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Abstract 
In the epigenetics field, large-scale functional genomics datasets of ever-increasing size and 
complexity have been produced using experimental techniques based on high throughput 
sequencing. In particular, the study of the 3D organization of chromatin has raised increasing 
interest, thanks to the development of advanced experimental techniques. In this context, Hi-C has 
been widely adopted as a high-throughput method to measure pairwise contacts between virtually 
any pair of genomic loci, thus yielding unprecedented challenges for analysing and handling the 
resulting complex datasets. 
In this review we focus on the increasing complexity of available Hi-C datasets, which parallels the 
adoption of novel protocol variants. We also review the complexity of the multiple data analysis 
steps required to preprocess Hi-C sequencing reads and extract biologically meaningful 
information. Finally, we discuss solutions for handling and visualizing such large genomics 
datasets. 
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The total length of DNA contained in a human cell would be 2 meters long if completely stretched, 
i.e. considering the cumulative size of 6 billion nucleotides composing a diploid genome. However, 
such a long polymer must fit into a nucleus with average diameter of 10μm, i.e. 5 orders of 
magnitude shorter than the genome (Marti-Renom and Mirny 2011). This is not only a structural 
challenge, but also a functional one, as the genome must be densely packed, while at the same 
time preserving its function, i.e. being accessible to factors regulating transcription and replication. 
This is achieved thanks to the fact that the DNA inside the cell is never naked, but always 
associated to many proteins with a structural and functional role. The complex of DNA and 
associated proteins is named chromatin and its 3D organization inside the nucleus is not random 
but tightly regulated (Cavalli and Misteli 2013). 
Our knowledge of chromatin 3D organization has greatly increased over the past 20 years thanks 
to the development of novel experimental techniques, including high-resolution and high-
throughput imaging techniques (2010; Zane et al. 2017) and other molecular biology techniques. 
Among the latter, chromosome conformation capture (3C) (Dekker et al. 2002) and its high 
throughput derivatives have been the most prominent ones. 3C allows probing physical interaction 
between non-adjacent genomic loci. The technique is based on crosslinking of DNA and 
associated proteins to stabilize chromatin 3D structure, then digesting DNA with restriction 
enzymes. The loose DNA fragment ends are then re-ligated, so as to obtain hybrid molecules, 
which may contain two fragments of DNA that were not adjacent but indeed far apart in the original 
linear genomic sequence. The fact that they are ligated together at the end of the process 
indicates some degree of physical proximity at the beginning of the experimental procedure. By 
analysing the resulting hybrid molecules, we can assess the physical interaction between distant 
genomic loci (Belton et al. 2012). This can be assessed with PCR, using a pair of primers 
specifically designed to target pre-defined regions, as per the original 3C protocol. However, other 
high throughput derivatives of 3C based on microarrays hybridization (Dostie et al. 2006; Simonis 
et al. 2006) or high throughput sequencing have been proposed subsequently. Among them, 4C 
allows detecting pairwise interactions between one target anchor point and potentially any other 
genomic region (van de Werken et al. 2012) whereas 5C allows probing multiple pairwise 
interactions between pre-designed anchor points (Phillips-Cremins et al. 2013). Whereas Hi-C is 
the most comprehensive and high-throughput derivative, allowing to score contact frequency 
between virtually any pair of genomic loci (Lieberman-Aiden et al. 2009). This results in very large 
and complex datasets, especially for large genomes, as the number of possible pairwise 
interactions increases exponentially with the genome length. As such in this review on big-data 
challenges in epigenomics we will focus especially on datasets obtained from mammalian 
genomes, as well as on data analysis solutions used in this context. 
 
Hi-C data availability: increasing size and resolution 
Hi-C data allows examining the genome 3D organization at multiple scales (Rocha et al. 2015; 
Fraser et al. 2015). On a large scale, the genome is organized in distinct "compartments". Namely, 
active ("A") and inactive ("B") compartments have been identified from Hi-C contact maps analysis, 
and they correlate with the presence of active or inactive chromatin domains, respectively. The 
active compartment includes genomic regions characterized by transcription or epigenetic marks 
associated to open chromatin. Instead the inactive compartment covers regions with compact 
heterochromatin and gene expression silencing epigenetic marks (Lieberman-Aiden et al. 2009). 
When analysing local patterns in the contact matrix instead, the Topologically Associating Domains 
(TADs) emerge as a key feature, i.e. regions characterized by high intra-domain contact frequency, 
and reduced inter-domain contacts (Sexton et al. 2012; Dixon et al. 2012; Nora et al. 2012). On an 
even finer scale, Hi-C data have been used to identify specific points of contact between distant 
chromatin regions. Sometimes interactions are called chromatin loops, when referring to intra-
chromosomal (cis) contacts (Jin et al. 2013; Rao et al. 2014). This level of analysis is especially 
challenging for the resolution limit of Hi-C data. 
Hi-C data resolution is primarily defined by 1) the restriction enzymes used in the experimental 
procedure and by 2) the sequencing depth. Over the years we have witnessed an attempt to 
increase the resolution of Hi-C data by working on these parameters, resulting in available 
datasets characterized by increasing size and resolution, reaching very high numbers of 
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sequenced reads, especially for mammalian genomes. In addition, specific protocol variations 
have been proposed with the aim of improving the resolution. 
 
The classical Hi-C technique involves restriction digestion of a formaldehyde cross-linked genome 
with sequence specific restriction enzymes, followed by fill in and repair of digested ends with the 
incorporation of biotin linked nucleotides. The repaired ends are then re-ligated. Finally, the cross-
linking is reversed and associated proteins are degraded. This produces the ligation products 
which are then non-specifically sheared, generally by sonication, and enriched for sheared 
fragments containing the ligation junction, using a biotin pull-down strategy, and finally sequenced 
using paired-end sequencing (Belton et al. 2012). The enrichment step aims to select sonicated 
fragments containing the ligation junction, increasing the proportion of informative non-same 
fragment read pairs (mate pairs originate from different restriction fragments). 
Among protocol variations aimed at increasing resolution, the widely adopted in situ Hi-C allows 
achieving cleaner and stronger signal by performing all the protocol steps up to ligation in intact 
cell nuclei (Rao et al. 2014). This reduces spurious ligation events as well as dangling ends reads, 
i.e. read pairs originating from non-ligated fragments, thus de facto increasing the number of usable 
reads. A very different approach, yet having similar effects on resulting reads quality, was the tethered 
conformation capture (TTC), based on performing ligations with crosslinked DNA fragments attached 
to a solid substrate, rather than in solution (Kalhor et al. 2011). More recently, Hi-C 2.0 has been 
proposed as a protocol variant aiming as well to reduce spurious ligation events in the mixture of 
sequenced molecules (Belaghzal et al. 2017). Hi-C 2.0 takes into account recent advances in the 
field, such as the removal of SDS solubilisation step after digestion, first used in 4C (Splinter et al. 
2012), then in single-cell Hi-C (Nagano et al. 2013) and finally adapted in in-situ Hi-C (Rao et al. 
2014). It also incorporates the advances made in other studies by using frequent cutting restriction 
enzymes such as micrococcal nuclease (Hsieh et al. 2015) and MboI (Rao et al. 2014). 
In this context, it’s worth mentioning also the capture Hi-C protocol variants, which achieves higher 
resolution over specific target regions by directly enriching for ligation products involving a selected 
set of target sequences. For example promoter capture Hi-C is designed to enrich for interactions 
centred around a selected set of annotated promoters (Schoenfelder et al. 2015; Mifsud et al. 
2015). In this context, more recently Bridge Linker-Hi-C (BL-Hi-C) was proposed as a solution to 
favour the detection of interactions mediated by structural or regulatory proteins. BL-Hi-C uses two 
step ligation with an intervening linker to enrich for ligation products originating from DNA 
fragments connected by a crosslinked protein (Liang et al. 2017). 
 
The ultimate resolution limit of Hi-C data is the restriction fragment resulting from DNA digestion. 
The original Hi-C protocol was based on HindIII and NcoI restriction enzymes, both recognizing 
and cutting a 6bp long sequence: AAGCTT and CCATGG, respectively (Lieberman-Aiden et al. 
2009). Later publications also adopted 4bp cutters such as Dpn-II (Sexton et al. 2012; Rao et al. 
2014), which has more abundant target restriction sites (GATC sequence), thus resulting in smaller 
fragments, so as to increase the resolution. More recently, alternative protocol variations have 
been introduced to leverage even shorter restriction fragments. Namely, the COLA protocol makes 
use of a restriction enzyme recognizing an RCGY motif (with R equal to A or G and Y equal to C or 
G) to achieve an even smaller average fragment size, thereby allowing experimentalists to probe 
complex chromatin conformations which may involve three or more interacting genomic loci 
(Darrow et al. 2016). Other protocol variations aimed at increasing Hi-C resolution include in situ 
DNase Hi-C, which replaces restriction enzymes with the endonuclease DNase I (Ramani et al. 
2016), as well as Micro-C, which uses micrococcal nuclease to obtain single nucleosome scale 
chromatin conformation maps (Hsieh et al. 2015).  
 
However, the most striking effort in improving Hi-C data resolution has been focused on increasing 
the sequencing depth (Table 1). In the nine years following the first study, articles adopting this 
technique have achieved new records in terms of total number of reads sequenced. While the first 
Hi-C dataset had 28.5 million reads, the most recent articles have reached up to 40 billion reads 
(Belaghzal et al. 2017; Rowley et al. 2017; Bonev et al. 2017). The increase in sequencing depth 
has been paralleled by a decrease in the size of genomic bins used to summarize Hi-C signal. The 
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developers of in situ Hi-C have been the first ones to reach 1Kb resolution in a human genome Hi-
C map, binned at 950bp (Rao et al. 2014), and more recently Bonev et al (Bonev et al. 2017) 
reached an even higher coverage on a mouse genome dataset. It's worth remarking that when 
applied to smaller genomes (e.g. Drosophila) a smaller amount of reads can yield higher coverage, 
so that higher resolution analysis is possible. The first Hi-C dataset in Drosophila, based on the 
simplified Hi-C protocol which lacks biotin incorporation and enrichment, already allowed to 
examine contact maps at 40Kb resolution and to clearly highlight topological domains (Sexton et 
al. 2012). More recently, the local chromatin topology of the Drosophila genome has been 
investigated at a resolution of 500bp (average fragment size) to characterize domains at sub-kb 
resolution (Wang et al. 2018a). 
 
The increase in complexity of individual datasets has been paralleled by a global increase in 
publicly available chromatin architecture data. It's especially worth mentioning the resources, in 
term of available datasets, provided by large-scale consortia including ENCODE (Davis et al. 
2018), covering multiple cell lines, the Roadmap epigenomics (Dixon et al. 2015) and related 
efforts (Schmitt et al. 2016a), with data from several primary tissues and cultured cells, and the 
recently established 4D Nucleome consortium (Dekker et al. 2017) which is committed to release a 
number of datasets covering multiple cell types, conditions and treatments. As more and more 
datasets become available, it will become increasingly important to establish common and 
standardized procedures to assess data quality (Wolff et al. 2018) and reproducibility of replicates 
(Yardimci et al. 2017; Yang et al. 2017). 
 
 
Hi-C data analysis: from FASTQ to interaction maps 
Hi-C data analysis is a process involving multiple steps that can be separated in preprocessing, i.e. 
from raw data to the Hi-C contact matrix, and downstream analyses (Ay et al. 2014; Schmitt et al. 
2016b). 
 
Preprocessing starts with FASTQ files of paired end reads obtained from high throughput 
sequencing that are 1) first of all aligned to the reference genome, 2) then filtered to remove 
spurious signal, then read counts are 3) binned and 4) normalized. The last two steps are often 
performed simultaneously but involve distinct choices that affect the characteristics of the 
normalized contact matrix obtained as final output (Figure 1). 
Hi-C paired end reads are aligned separately, as they are expected to map in different unrelated 
regions of the genome due to the peculiarity of these data. The alignment can be performed with 
standard tools such as bowtie (Langmead and Salzberg 2012)1 or bwa (Li and Durbin 2009; Dixon 
et al. 2012) aiming to align the full length read, as done especially in the earlier analysis pipelines 
(Yaffe and Tanay 2011). However, the alignment of Hi-C reads may prove challenging in case the 
read spans the ligation junction, thus having two portions of the read itself matching distinct 
genomic positions. These are also termed “chimeric reads” and their alignment requires specific 
strategies to attempt mapping different portions of the read, which is expected to yield a higher 
fraction of mappable reads, especially when the reads are longer (Forcato et al. 2017). Several 
variations of chimeric reads mapping approaches are now implemented in many pipelines 
including ICE (Imakaev et al. 2012), TADbit (Serra et al. 2017), HiCUP (Wingett et al. 2015), 
HIPPIE (Hwang et al. 2015), Juicer (Durand et al. 2016b) and HiC-Pro (Servant et al. 2015). 
Aligned reads are then filtered to remove spurious signal due to experimental artefacts. While 
reads filtering is an analysis part common to many high-throughput sequencing applications, it is 
particularly important for Hi-C data as multiple steps in the experimental protocol can generate 
biases in the sequencing results. Read level filters include the removal of reads with low alignment 
quality or PCR artefacts, i.e. multiple read pairs mapped in the same positions. Then, read pairs 
filters are based on the distance of aligned reads to the downstream restriction site, which is used 
to estimate if the read pair is compatible with the expected size of sequenced fragment obtained 
from the ligation product (Yaffe and Tanay 2011). Moreover, read pairs can be filtered if they are 
mapped on the same fragment, thus resulting from lack of ligation or self-ligation events, or if their 
orientation and distance in mapping positions is compatible with an undigested chromatin fragment 
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(Jin et al. 2013). More recently the MAD-max (maximum allowed median absolute deviation) filter 
on genomic coverage has been proposed to remove low-coverage bins, identified as bins that are 
3 standard deviations below the centre of a log-normal distribution which fits the total number of 
contacts per genomic bin (Nora et al. 2017; Schwarzer et al. 2017). Hi-C protocol variants yielding 
a cleaner signal results in less spurious reads, thus being less affected by the filters described 
here (Forcato et al. 2017). 
Although the reads are mapped and counted on individual restriction fragment ends, Hi-C data are 
usually not analysed at single-fragment level. Instead the read counts are generally summarized at 
the level of genomic bins, i.e. a continuous partitioning of the genome in intervals of fixed size. The 
rationale behind this approach is that genomic bins allow achieving a more robust and less noisy 
signal in the estimation of contact frequencies, at the expense of resolution. While the restriction 
fragment remains the ultimate physical limit to Hi-C resolution, the choice of the bin size used to 
summarize results is de facto defining the final resolution of analysis results. Some practical 
strategies have been specifically proposed to support pushing the limit of bin size choice to smaller 
and smaller bins, such as having at least 80% of bins covered by 1000 reads (Rao et al. 2014). 
Recently two approaches to determine optimal bin size have been proposed: in deDoc the bin size 
is selected as the one at which the structural entropy of the Hi-C matrix reaches a stable minimum 
(Li et al. 2018), whereas QuASAR requires the presence of replicates and compares quality and 
replicate scores of the samples to find the maximum usable resolution (Sauria and Taylor 2017). 
Some publications also attempted to score interaction frequencies using single fragment level data 
both in human (Jin et al. 2013) and smaller genomes, such as Drosophila (Ramírez et al. 2015), 
where a relatively higher coverage can be achieved with a lower number of reads. From an 
alternative point of view, HiCPlus attempts to enhance resolution of shallowly sequenced datasets 
by applying Deep Convolutional Neural Network; the authors showed that using only 1/16 of the 
original reads, they can impute matrices similar to the original ones (Zhang et al. 2018). 
The final preprocessing step is normalization. Read counts binning and normalization are usually 
coupled and performed simultaneously by the same tools. Hi-C normalization strategies can be 
divided in two main groups: explicit and implicit (or matrix balancing) normalization methods. The 
explicit normalization methods are based on the explicit definition of a set of biases known to be 
associated to Hi-C reads or high-throughput sequencing in general, thus affecting the resulting 
read counts per restriction fragment. These include the fragment length, its GC content and 
mappability. Correction factors are computed for each of the considered biases and their 
combination, then applied to the read counts per genomic bin (Yaffe and Tanay 2011; Hu et al. 
2012; Jin et al. 2013). The implicit or matrix balancing normalization methods instead don’t rely on 
any specific assumptions on the sources of biases in Hi-C read counts. They are instead based on 
the assumption that each genomic locus should have “equal visibility”, i.e. the interaction signal, as 
measured by Hi-C for each genomic locus, should add up to the same total amount. These include 
the iterative correction and eigenvector decomposition (ICE) normalization (Imakaev et al. 2012) 
and Knight-Ruiz matrix balancing approach (Knight and Ruiz 2013; Rao et al. 2014), implemented 
by multiple tools (Servant et al. 2015; Durand et al. 2016b; Kumar et al. 2017; Wolff et al. 2018). 
ICE normalization has also been optimized for handling large and high-resolution datasets 
(Kerpedjiev et al. 2018).  
A still open problem is the normalization of Hi-C data originating from genomes with copy number 
alterations. While matrix-balancing approaches should partially cancel out the unbalances in total 
Hi-C signal originating from any locus, the resulting local distortions in the interaction matrix are not 
completely corrected. An earlier work proposed a solution an additional scaling factor to be applied 
on top of ICE normalization to correct for aneuploidies with whole chromosome duplications or 
deletions (Wu and Michor 2016). A recent publication proposed instead a more generalizable 
solution adding a correction factor to matrix balancing normalization to model and adjust the effect 
of local copy number variations (Vidal et al. 2018; Servant et al. 2018). 
 
 
Downstream analyses include all the methods used to extract biologically meaningful results from 
Hi-C data matrices at multiple levels of resolution, including 1) the identification of compartments, 
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2) calling TADs and 3) point of interactions, also termed loop calling when referred to cis-
interactions (Forcato et al. 2017) (Table 2). 
 
TOOLS TO CALL COMPARTMENTS 
Compartments are the first level of chromatin organization which was derived from the analysis of 
Hi-C data in (Lieberman-Aiden et al. 2009). They clearly emerged in the Hi-C map as a plaid 
pattern after calculating Pearson correlation of the distance normalized map. To define active ("A") 
and inactive ("B") compartments the authors used the sign of the first eigenvector (first principal 
component). This widely used approach is implemented in multiple tools, with small differences 
regarding the way the matrix is normalized before Pearson correlation calculation and PCA 
analysis. The original approach calculated the correlation of a matrix of observed over expected 
Hi-C signal ratio, where the expected signal was obtained from a distance normalized contact 
matrix. A similar approach is available in HOMER (Heinz et al. 2010), whereas loess calculation of 
distance dependency is implemented in Cworld (https://github.com/dekkerlab/cworld-dekker) and 
in the HiTC R package (Servant et al. 2012). The eigenvector module of Juicer allows using 
alternative observed matrixes (raw or balanced) (Durand et al. 2016b). CscoreTool (Zheng and 
Zheng 2018) instead is not based on PCA to call compartments, but relies on a faster and memory 
efficient approach defining a compartment score reflecting the chance of any given bin to be in the 
“A” compartment. A detailed guide for the identification and annotation of compartments is reported 
in (Miura et al. 2018). 
 
TAD CALLERS 
As with compartments, TADs were first identified by visual inspection of the interaction maps. 
Here, they appear along the diagonal of the contact matrix as blocks of highly self-interacting 
regions. This observed pattern guided the design of TAD calling algorithms. Only subsequently to 
their observation, their biological properties, putative function and genesis were investigated, 
reporting e.g. the enrichment of insulator proteins binding at TAD boundaries. More recently, 
genetic perturbation experiments have been clarifying how TADs are formed and what is their 
relationship with other structures observed in the genome (Rao et al. 2017; Nuebler et al. 2018). 
However, an unambiguous definition of TADs is still evolving. As a consequence, even if 
apparently evident on the matrix, yet their computational identification is not straightforward (Dali 
and Blanchette 2017). The biggest challenge to a rigorous methods benchmarking is probably the 
lack of a set of true, experimentally validated, TADs. Simulated data are also problematic as they 
lack the complexity of real data. Yet, several methods have been proposed, assessing their 
performance on metrics such as the reproducibility of results among replicates, enrichment in 
insulators at domain boundaries, or comparing to the first genome wide identification of TADs by 
(Dixon et al. 2012). An important aspect to review TAD callers is how they deal with data 
resolution. This comprises the ability of defining domains combining results obtained at different 
resolutions, but also to the ability of being computationally efficient on high-resolution datasets or 
being able to identify TADs even in sparse matrices. 
The first methods developed to call TADs were based on one-dimensional scores. The 
Directionality Index (DI) calculates for each bin the degree of upstream and downstream 
interaction biases and is segmented with a Hidden Markov Model (HMM) to derive TADs in 
DomainCaller (Dixon et al. 2012) and the 4D nucleome Analysis Toolbox (Seaman and Rajapakse 
2018). Instead, the insulation score quantifies the interactions passing across each genomic bin, 
and it allows defining boundaries by identifying local minima (Crane et al. 2015), also implemented 
in Cworld (https://github.com/dekkerlab/cworld-dekker). Other methods are not based on a one-
dimensional score, but aim to identify the best partitioning of the contact matrix in TADs based on 
clustering (Lévy-Leduc et al. 2014; Oluwadare and Cheng 2017) or other partitioning (Serra et al. 
2017) algorithms 
 
These methods identify only one level of TADs but the increased resolution available in newer 
datasets highlighted the existence of a hierarchical structure of TADs inside other TADs. Many 
tools are now explicitly addressing this with multiscale analysis approaches.  
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The idea of calculating domains at different resolutions was first introduced by Armatus (Filippova 
et al. 2014). Armatus identifies resolution specific domains and calculates a consensus set of 
domains conserved across resolutions. It formulates the problem of TAD calling as the optimization 
of a scoring function based on their local density of interactions and features a tuneable parameter 
(gamma) that correlates with resolution. Other methods implemented variations of this approach 
with different objective functions, with the aim of achieving better computing performance to work 
on higher resolution datasets and of facilitating the tuning of parameters required to the user. 
Matryoshka (Malik and Patro 2018) uses a variant of Armatus to extract domains at different scales 
and then predicts the hierarchy by clustering the domains based on the variation of information 
distance. MrTADFinder (Yan et al. 2017), Lavaburst (Schwarzer et al. 2017) and 3DNetMod 
(Norton et al. 2018) borrow concepts from graph theory: by representing Hi-C maps as graphs, the 
identification of TADs is treated as a community detection problem in a network. The objective 
function is a modularity score and sweeping over a range of gamma parameters allows generating 
a hierarchy of TADs. An approach exploiting a different property of graphs is deDoc (Li et al. 
2018), which minimizes the structural entropy (i.e. the global uncertainty) of the Hi-C map. It is 
designed to work well with sparse matrices and proposes structural entropy as a mean to identify 
the proper bin size for the dataset under investigation. Other multiscale methods able to examine 
the hierarchy of TADs include Arrowhead (Rao et al. 2014; Durand et al. 2016b), TADtree 
(Weinreb and Raphael 2015), IC-Finder (Haddad et al. 2017), CaTCH (Zhan et al. 2017) and 
HiTAD (Wang et al. 2017). HiCDB (Chen et al. 2018) detects TAD boundaries based on local 
relative insulation, a variation of the insulation score approach that calculates insulation using 
different windows sizes and incorporating information from the local background. Finally, TADtool 
integrates interactive data exploration functionalities to directly select parameters for TAD calling 
based on directionality index and insulation score (Kruse et al. 2016). 
Among such a large production of TAD calling methods, it’s worth mentioning localtadsim, a 
recently published approach to quantitatively compare multiple topological domains definitions 
(Sauerwald and Kingsford 2018).  
 
INTERACTION CALLERS 
Interactions are specific points of contact between distant chromatin regions, such as those 
occurring between promoters and enhancers. The computational identification of interactions 
requires the definition of a background model in order to discern contacts with an interaction 
frequency higher than expected. The background can be estimated using local signal distribution 
or modelled using global (chromosome-wide or genome-wide) approaches. FitHiC (Ay et al. 2014) 
uses non-parametric splines to estimate the global background distribution from the data. Other 
methods defining a global background model are GoTHiC (Mifsud et al. 2017) and HOMER (Heinz 
et al. 2010). HiCCUPS (Rao et al. 2014) and diffHic (Lun and Smyth 2015) are instead based on a 
local enrichment score, comparing the signal of each bin pair against its neighbourhood. HiCCUPS 
is implemented in the Juicer pipeline (Durand et al. 2016b) and is a popular method to identify 
reliable chromatin loops in high resolution datasets. However, even in high resolution datasets, it 
returns only a few thousand loops (e.g. about 9,500 interactions from a 1kb resolution GM12878 
Hi-C map in (Rao et al. 2014), which are useful to study the general structure of chromatin (Rao 
2017) but can’t provide a comprehensive picture of all the interactions between promoters and 
regulatory elements, as only part of the identified interactions feature a promoter. Moreover, 
Hiccups was designed for high resolution datasets, on which yields better performances (Forcato 
et al. 2017), requires the use of GPUs and the authors recommend its application only on Hi-C 
maps with more than 300 million contacts.  
Another local enrichment approach is implemented in PSYCHIC (Ron et al. 2017), a solution 
explicitly taking into account the TAD structure to identify significant interactions against a TAD-
specific background model. The genome is segmented into domains that are merged to define a 
TAD hierarchy. Then, for each TAD interactions are modelled according to a piece-wise power law 
regression. As a comparison, in the same sample of the (Rao et al. 2014) dataset described 
above, PSYCHIC identified 30,000 interactions involving promoters. 
Finally, FastHiC (Xu et al. 2016b) differentiates from the other methods because it explicitly models 
the spatial dependency among adjacent loci, considering the fact that interaction frequencies of 
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pairs of neighbouring loci may be correlated. It is a computationally more efficient 
reimplementation of the HMRFBayesHiC (Xu et al. 2016a) method designed for high resolution 
data. 
Even if Hi-C allows identification of any type of chromatin interaction, these interactions happen 
between genomic bins of several Kb, and the maximum resolution achieved in mammalian 
genomes is about 1Kb, at the cost of sequencing billions of reads. When the interest is limited to 
interactions between promoters and regulatory elements or between specific loci (e.g. SNPs), 
Capture-HiC (cHi-C) is a more advisable technique (Hughes et al. 2014; Mifsud et al. 2015). 
Although the pre-processing steps (alignment, filtering) can be conducted on cHi-C data with the 
same methods designed for Hi-C (e.g. HiC-Pro (Servant et al. 2015), HiCUP (Wingett et al. 2015)), 
caution must be taken when trying to identify significant interactions. Differently from Hi-C, capture 
hi-c is an asymmetric assay capturing “many vs all” interactions; it is affected by experimental 
biases due to differential capture efficiency; and it is often processed at fragment level resolution. 
CHiCAGO (Cairns et al. 2016) addresses these problems by using a combined background 
distribution (negative binomial and Poisson), a specific implicit normalization and using an 
approach for multiple tests correction based on p-value weighting, to adapt the stringency of the 
test to the genomic distance of the tested interaction. CHiCAGO identified 88,667 promoter 
interactions in a cHi-C experiment of the GM12878 cell line. 
More recently, Hi-C datasets with very high-coverage allowed adopting ad hoc solutions 
independent of a pre-computed bins strategy, also termed bin-free or bin-less analysis approaches 
(Cohen et al. 2017; Spill et al. 2017). These methods perform normalization and interaction peaks 
calling without relying on pre-defined genomic bins to partition the interaction matrix, but apply 
instead different strategies to locally identify the best range of distances to aggregate read counts. 
In particular SHAMAN has been already applied to the study of Drosophila genome activation 
during early stages of embryo development (Ogiyama et al. 2018). SHAMAN has also been 
applied to the analysis of the mouse genome to investigate the relationship between transcription 
and insulation, during neural stem cells differentiation (Bonev et al. 2017).  
 
 
Handling Hi-C data - Data formats and tools for high-resolution matrices. 
The lack of a common standard in data formats has already been reported as a critical issue in the 
field of Hi-C data analysis and its definition is one of the goals of the 4D Nucleome project (Dekker 
et al. 2017). Most tools presented in this review store data in different formats, and only few 
provide utilities to convert from one format to another. This hampers the possibility for a not expert 
user to test multiple computational approaches and define a preferred pipeline.  
FASTQ and BAM are the current standard for sequenced and aligned reads, respectively. When it 
comes to the creation of the read pairs (pairs file) and the interaction map files, these are saved in 
formats that vary greatly among the tools (Figure 1). The basic information to be saved in pairs file 
is the genomic location of the aligned mate reads (chromosome, start, strand), but other fields 
contained in the BAM files such as read names, alignment quality, cigar strings are sometimes 
reported as well. The 4D Nucleome recently proposed “pairix”, an indexed text file format derived 
from “tabix” to save pairs (https://github.com/4dn-
dcic/pairix/blob/master/pairs_format_specification.md).  
The most intuitive way to save the Hi-C map is as a plain text symmetric matrix, where the first 
column and first row contain the bin identifiers. HOMER (Heinz et al. 2010) adopts a similar format, 
also called “dense” format. Since Hi-C matrices are symmetric and sparse, a more efficient format 
is the “sparse” format where only non-zero entries of half of the matrix are reported as “row column 
value” triplets. This format is also called coordinated list or COO and is used by HiC-Pro (Servant 
et al. 2015). In both formats the bin IDs can be replaced by their chromosomal coordinates, 
otherwise another file with the position of each bin is normally provided. In the case of high-
resolution matrices, using these formats can produce files that are large and difficult to manage. To 
overcome this problem, matrices can be saved using highly compressed binary formats: the “.cool” 
format is based on HDF5 and is used by the cooler pipeline (Kerpedjiev et al. 2018); the “.hic” 
format is used instead by the Juicer pipeline (Durand et al. 2016b). Both these formats are being 
used by the 4D Nucleome consortium to disseminate their datasets. 
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Other developed formats are an indexed binary file format called Binary Upper TrianguLar MatRix 
(BUTLR) used for visualization by the 3D Genome Browser (Wang et al. 2018b) and the genome 
contact map format (“gcmap”) based on HDF5 and used for analysis and visualization by the 
Genome contact map explorer (Kumar et al. 2017). Finally, an attempt to create a suite of tools for 
formats conversion, manipulation and 2D genomic arithmetic of Hi-C data (similar to bedtools) is 
pgltools which is based on the paired-genomic-loci data (PGL) format (Greenwald et al. 2017). 
Converting between these formats is not always straightforward and may require several steps: 
see examples in (Miura et al. 2018). For example Juicer provides utilities to convert “.hic” files into 
sparse matrices, but to convert sparse or dense matrices into “.hic” files an intermediate text 
format is required. Using some of these formats (hic, cool, gcmap) it is possible to save the same 
matrix binned at various resolutions in a single file, which is convenient for visualization purposes. 
 
 
Handling Hi-C data - Data visualization tools 
The visualization of Hi-C data is a crucial part of Hi-C data analysis: see also (Yardimci et al. 
2017)). Thanks to visual inspection of the Hi-C matrices, compartments and TADs have been 
discovered, and new patterns have been observed and described: e.g. stripes in (Vian et al. 2018). 
Moreover, the thousands of features resulting from downstream analyses are more easily 
summarized and interpreted by visual representation, overlaid to the Hi-C contact matrix. This 
poses some challenges due to the two-dimensional nature and the size of this kind of data.  
Several tools address these issues and display Hi-C contact maps as heatmaps, supporting 
matrices saved in binary formats to allow fast retrieval of the data. Juicebox (Durand et al. 2016a), 
gcMapExplorer (Kumar et al. 2017) and HiGlass (Kerpedjiev et al. 2018) allow to smoothly browse 
Hi-C heatmaps interactively, to zoom in and out with different resolutions, to visualize maps 
together with other genomics data such as ChIPseq and to compare multiple maps in a 
synchronous way. Juicebox is available both as a desktop and a cloud-based web application 
named Juicebox.js (Robinson et al. 2018). It loads matrices in “.hic” format and its strengths are its 
intuitive interface and easy use. gcMapExplorer is a Python software featuring a GUI that loads 
data in the “.gcmap” format, it also performs different types of normalizations on raw matrices. 
HiGlass is available as a docker container and loads matrices in “.cool” format. It allows 
sophisticated customization of the layout by juxtaposing panels with multiple maps at the desired 
zoom levels, along with other genomic data. Juicebox and HiGlass allow sharing a session via a 
URL or a JSON representation, respectively, which can also be easily hosted at web sites.  
Other tools such as WashU Epigenome Browser (Zhou et al. 2013) and the 3D Genome Browser 
(Wang et al. 2018b) adopt a more classical genome browser configuration, where the heatmap is 
rotated by 45 degrees and displayed as a triangle, with the diagonal aligned horizontally to other 
genomic tracks. This type of representation is useful to display chromatin conformation at selected 
loci. WashU Epigenome Browser is able to load both “.hic” and “.cool” formats whereas the 3D 
Genome Browser supports the “.butlr” format but allows visualizing only one resolution at a time. 
This type of visualization is also supported by HiGlass. 
Finally, HiCExplorer instead is a more complex framework available as command line tools or 
Galaxy module for a web interface (Wolff et al. 2018). In addition to data visualization functions, 
HiCExplorer includes also command to perform analyses, such as calling TADs. 
 
 
Conclusion 
Overall the rapid widespread adoption of Hi-C and its variants have spurred an explosive growth of 
complexity and size in available chromatin 3D architecture datasets. This, coupled with the rapid 
flourishing of many data analysis approaches has already raised substantial concerns in the field 
about the need for common standards and guidelines (Marti-Renom et al. 2018). This is even more 
problematic as the true biological nature of different layers of chromatin organization is still not 
completely understood. Striking examples of this are the TADs, which can be identified using a 
large array of methodological solutions, but their structure and function is not completely 
understood yet. In particular their internal structure remains elusive as beyond the resolution limit 
of Hi-C and also of super resolution microscopy techniques. Addressing both the biological and 
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technological open challenges will allow achieving a complete understanding of the functional role 
of chromatin 3D architecture. 
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TABLES 
 
 

Study Organism 

Restriction Enzyme 
Hi-C 

protocol 

Total 
read 
pairs 

Max. 
binning 

res. 

6 bp 4 bp 

HindIII NcoI DpnII MboI 

Lieberman-Aiden 
et al., 2009 

Human ✓ ✓   Dilution 28.5M 1Mb 

Sexton et al., 2012 Drosophila   ✓  Simplified 362M 10Kb 

Dixon et al., 2012 Human, Mouse ✓    Dilution 754M 40Kb 

Jin et al., 2013 Human ✓    Dilution 2.3B 5Kb 

Rao et al., 2014 Human, Mouse   ✓ ✓ In situ 25.2B 950bp 

Rao et al., 2017 Human    ✓ In situ 6B 5Kb 

Bonev et al., 2017 Mouse   ✓  In situ 40B 850bp 

Wang et al., 2018 Drosophila   ✓  In situ 695M frag. 

 
Table 1. Hi-C studies over the past decade that marked forward leaps in resolution or 
dataset size. The table reports the original publication (study), organisms examined, restriction 
enzymes used, protocol variation, total number of read pairs sequenced and maximum binning 
resolution used in the analyses presented by the original authors. The size of restriction sites (6bp 
or 4bp) is also indicated. M is for million read pairs, B is for billion read pairs, frag. is for fragment 
level analysis. 
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Input format Reference 
 Text Binary 

CScoreTool ✓    RP  Zheng et al., 2018 

HiTC ✓   ✓ SM  Servant et al., 2012 

HOMER ✓ ✓ ✓  RP  Heinz et al., 2010 

Juicer (HiCCUPs, 
Arrowhead, Juicebox) 

✓ ✓ ✓ ✓ 
 

hic 
Durand et al., 2016a 
Durand et al., 2016b 

        

4D NAT  ✓  ✓ 2D,SM HDF Seaman et al., 2018 

3DNetMod  ✓   SM  Norton et al., 2018 

Armatus  ✓   2D  Filippova et al., 2014 

CaTCH_R  ✓   SM  Zhan et al., 2017 

ClusterTAD  ✓   2D  Oluwadare et al., 2017 

domainCaller  ✓   2D  Dixon et al., 2012 

deDoc  ✓   2D  Li et al., 2018 

HiCDB  ✓   2D  Chen et al., 2018 

HiTAD  ✓   SM  Wang et al., 2017 

HiCseg  ✓   2D  Leduc et al., 2014 

IC-Finder  ✓   2D  Haddad et al., 2017 

InsulationScore  ✓   2D  Crane et al., 2015 

Lavaburst  ✓   2D  Schwarzer et al., 2017 

MrTADFinder  ✓   SM  Yan et al., 2017 

Matryoshka  ✓   2D  Malik et al., 2018 

TADBit  ✓   2D  Serra et al., 2017 

TADTree  ✓   2D  Weinreb et al., 2016 

TADtool  ✓  ✓ 2D,SM npy Kruse et al., 2016 

        

CHiCAGO   ✓   BAM Cairns et al., 2016 

diffHiC ✓  ✓   HDF Lun et al., 2015 

FastHiC   ✓  SM  Xu et al., 2016 

Fit-Hi-C   ✓  SM  Ay et al., 2014 

GOTHiC   ✓  RP  Mifsud et al., 2017 

PSYCHIC   ✓  2D  Ron et al., 2017 

        

3D Genome Browser    ✓ RP,2D,SM BUTLR Wang et al., 2018 

HiCExplorer   ✓  ✓ RP  Ramirez et al., 2018 

HiGlass    ✓  HDF Kerpedjiev et al., 2018 

gcMapExplorer    ✓  HDF Kumar et al., 2018 

WashU epigenome browser    ✓  hic,HDF Zhou et al., 2012 

Table 2. List of tools for downstream analyses on Hi-C data. The table report the list of 
methods with their reference name, the capability of each tool in term of calling compartments, 
TADs, interactions or for visualizing data. Tools are grouped based on their main focus in term of 
analysis type (compartments, TADs, interactions calling and visualization), and within each group 
are sorted alphabetically by tool name. The format of input data is reported, by specifying if the 
tools accepts text or binary input file formats. Abbreviations for file formats are used for: read pairs 
(RP), 2D matrix (2D), sparse matrix (SM) and python numpy matrix (npy) file formats. The last 
column reports the reference publication for each tool. 
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FIGURE LEGEND 

 

Figure 1. Hi-C data, from generation to contact matrix. The figure shows a schematic 
representation of Hi-C data analysis, starting from a cartoon depicting crosslinked chromatin and a 
prototypic pair of mate reads positioned on the restriction fragments from which they originate. 
Raw sequencing paired end reads (in FASTQ files) are aligned to the reference genome 
considering the mate reads independently. Then aligned reads (in BAM files) are assigned to their 
fragment of origin and paired. The paired reads are stored in a sorted file that can be in either plain 
text, indexed text (pairix) or binary (e.g. HDF) formats, depending on the pipeline. Finally, after 
filtering and binning, the read counts are stored in contact matrix files, including plain text (e.g. 2D 
or sparse matrix) or binary (e.g. hic or cool) file formats. 


