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ABSTRACT
In the Neves area, eastern Alps, fractures that localized shear zones in middle continental 

crust above the Alpine megathrust are commonly oriented at a high angle to the inferred long-
term shortening direction. Fractures show a segmentation geometry and, locally, a discernible 
offset, indicating movement opposite to the sense of subsequent ductile shear and implying a 
switch of principal stress axes σ1 and σ3 during fracturing. We propose that this repeated switch, 
demonstrated by overprinting relationships and different degrees of fracture reactivation, 
was due to sporadic co-seismic to early post-seismic rebound in the upper plate of the Alpine 
continental collision system. Fracturing occurred intermittently in the weak midcrustal rocks 
due to seismic stress release at high transient strain rates and pore-fluid pressures. Widespread 
transient fracturing in the hanging wall of the Alpine megathrust regionally controls the orien-
tation of ductile shear zones in the middle crust, as well as the emplacement of magmatic dikes.

INTRODUCTION
Fractures can provide precursors for ductile 

shear zones in middle to lower continental crust. 
This is documented in isotropic rocks such as 
(meta-) granitoids, but also in foliated midcrustal 
rocks (Fusseis and Handy, 2008; Pennacchioni 
and Mancktelow, 2018). Precursor fractures in 
magmatic rocks may be inherited cooling joints 
(e.g., Segall and Pollard, 1983; Segall and Simp-
son, 1986), but others are new fractures that were 
coeval with ductile shearing, reflecting cycles of 
brittle failure and flow (Pennacchioni and Manck-
telow, 2007, 2018; Hawemann et al., 2019; Leydi-
er et al., 2019). In some cases, precursor fractures 
are oriented at a high angle (>70°) to the regional 
long-term shortening direction (ε1; Pennacchioni 
and Mancktelow, 2007; Hawemann et al., 2019), 
which is surprising, since extensional fractures 
should develop at ∼90° to the axis of minimum 
compressive stress (σ3; Pollard and Aydin, 1988). 
This contradiction suggests that during fracturing, 
σ3 has switched with ε1. Such a switch could be 
due to the interplay between tectonic and gravi-
tational forces (Molnar and Lyon-Caen, 1988). 
However, on a shorter time scale, reversal of stress 
axes is typical of co- to early postseismic rebound 

after earthquakes (e.g., Hasegawa et al., 2012; 
Wang et al., 2012; Becker et al., 2018; Govers 
et al., 2018). In this study, field structures in the 
Neves area (eastern Alps, Italy) are used to as-
sess the mechanism of transient fracturing at mid-
crustal levels in the hanging wall of a continental 
subduction megathrust. We propose that fractur-
ing occurred intermittently during aseismic creep 
in weak midcrustal rocks due to rapid, transient 
seismic stress release under high fluid pressures.

OBSERVATIONS
The Neves area (Fig. 1) exposes pre-Alpine 

granitoids that preserved kilometer-scale, low-
strain domains during Alpine midcrustal defor-
mation at ca. 30 Ma (Christensen et al., 1994) 
under high fluid pressure and amphibolite-facies 
conditions (∼550 °C, 0.75 GPa; Cesare et al., 
2001; Leydier et al., 2019). At this time, the 
Neves granitoids were in the immediate hang-
ing wall of the Alpine continental megathrust 
(Fig. 1; Schmid et al., 2013, their figure 6). 
Several studies (Pennacchioni and Mancktelow, 
2018, and references therein) have shown that, 
within the low-strain domains, small-scale (cen-
timeters to decimeters thick) ductile shear zones 

were localized on tabular rheological disconti-
nuities provided either by dikes or by mineral-
ized fractures. For fractures, ductile shear and 
foliation development is either confined to the 
mineral filling and/or affects the altered host 
rock at the fracture selvages. The orientations 
of sinistral and dextral shear zones, extension-
al veins, solid-state foliation, and intersection 
zones between conjugate ductile shear zones 
constrain the axis of maximum shortening (ε1) 
as subhorizontal at 345° and the axis of maxi-
mum extension (ε3) as subhorizontal at 075°, 
i.e., approximately perpendicular and parallel to 
the Alpine chain, respectively (Fig. 1; Figs. S1 
and S2 in the Supplemental Material1; Pennac-
chioni and Mancktelow, 2007). The direction of 
ε1-ε3 was maintained, with only slight rotation, 
during exhumation/cooling to ∼300 °C (Fig. S2; 
Pennacchioni and Mancktelow, 2007). A similar 
ε1-ε3 orientation is reported on a regional scale 
from Oligocene to present time in the eastern 
Alps (e.g., Ratschbacher et al., 1991; Manck-
telow et al., 2001; Scharf et al., 2013).

Shear zones localized on fractures can be 
assigned to two groups based on their orien-
tation and composition of the mineral filling. 
The north-south– to NNW-SSE–striking frac-
tures (hereafter referred to as the N-S set) are 
filled with thick (up to meters wide), coarse-
grained, quartz-calcite ± biotite ± plagioclase 
veins. The veins, oriented at a high angle to 
ε3, are either hybrid or purely extensional. 
Segmented veins with an extensional-sinistral 
sense are generally left-stepping features, devel-
oping pull-apart step-overs (Fig. 2A), whereas 
 extensional-dextral veins are right-stepping 
features. The overprinting ductile deformation, 
mostly localized within the vein, shows the same 
shear sense as during vein opening (Fig. S2B).

1Supplemental Material. Study locations, stereoplots, detailed outcrop maps, and high resolution photographs. Please visit https://doi .org/10.1130/GEOL.S.12510383 
to access the supplemental material, and contact editing@geosociety.org with any questions.
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The shear zones exploiting fractures filled 
with thin mineral veins have an east-west to 
ESE-WNW strike (referred to as the E-W set), 
at a high angle to ε1. These fractures are sealed 
cracks, in some cases without discernible off-
set (Fig.  2B). Fluid-rock interaction along 
fractures involved metasomatic replacement 
of the host-rock assemblage by biotite, gar-
net, epidote, and plagioclase (Leydier et al., 

2019; Mancktelow and Pennacchioni, 2005). 
Segmented arrays of the E-W set are typically 
left-stepping features (Figs. 2C and 3A), with 
step-overs developing contractional domains 
during dextral ductile shear reactivation. The 
stepping geometry of the E-W set is therefore 
opposite to that of the N-S set, for the same 
sense of overprinting ductile shear. For the E-W 
set, the following features are locally observed:

(1) Segmented arrays, horsetail splays 
(Figs. 3A and 3B; Figs. S2–S6), and zones of 
fluid infiltration and localized fluid-rock interac-
tion (Pennacchioni and Mancktelow, 2007, their 
figure 5d) suggest an extensional rather than a 
contractional step-over during fracturing.

(2) The initial fracture shows the opposite 
sense of displacement to that of the subsequent 
ductile shear zone (Figs. 3D and 3E).

Mutual overprinting between fractures and 
ductile shear zones is locally evident. Figure 3B 
shows a dextral shear zone exploiting a dike that 
is cut by discrete, segmented, parallel fractures. 
The fractures were the locus for fluid-rock in-
teraction and subsequent localized ductile shear. 
Figure 3C shows an aplite dike that was sheared 
into parallelism with an east-west–striking lam-
prophyre dike. Discrete fractures in the axial 
plane of the drag fold became the loci for fluid-
rock interaction and were exploited as shear 
zones (Figs. S7–S10).

DISCUSSION
The quartz-calcite–rich veins (Fig. 2A) and 

the associated ductile shearing are unequivo-
cally of Alpine age, having developed under 
amphibolite-facies conditions (Cesare et al., 
2001). The age of the more discrete fractures 
(Figs. 2B and 2C) is not self-evident. The origin 
of these fractures as pre-Alpine cooling joints, 
with associated fluid-rock interaction, would be 
consistent with their orientation parallel to the 
east-west–striking lamprophyre dikes (Fig. 3A). 
However, the study by Leydier et al. (2019) on 
garnet-enriched, east-west–striking sheared 
fractures concluded that fracturing and duc-
tile shearing occurred during Alpine prograde 
metamorphism. Field evidence also establishes 
that the fractures developed intermittently dur-
ing Alpine deformation (Figs. 3B and 3C), and 
the occurrence of subparallel fracture sets with 
different degrees of ductile overprinting sug-
gests that fracturing occurred repeatedly during 
overall ductile deformation.

As outlined above, fractures of the N-S set, 
at a high angle to ε3, and fractures of the E-W 
set, at a high angle to ε1, are distinctly differ-
ent. N-S set fractures were originally dilatant 
and continued to dilate during development, 
with extensional step-overs formed during 
interplay between fracture and ductile shear 
(left-stepping for sinistral and right-stepping 
for dextral veins). This resulted in the growth 
of coarse quartz, calcite, plagioclase, and bio-
tite. In contrast, the E-W set was not markedly 
dilatant, and the typical dextral shearing of left-
stepping sets produced contractional step-overs 
and replacement veining, with growth of  biotite, 
 garnet, and epidote. If the N-S set is taken as 
a model, the E-W set could also represent ex-
tensional to mixed-mode fractures but without 
the continued opening of the north-south–strik-
ing quartz-rich veins. The problem is that their 
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orientation relative to ε1 is not consistent with 
the development of extensional fractures. Ob-
servations from the E-W set are more consis-
tent with a sporadic inversion of the stress field, 
with σ3 and σ1 interchanging with the ε1 and ε3 
directions (Fig. 4). This could not be a durable 
reversal, since there is no significant dilation 
on the E-W fracture set. A long-term inversion 
would also result in reversal of the movement 
on the north-south quartz-rich veins, which is 
not observed.  Figure 4 shows a summary, based 
on field observations, of the structure develop-

ment related to fracturing during transient stress 
inversion and long-term viscous flow.

A longer-term, but still transient, reversal 
could reflect switches in stress axes due to the 
interplay between tectonic and gravitational forces 
(Molnar and Lyon-Caen, 1988). Indentation mod-
els for progressive late Oligocene–Miocene exhu-
mation of the Tauern Window involve an interplay 
among NNW-directed convergence, upright fold-
ing, and normal faulting (e.g., Rosenberg et al., 
2004; Scharf et al., 2013; Favaro et al., 2017). 
However, in these models, the potential switch is 

between principal stress axes that were either per-
pendicular to the Alpine chain (σ1) or vertical (σ2), 
but not a switch between σ1 and σ3 perpendicular 
and parallel to the chain, as documented here.

Reversal in the stress axes on a much shorter 
time scale is inferred in studies of elastic re-
bound after major earthquakes (Hyndman and 
Wang, 1993; Ozawa et al., 2011, 2012; Hasega-
wa et al., 2012; Wang et al., 2012; Avouac, 2015; 
Klein et al., 2016; Becker et al., 2018; Govers 
et al., 2018). Viscoelastic relaxation of the re-
versal from extension back to compression is 

Figure 3. (A) Outcrop 
overview photo-mosaic. 
Upper-right corner: lower-
hemisphere stereoplot of 
poles to shear zones and 
fractures from the Neves 
area; legend as in car-
toon. Lower-right corner: 
cartoon of structures from 
mosaic, with same color 
scheme as stereoplot. 
1—quartz-calcite ± bio-
tite ± plagioclase veins; 
2—sinistrally sheared 
fractures; 3—joints; 
4—dextrally sheared 
fractures; 5—ε1 and ε3 
directions, from change 
in shear sense of shear 
zones (see stereoplot 
and Figs. S1 and S2 
[see footnote 1]). (B–C) 
Enlargements of areas 
located on the mosaic A. 
In B, note set of exten-
sional wing cracks 
between overstepping 
east-west fracture seg-
ments, consistent with 
sinistral slip (opposite 
to overprinting ductile 
shear sense). (D–E) Dex-
tral ESE-striking shear 
zones, showing discrete 
sinistral offset of aplite 
dike on central fracture, 
transitional from single 
to paired shear zone (D) 
and paired shear zone (E). 
1 Euro coin = 2.3 cm.
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 modeled to take years to decades (Klein et al., 
2016; Becker et  al., 2018). For subduction 
megathrust earthquakes, reversal is limited to 
the overriding upper plate (Hyndman and Wang, 
1993; Wang et al., 2012). This corresponds to 
the tectonic position of the Neves block during 
the Oligocene to Miocene period considered 
here. At this stage of Alpine collision, units of 
the Neves area were already detached from the 
subducting plate and accreted to the immediate 
hanging wall of the main intracontinental mega-
thrust (Schmid et al., 2013, their figure 6). How-
ever, there is no evidence for major earthquakes 
in the Neves area. Leydier et al. (2019) sug-
gested that the Neves area fulfills the conditions 
to have hosted slow earthquakes during Alpine 
continental collision, namely, coupled frictional 
and viscous deformation under high fluid pres-
sures, but their model does not account for the 
observed switch of stress axes described here.

Mancktelow and Pennacchioni (2010) estab-
lished that the differential stress during ductile 
flow in the Neves area was low (<10 MPa). This, 
together with the high pore-fluid pressure (Ce-
sare et al., 2001; Leydier et al., 2019), implies 
that the Mohr circle representation of the effec-
tive stress was close to the extensional (mode I) 
or hybrid (mixed mode I + II) failure envelope. 
A small perturbation in the stress field would 
have been sufficient to (intermittently) induce 
failure, causing extensional or hybrid failure, 
as recorded by both the north-south quartz-rich 
veins and the east-west thin fractures. A source 
for the intermittent stress inversion could have 
been distant earthquakes along the Defereggen-
Antholz-Vals (DAV) and Periadriatic fault sys-
tems (e.g., Mancktelow et al., 2001), located 
∼15 km south of the Neves area (Fig. 1). In these 
faults, pseudotachylytes, which are reliable in-
dicators of seismicity (Sibson, 1977), have an 
age range that includes the Oligocene–Miocene 
deformation of the Neves area (Müller et al., 
2001). Both the range in ages and crosscutting 

relationships indicate that seismicity on these 
faults was repetitive, as was fracturing in the 
Neves area. At the regional scale of the Alps, 
widespread Oligocene dikes are commonly ori-
ented at a high angle to the long-term NNW-
SSE shortening direction (Guastoni et al., 2014; 
Mancktelow et al., 2001). This dike orientation 
suggests a regional transient switch in stress 
axes during magmatic emplacement, similar to 
that producing the E-W set of discrete fractures 
in the Neves area.

The Neves area is a well-exposed example of 
“wet” midcrustal deformation. Other examples 
of intermittent seismic deformation in the gen-
erally ductile middle to lower continental crust 
have been reported. Boullier and Robert (1992) 
documented repetitive paleoseismic events re-
corded in Archean gold-quartz vein networks 
(Quebec Province, Canada) emplaced after the 
peak of greenschist-facies metamorphism. Simi-
lar to Neves, the veins are oriented at a high angle 
to the long-term horizontal shortening direction. 
The authors ascribed the intermittent switch of 
ε1 and σ3, producing extensional vein opening, 
to shear stress release along neighboring shear 
veins after seismic rupturing. Similar to Neves, 
fluid pressures were high, and the perturbation 
in fluid pressure and stress during intermittent 
seismicity did not have to be large to cause frac-
turing. Hawemann et al. (2019) described a field 
example with similarities to Neves, though from 
a quite different environment—the exhumed dry 
lower continental crustal rocks of the Musgrave 
Ranges (central Australia), deformed under sub-
eclogite-facies conditions. Also in this case, the 
precursor fractures, commonly decorated by 
pseudotachylyte and therefore coseismic, are 
oriented at a high angle to the regional ε1 di-
rection (Hawemann et al., 2019, their figure 3). 
Fractures and pseudotachylytes were exploited 
by shear zones, with evidence of repeated cy-
cles of seismic fracturing and shearing. In this 
case, the absence of fluids and the presence of 

 fractured garnet and pseudotachylyte suggest 
that the transient stress perturbation was large.

CONCLUSIONS
Long, thin fractures that localized fluid 

infiltration, fluid-rock interaction, and subse-
quent ductile shear are commonly oriented at 
a high angle to ε1 in the Neves area. In many 
cases, these are effectively joints, without dis-
cernible offset, and would usually be inter-
preted as extensional fractures oriented per-
pendicular to σ3 during initiation. Where the 
initial offset is discernible, it is not uncom-
monly opposite in sense to that of later ductile 
shear localized on these precursor structures. 
This implies a transient switch between σ1 and 
σ3 during fracturing relative to their orienta-
tion during long-term, aseismic, ductile de-
formation. Such short-term reversal has been 
observed and numerically modeled for co- to 
early postseismic rebound in the hanging wall 
of subduction zone megathrusts, with the post-
seismic rebound decaying viscoelastically over 
a period of decades. In the Neves area, this pro-
cess of transient fracturing and stress reversal 
was repeated in an overall regime of fluid-rich, 
weak, aseismic viscous flow at middle con-
tinental crust levels, within units that, at the 
time, were in the immediate hanging wall of 
the Alpine intracontinental megathrust.
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