% (Russia) to 42.8% 

(Israel)). 𝜑𝜑 started increasing around the 1980s for some countries, but continued to decrease in others 

until the 2000s, especially in Eastern European countries. The mean in 2017 was 37.1%, with values 

varying between 28.7% (Belarus) and 42.5% (Iceland).    

 

 

Fig. 2 Probability of males outliving females since 1850 for five countries and the range for all 

countries in the HMD in grey. 

 

Figure 3 shows that 𝜑𝜑 is negatively correlated with the differences in life expectancy and 

positively correlated with females’ standard deviation (similar results were found when males’ 

standard deviation was used, due to the strong correlation between females and males’ standard 

deviation). Thus, the smaller the difference in life expectancy and the larger the standard deviation, 

the higher 𝜑𝜑 would be. The correlation between 𝜑𝜑 and the standard deviation is weaker in recent 

years, due to reduction in sex differences in life expectancy, which is also driving changes in 𝜑𝜑 . Even 
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though both life expectancy and lifespan variation affect 𝜑𝜑, the statistic appears more sensitive to the 

differences in life expectancy than to the level of lifespan variation. We found similar results for 

cohort data (see Appendix D).  

The same 𝜑𝜑 value can then be found for different combinations of sex differences in life 

expectancy and levels of lifespan variation. For example, the same 𝜑𝜑 of 36.3% was found in France 

in 1961 and in 2017 (Figure 3). However, the sex differences in life expectancy was 6.9 in 1961 and 

5.8 in 2017 and the standard deviation for females was 18.3 in 1961 and 13.6 in 2017. Thus, due to 

smaller lifespan variation in recent years, smaller sex differences are required today to have the same 

𝜑𝜑 as in the past. 

 

 

Fig. 3. Relation between 𝜑𝜑  and (a) the sex differences in life expectancy and (b) the standard 

deviation for females for HMD period data, with France highlighted (red triangles). 
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Figure 4 shows the same relations as shown in Figure 3 but for survivors to age 50. Lifespan 

variation at age 50 has stayed roughly constant over time (Engelman et al., 2014) and comparing 

𝜑𝜑 from this age can help assessing the sensitivity of the measure to changes in lifespan variation. The 

relation between 𝜑𝜑 and differences in life expectancy is stronger and more linear from age 50 

(correlation coefficient of -0.99) than when using the full age-range, increasing predictive ability. For 

example, for a difference in life expectancy at age 50 of 3 years, males have around 42% probability 

to outlive females. Noteworthy, 𝜑𝜑 in France was 36.2% in 1961 and 36.4% in 2017.  

 

 

Fig. 4 Relation between 𝜑𝜑 and (a) the sex differences in life expectancy and (b) the standard 

deviation for females for HMD period data, conditional to survival to age 50, with France 

highlighted (red triangles). 
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Similar to the distribution from birth, the probability of males outliving females from age 50 

has, in almost all periods and populations, varied between 28% and 50%, with only few exceptions. 

In recent years, the 𝜑𝜑 statistics from birth and from age 50 are similar. 

 

5. DISCUSSION 

Our analysis highlights the importance of looking at the randomness of the mortality process and 

reveals important similarities between the distribution of lifespans of females and males. Due to a 

mixture of cultural, social, epidemiological and biological factors, males tend to die earlier, on 

average, compared to females (Crimmins et al., 2019; Rogers et al., 2010). Still, we found that in 

almost all points in time, between one and two men out of four outlived a randomly paired woman. 

When the analysis only relies on statistics such as life expectancy and lifespan variation such an 

important aspect of the mortality process is overlooked.  

Another major result of our analysis is that the smaller the difference in life expectancy and the 

larger the standard deviation, the higher the probability that males outlive females. On the one hand, 

the narrowing sex difference in mortality in the last decades (Glei & Horiuchi, 2007) would lead to 

bigger proportions of males outliving females. On the other hand, the important reduction in lifespan 

variation observed over time for both sexes (Aburto et al., 2020; Vaupel et al., 2011) reduces the 

probability of males outliving females. Therefore, within a same country and for a same sex difference 

in life expectancy, recent 𝜑𝜑  are often smaller than for earlier years, due to smaller lifespan variation 

observed in recent years. The 𝜑𝜑 statistics could also be sensitive to other moments than the mean and 

variance and more work is needed to assess this relationship. 

The reduction in lifespan variation represents a major achievement of the mortality 

improvement process that has reduced inequalities between individuals. However, the reduction of 

lifespan inequality has also made it less likely for males to outlive females. This is partly explained 
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by the fact that lifespan variation reduction has been driven by mortality declines at younger ages 

(Aburto et al., 2020). When looking at the lifespan distribution (as in Figure 1, scenario D), survival 

improvements at younger ages narrowed the left tails of the distribution for both sexes. By reducing 

the left tail of female distribution, without increasing the right tail of the male distribution, the 

overlapping area is reduced. In other words, as the number of short-lived females, which are easier to 

outlive, decreases over time, males have to increasingly shift their distribution to higher ages to be 

able to outlive females.  

Trends over time in 𝜑𝜑 are consistent with the reversed trends in sex differences in life 

expectancy (Glei & Horiuchi, 2007): the probability of males outliving females decreased until the 

1970s, after which it gradually increased in all populations. Beltran-Sanchez et al. (2015) showed that 

the increase in sex differences in mortality emerged in cohorts born after 1880, which is consistent 

with our analysis of  𝜑𝜑  (see Appendix D).   

As previously discussed, the metric we use expresses the proportion of males outliving females 

among randomly paired individuals and assumes independence between populations. However, males 

and females in a population are generally not random pairs but couples, whose health and mortality 

patterns have been found to be positively correlated due a strong effect of social ties on health and 

longevity (Rasulo et al., 2005). Coupled individuals also influence each other’s health (Perelli-Harris 

et al., 2018), and this is particularly true for males, who benefit more than females from being in a 

stable relationship (Staehelin et al., 2012).  Unfortunately, the HMD data and the 𝜑𝜑 statistic do not 

permit the estimation of the probability of males outliving females for not randomly paired 

individuals.  

There are always some males living longer than some females. This implies that inequalities in 

lifespan between sexes are attributable to some part of (each) population and not to the whole. Indeed, 

Luy and Gast (2014) found that male excess mortality is mainly caused by some specific 
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subpopulation of males with particularly high mortality. Given the sex differences in mortality within 

a population, being able to better identify the characteristics of the short-lived men could help tackle 

more efficiently male-female inequality. The method we proposed is applicable to other (sub-

)populations or to a combination of them. For example, differences in life expectancy between 

females and males tend to decrease with increasing number of education years (Molla et al., 2004). 

Knowing the probability of males outliving females in a specific educational group can contribute to 

developing more informed policies aimed at reducing specific education inequalities in mortality 

between sexes.  

 Our results show that there are more important similarities between females and males’ 

lifespans than indicated by an analysis that relies only differences in life expectancy and lifespan 

variation. To get a better picture about inequalities, the 𝜑𝜑 statistics is then an important complement 

to life expectancy and lifespan variation in any study of inequalities between populations.  

 

REFERENCES 

Aburto, J. M., Villavicencio, F., Basellini, U., Kjærgaard, S., & Vaupel, J. W. (2020). Dynamics of 

life expectancy and life span equality. Proceedings of the National Academy of Sciences, 

117(10), 5250-5259.  

An, Z.-W., Huang, H.-Z., & Liu, Y. (2008). A discrete stress–strength interference model based on 

universal generating function. Reliability Engineering & System Safety, 93(10), 1485-1490.  

Austad, S. N., & Fischer, K. E. (2016). Sex differences in lifespan. Cell metabolism, 23(6), 1022-

1033.  

Barford, A., Dorling, D., Smith, G. D., & Shaw, M. (2006). Life expectancy: women now on top 

everywhere. BMJ, 332(7545), 808.  



14 
 

Beltran-Sanchez, H., Finch, C. E., & Crimmins, E. M. (2015). Twentieth century surge of excess 

adult male mortality. Proceedings of the National Academy of Sciences, 112(29), 8993-8998. 

doi:10.1073/pnas.1421942112 

Colchero, F., Rau, R., Jones, O. R., Barthold, J. A., Conde, D. A., Lenart, A., . . . Vaupel, J. W. (2016). 

The emergence of longevous populations. Proceedings of the National Academy of Sciences, 

113(48). doi:10.1073/pnas.1612191113 

Crimmins, E. M., Shim, H., Zhang, Y. S., & Kim, J. K. (2019). Differences between men and women 

in mortality and the health dimensions of the morbidity process. Clinical chemistry, 65(1), 

135-145.  

Edwards, R. D., & Tuljapurkar, S. (2005). Inequality in life spans and a new perspective on mortality 

convergence across industrialized countries. Population and Development Review, 31(4), 

645-674.  

EL-Sayed S, A., & Constantin, C. (2011). Probabilistic Simulation Approach to Evaluate the Tooth-

Root Strength of Spur Gears with FEM-Based Verification. Engineering, 12(3), 1137-1148.  

Engelman, M., Caswell, H., & Agree, E. M. (2014). Why do lifespan variability trends for the young 

and old diverge? A perturbation analysis. Demographic Research, 30, 1367.  

Gjonça, A., Tomassini, C., Toson, B., & Smallwood, S. (2005). Sex differences in mortality, a 

comparison of the United Kingdom and other developed countries. Health Statistics 

Quarterly, 26, 6-16.  

Glei, D. A., & Horiuchi, S. (2007). The narrowing sex differential in life expectancy in high-income 

populations: effects of differences in the age pattern of mortality. Population studies, 61(2), 

141-159.  



15 
 

HMD. (2020). Human Mortality Database. In: University of California, Berkeley (USA), and Max 

Planck Institute for Demographic Research (Germany), Available at www.mortality.org 

(Accessed on September 9) . 

Luy, M., & Gast, K. (2014). Do women live longer or do men die earlier? Reflections on the causes 

of sex differences in life expectancy. Gerontology, 60(2), 143-153.  

Missov, T. I., Lenart, A., Nemeth, L., Canudas-Romo, V., & Vaupel, J. W. (2015). The Gompertz 

force of mortality in terms of the modal age at death. Demographic Research, 32, 1031-1048.  

Molla, M. T., Madans, J. H., & Wagener, D. K. (2004). Differentials in adult mortality and activity 

limitation by years of education in the United States at the end of the 1990s. Population and 

Development Review, 30(4), 625-646.  

Perelli-Harris, B., Hoherz, S., Addo, F., Lappegård, T., Evans, A., Sassler, S., & Styrc, M. (2018). 

Do marriage and cohabitation provide benefits to health in mid-life? The role of childhood 

selection mechanisms and partnership characteristics across countries. Population research 

and policy review, 37(5), 703-728.  

Preston, S. H., & Wang, H. (2006). Sex mortality differences in the United States: The role of cohort 

smoking patterns. Demography, 43(4), 631-646.  

Rasulo, D., Christensen, K., & Tomassini, C. (2005). The influence of social relations on mortality 

in later life: A study on elderly Danish twins. The Gerontologist, 45(5), 601-608.  

Rogers, R. G., Everett, B. G., Saint Onge, J. M., & Krueger, P. M. (2010). Social, behavioral, and 

biological factors, and sex differences in mortality. Demography, 47(3), 555-578.  

Shi, J., Aburto, J. M., Martikainen, P., Tarkiainen, L., & van Raalte, A. A. (2020). Beyond differences 

in means: Rising mortality stratification among income groups in Finland, 1996-2014. Paper 

presented at the European Population Conference (EPC 2020), Padova, Italy. 

http://epc2020.popconf.org/sessions/9 

http://epc2020.popconf.org/sessions/9


16 
 

Staehelin, K., Schindler, C., Spoerri, A., Stutz, E. Z., & Group, S. N. C. S. (2012). Marital status, 

living arrangement and mortality: does the association vary by gender? Journal of 

Epidemiology and Community Health, 66(7), e22.  

Vaupel, J. W., Bergeron-Boucher, M.-P., Kashnitsky, I., & Zarulli, V. (2020, October 18). 

Outsurvival as a measure of the inequality of lifespans between two populations. SocArXiv, 

DOI: https://doi.org/10.31235/osf.io/gsdkx. 

Vaupel, J. W., Zhang, Z., & van Raalte, A. A. (2011). Life expectancy and disparity: an international 

comparison of life table data. BMJ open, 1(1), e000128.  

Willekens, F. (2009). Continuous-time microsimulation in longitudinal analysis. In A. Harding & A. 

Zaidi (Eds.), New frontiers in microsimulation modelling (pp. 353-376). London: Routledge. 

Zarulli, V., Jones, J. A. B., Oksuzyan, A., Lindahl-Jacobsen, R., Christensen, K., & Vaupel, J. W. 

(2018). Women live longer than men even during severe famines and epidemics. Proceedings 

of the National Academy of Sciences, 115(4), E832-E840.  

Zhou, X., & Wodtke, G. T. (2019). Income stratification among occupational classes in the United 

States. Social Forces, 97(3), 945-972.  

 

 

 

  

https://doi.org/10.31235/osf.io/gsdkx


17 
 

APPENDIX 

A. DATA 

Table 1. Countries/ regions and years with available data in the HMD 

Country\region Years Country\region Years 
Australia 1921-2018 Japan 1947-2018 

Austria 1947-2017 Latvia 1959-2017 
Belarus 1959-2018 Lithuania 1959-2017 

Belgium 1841-2018 Luxembourg 1960-2017 
Bulgaria 1947-2017 Netherlands 1850-2018 
Canada 1921-2016 New Zealand  1948-2013 

Chile 1992-2008 Norway 1846-2018 
Croatia 2001-2018 Poland 1958-2018 

Czechia 1950-2018 Portugal 1940-2018 
Denmark 1835-2019 Republic of Korea 2003-2018 

Estonia 1959-2017 Russia 1959-2014 
Finland 1878-2019 Slovakia 1950-2017 
France 1816-2018 Slovenia 1983-2017 

Germany-East 1956-2017 Spain 1908-2018 
Germany-West 1956-2017 Sweden 1751-2018 

Greece 1981-2017 Switzerland 1876-2018 
Hong Kong 1986-2017 Taiwan 1970-2014 

Hungary 1950-2017 UK – England and Wales 1841-2018 
Iceland 1838-2018 UK- Scotland 1855-2018 
Ireland 1950-2017 UK- Ireland 1922-2018 

Israel 1983-2016 USA 1933-2018 
Italy 1872-2017 Ukraine 1959-2013 

 

B. PROOF 

In the main manuscript, we showed that the probability (φ) of individuals in the first population 

outliving those in the second population is: 

 

𝜑𝜑 
= � � 𝑑𝑑1,2(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥𝑥

0

𝜔𝜔

0
 

= � 𝑑𝑑1(𝑥𝑥)� 𝑑𝑑2(𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑥𝑥

0

𝜔𝜔

0
  

 = � 𝑑𝑑1(𝑥𝑥)𝐷𝐷2(𝑥𝑥)𝑑𝑑𝑥𝑥
𝜔𝜔

0
. 

(B1) 
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Following the same approach, we can find the complement of 𝜑𝜑, labeled 𝜑𝜑′, which is the 

probability of individuals in the second population to outlive those in the first:  

 

𝜑𝜑’ 
= � � 𝑑𝑑1,2(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑦𝑦

0

𝜔𝜔

0
 

= � 𝑑𝑑2(𝑦𝑦)� 𝑑𝑑1(𝑥𝑥)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑦𝑦

0

𝜔𝜔

0
  

= � 𝑑𝑑2(𝑦𝑦)𝐷𝐷1(𝑦𝑦)𝑑𝑑𝑑𝑑
𝜔𝜔

0
 

= � 𝑑𝑑2(𝑦𝑦)[1 − 𝑙𝑙1(𝑦𝑦)] 𝑑𝑑𝑑𝑑
𝜔𝜔

0
 

= 1 −� 𝑑𝑑2(𝑦𝑦)𝑙𝑙1(𝑦𝑦) 𝑑𝑑𝑑𝑑
𝜔𝜔

0
. 

(B2) 

From Equations (B1) and (B2) it can be shown that 𝜑𝜑 +  𝜑𝜑′ = 1. Thus, 𝜑𝜑 is also equal to: 

 

𝜑𝜑  = 1 −  𝜑𝜑′ 

 = 1 − �1 −� 𝑑𝑑2(𝑥𝑥)𝑙𝑙1(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝜔𝜔

0
� 

= � 𝑑𝑑2(𝑥𝑥)𝑙𝑙1(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝜔𝜔

0
. 

(B3) 

  Equation (B3) is the same as equation (1) in the main manuscript. 

 

C. SIMULATIONS AND DISCREATE APPROXIMATION 

We simulated age at death distributions, using the Gompertz model, using various scale (M) and 

shape (β) parameters (Missov et al., 2015). The distributions were first found using an age width (n) 

of 0.0001, after which the data were aggregated within 1-year and 5-years age-groups. The probability 

that individuals in both population died within the same age-group, ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0 , was then 

redistributed between 𝜑𝜑  and 𝜑𝜑′ based on two assumptions: equal (equation C1) and proportional 

redistributions (equation C2). The results are presented in Table 2.  
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 𝜑𝜑 ≈  � 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

2  +  
∑ 𝑑𝑑𝑛𝑛 𝑥𝑥

1 𝑑𝑑𝑛𝑛 𝑥𝑥
2𝜔𝜔

𝑥𝑥=0

2

𝜔𝜔

𝑥𝑥=0

  (C1) 

 

 𝜑𝜑 ≈  � 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

2  + 
𝜔𝜔

𝑥𝑥=0

 � 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2 ∗
𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

2

𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

2 + 𝑑𝑑𝑛𝑛 𝑥𝑥
2 𝐷𝐷𝑛𝑛 𝑥𝑥−𝑛𝑛

1

𝜔𝜔

𝑥𝑥=0

 (C2) 

The simulations show that equally redistributing ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0  between the two other statistics 

provide very similar results to the continuous data (n=0.0001), especially for the 1-year age-group. 

More differences are found when aggregating by 5-years age-groups, but the difference in  𝜑𝜑 between 

the different age-width remains less than 1 percentage point, when equally redistributing 

∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0 .  

 

Table 2. Assumptions to redistribute ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0  for different mortality scenarios. 

 𝜑𝜑  𝜑𝜑′ ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0   Eq. C1 Eq. C2 

Gompertz: 𝑀𝑀𝐴𝐴 = 61,𝑀𝑀𝐵𝐵 = 65, 𝛽𝛽𝐴𝐴 = 0.12, 𝛽𝛽𝐵𝐵 = 0.14  
Continuous 36.3 63.7 0.0 - - 
1-year 34.8 62.2 3.0 36.3 35.9 
5-years 28.2 55.8 15.0 36.7 34.3 
Gompertz: 𝑀𝑀𝐴𝐴 = 61,𝑀𝑀𝐵𝐵 = 70, 𝛽𝛽𝐴𝐴 = 0.10, 𝛽𝛽𝐵𝐵 = 0.14  
Continuous 23.6 76.4 0.0 - - 
1-year 22.5 75.2 2.3 23.6 23.0 
5-years 18.5 70.0 11.3 24.2 20.9 
Gompertz: 𝑀𝑀𝐴𝐴 = 68,𝑀𝑀𝐵𝐵 = 70, 𝛽𝛽𝐴𝐴 = 0.13, 𝛽𝛽𝐵𝐵 = 0.14 
Continuous 42.8 57.2 0.0 - - 
1-year 41.2 55.5 3.3 42.8 42.6 
5-years 34.9 48.8 16.3 43.0 41.7 
Gompertz: 𝑀𝑀𝐴𝐴 = 69,𝑀𝑀𝐵𝐵 = 70, 𝛽𝛽𝐴𝐴 = 0.10, 𝛽𝛽𝐵𝐵 = 0.12 
Continuous 46.1 53.9 0.0 - - 
1-year 44.7 52.6 2.7 46.1 46.0 
5-years 39.4 47.2 13.4 46.1 45.5 

 

To further test the model and the redistribution of ∑ 𝑑𝑑𝑛𝑛 𝑥𝑥
1 𝑑𝑑𝑛𝑛 𝑥𝑥

2𝜔𝜔
𝑥𝑥=0 , we simulated 100,000 

individual lifespans from an exponential distribution with piece-wise constant rates (Willekens, 
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2009). We performed this procedure for every population and by sex using as an input empirical death 

rates retrieved from the HMD (2020). Then we randomly paired males and females and calculated 

the proportions of males outliving the paired female. Table 3 compares the discrete approach 

introduced in the main document (eq. C1) and the continuous approach based on simulations. Both 

approaches provided very similar results. 

 

Table 3. Proportions of males outliving females based on a discrete and continuous approach 

(simulations). 

 % males outliving females % females outliving males 
 Continuous Discrete Continuous Discrete 
Denmark     

1850 46.1 46.4 53.9 53.6 
1900 45.8 45.8 54.2 54.2 
1950 46.2 46.3 53.8 53.7 
2016 40.7 40.6 59.3 59.4 

France     
1850 48.6 48.5 51.4 51.5 
1915 25.6 25.5 74.4 74.5 
1950 39.8 39.8 60.2 60.2 
2016 35.9 36.0 64.1 64.0 

Japan     
1950 44.1 44.2 55.9 55.8 
2016 33.8 33.7 66.2 66.3 

Russia     
1960 35.6 35.5 64.4 64.5 
2014 30.2 30.0 69.8 70.0 

 

D. COHORT ANALYSIS 

Similar relations as those for period data were also found for cohorts (Figure 5). In the HMD, life 

table for cohorts were only available for 11 countries: Denmark, England and Wales, Finland, France, 

Iceland, Italy, Netherlands, Norway, Scotland, Sweden and Switzerland. For cohorts with complete 

mortality history, the proportions of males outliving females varied between 35% and 49%. Only 

small changes in 𝜑𝜑 were observed for cohorts born prior to 1870-1890, with 𝜑𝜑  varying around 46.5%. 
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For the cohorts born afterwards, 𝜑𝜑 decreases, reaching a mean of 38.4% for the cohort born in 1925, 

with values varying between 35.3% (Finland) and 40.4% (Scotland).  

 

 

Fig. 5 Relation between 𝜑𝜑  and (a) the sex differences in life expectancy and (b) the standard 

deviation for females for HMD cohort data. 

 


