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A B S T R A C T

In this paper, we investigate neural models based on graph random features for classification tasks. First, we
aim to understand when over parameterization, namely generating more features than the ones necessary to
interpolate, may be beneficial for the generalization abilities of the resulting models. We employ two measures:
one from the algorithmic stability framework and another one based on information theory. We provide
empirical evidence from several commonly adopted graph datasets showing that the considered measures, even
without considering task labels, can be effective for this purpose. Additionally, we investigate whether these
measures can aid in the process of hyperparameters selection. The results of our empirical analysis show that
the considered measures have good correlations with the estimated generalization performance of the models
with different hyperparameter configurations. Moreover, they can be used to identify good hyperparameters,
achieving results comparable to the ones obtained with a classic grid search.
1. Introduction

When dealing with large-scale problems or aiming for computa-
tional efficiency, a commonly adopted approach is to exploit feature
sketching (random projections followed by a component-wise non-
linearity) in conjunction with a linear classifier. The behavior of linear
classifiers on increasing number of random features has been studied
from the theoretical point of view, in particular for ridge regression [1]
and based on stochastic gradient descent [2], showing, theoretically
and empirically, the presence of the double descent and best-overfit
phenomena [3–7], namely the ability of these models to improve the
generalization performance in over-parameterization, i.e., when having
much more parameters than the ones needed to interpolate. To the
best of authors’ knowledge, no study in literature considers the case
of random graph neural features. We speculate that the reason is that
the majority of randomized graph networks in literature are based
on a recurrent scheme of Reservoir Computing that, while generating
expressive features, can result in a high computational complexity with
hundreds or thousands of features [8].

However, recently an untrained graph neural model has been pro-
posed [9] that can efficiently generate thousands of non-linear features,
only specifying the number of desired features and a scale parameter
controlling the magnitude of the randomly generated weights. The
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computational efficiency of this untrained graph model allows us to
investigate the generated representations.

The first goal of this paper is to extend the study by Navarin
et al. [10] of how over-parameterization impacts learning on graph
domains exploiting randomized graph neural networks. The authors
observed that, in the cases in which over-parameterization is beneficial,
a metric derived from Algorithmic Stability, the condition number of
the Gram matrix of the hidden representations [3,4], shows a distinct
behavior.

The second contribution of this paper is to exploit different
indicators of representational richness to understand if the over-
parameterization regime can be beneficial for the task defined on a
given dataset or not. Specifically, since in some instances the com-
putation of the condition number is not reliable, we introduce an
additional measure based on information theory, that is the average
feature entropy [11], whose computation is less prone to numerical
instabilities.

As a third contribution, we study the relationship between the afore-
mentioned measures and the estimated generalization performance of
the model, showing generally a good correlation when varying both the
number of generated features and the scale parameter. Moreover, we
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show that the considered metrics can be used to perform model selec-
tion, achieving in most cases results comparable to the ones obtained
by a classic grid search approach, yet without the need to train but the
selected model.

2. Background and related works

In the forthcoming discussion, we will use the following notation:
we refer to variables with italic letters, to vectors with bold lowercase
letters, to matrices with bold uppercase letters, and to sets or tuples
with uppercase calligraphic letters. The elements of a matrix or vector
are indicated with lowercase italic and appropriate indices, such as 𝑎𝑖𝑗
to refer to the entries of matrix 𝐀.

Let  = ( ,  ,𝐗) be a graph, where  = {𝑣1,… , 𝑣𝑛} denotes the
set of vertices (nodes) of the graph,  ⊆  ×  is the set of edges,
and 𝐗 ∈ R𝑛×𝑠 are node attributes, with the 𝑖th row representing the
𝑠-dimensional feature vector 𝐱𝑖 of 𝑣𝑖. We indicate the adjacency matrix
f the graph with 𝐀 ∈ R𝑛×𝑛, with elements 𝑎𝑖𝑗 = 1 ⟺ (𝑣𝑖, 𝑣𝑗 ) ∈  .

2.1. Randomized graph neural networks

In recent years, there has been a noticeable trend towards increas-
ingly complex models within structured data domains. These models
have been pushing the boundaries of architecture design, resulting in
novel frameworks characterized by a substantial number of parameters.
However, this surge in complexity comes at a cost, particularly in
terms of computational resources required for training these models.
Within the sequential data domain, efficient architectures to address
similar issues have been developed using the Reservoir Computing
(RC) paradigm [12]. RC exploits the Echo State Property (ESP) [13]
to randomize the values of recurrent parameters ensuring stability
conditions. As such, Echo State Networks (ESN) [13] are commonly
and efficiently employed for sequential data. Given the reliance on
untrained dynamics of the reservoir, the richness of the resulting neural
representations has been assessed using metrics such as the average
state entropy [11].

Authors of [14] were the first to propose to exploit the reservoir
computing (randomized) framework for graph structured data as well.
They proposed GraphESN, a model comprised of a non-linear reservoir
for graph embedding and a feed-forward linear readout. The global
state is computed by an iterative process, in which the reservoir per-
forms a fixed recurrent function until convergence. Fast and Deep GNN
(FDGNN) [15] was later introduced as and evolution of GraphESN, and
leverages stacked layers of GNN as a reservoir, constructing progres-
sively more general graph features. Authors of [16] proposed a model,
the Multi-resolution Reservoir Graph Neural Network (MRGNN), which
exploits a Reservoir Convolutional layer for graphs able to simultane-
ously and directly consider all topological receptive fields up to 𝑘-hops.
More recently, authors of [17] focused on the task of node classification
using randomized graph convolutions (differently from this paper in
which we consider the more challenging setting of graph classification).
Contrary to many graph neural networks, the authors proposed a single-
layer architecture, yet with an increased receptive field, defined as
𝐙 = 𝜎(𝐀2𝐗𝐖)𝜷, where 𝜎 is the sigmoid function, 𝐀 ∈ R𝑛×𝑛 is the
djacency matrix of the graph, 𝐖 ∈ R𝑠×𝑚 is the (random) wight matrix

for 𝑚 hidden neurons (that is left untrained), and 𝜷 are the trained
utput weights.

.2. Over-parameterization

Simultaneously, deep learning researchers have started to ques-
ion themselves about the mechanism of over-parameterization, which,
espite its longstanding study [18], has recently revealed profound
mplications for advanced deep networks such as large language mod-
ls [19]. In essence, over-parameterization involves leveraging models
ith more parameters than the ones necessary to interpolate the data,
 u

2 
namely perfectly fit or memorize the available data, to obtain good
generalization performance [3]. Recent findings showed that, even
if counter-intuitive, increasing the number of parameters after the
interpolating threshold can enhance the generalization ability of the
model by increasing its stability [3,4]. Unfortunately, stability is not
always simple and straightforward to compute in order to evaluate the
generalization ability of a model [3]. As we motivate in Section 4.2, in
this work we compute stability via the condition number of the Gram
matrix [3–5] induced by the random graph projection.

3. Graph random features

The primary aim of this paper is to investigate the effectiveness
of over-parameterized graph models using graph random features. In
order to understand if and under which conditions such models are
feasible and convenient, we leverage measures from statistical learning
theory, such as the Algorithmic Stability, and from information theory,
such as entropy. In this section we first introduce a summary of a
recent approach for generating graph random features based on graph
neural networks [9], which we use for the present study, and then we
describe the usage of entropy to measure the richness of the extracted
representations. Afterwards, in Section 4.2, we will delve deeper into
statistical learning theory and approximations of Algorithmic Stability.

3.1. Feature extraction

The architecture for graph random feature extraction introduced
by the authors of [9], dubbed U-GCN, is closely inspired by fully
trained graph neural networks, with the difference of not being trained.
Specifically, multiple graph convolution layers are stacked one after the
other, interleaved with a hyperbolic tangent element-wise non-linear
activation function. For the definition of graph convolution, GCN [20]
is used, resulting in hidden node representations computed by the
𝑙th layer as 𝐇(𝑙) = 𝑡𝑎𝑛ℎ(𝐒𝐇(𝑙−1)𝐖(𝑙)), where 𝐒 = (𝐃̃− 1

2 𝐀̃𝐃̃− 1
2 ) is the

normalized Laplacian adopted by the GCN (𝐀̃ = 𝐀 + I is the adjacency
matrix with the addition of self loops, and 𝐃̃ is its diagonal degree
matrix where 𝑑𝑖𝑖 =

∑

𝑗 𝑎𝑖𝑗 + 1), 𝐖(𝑙) are the layer parameters and
𝐇(0) = 𝐗. For the sake of simplicity, in our notation we omit the bias
erms. Crucially for the graph random features approach, the weight
n 𝐖(𝑙) are randomly initialized by the Glorot uniform approach [21]
ith a gain hyperparameter 𝜃 to control the effective scaling of 𝐖(𝑙),
nd successively left untrained. As a result, a weight matrix of shape
× 𝑚 will have entries sampled from a uniform distribution  (−𝑎, 𝑎)
here 𝑎 = 𝜃

√

6∕𝑛+𝑚. Finally, node representations are obtained by con-
catenating the representations computed by each layer of the network,
i.e. 𝐇 = [𝐇(1),… ,𝐇(𝐿)], where 𝐿 is the number of layers of the network.

3.2. Global pooling

The untrained graph convolutional network we described produces
node representations that capture local information through the neigh-
borhood aggregation of graph convolution. Thus, to perform graph-
level tasks, a global pooling layer is exploited to obtain a single repre-
sentation for the whole graph. Commonly used global pooling operators
include maximum, minimum and average pooling and are generally
required to be differentiable to be used for end-to-end learning by
backpropagation. In the case of untrained graph convolution, since we
do not require gradients, non-differentiable operators can be utilized
as well, such as the Percentage of Positive Values (PPV) [22]. The PPV
is a non-differentiable pooling mechanism introduced for randomized
networks for time series and defined as: 𝑃𝑃𝑉 (𝐳) = 1

𝑛
∑𝑛

𝑖=1 𝐼[𝑧𝑖 > 0],
here 𝐼[𝑧𝑖 > 0] is the indicator function whose value is 1 if 𝑧𝑖 > 0, 0
therwise. The authors proposed using jointly the Global Max Pooling
nd PPV as global pooling, concatenating the resulting representations.
ote that this choice doubles the size of the global graph representation
ompared to the representations of the single nodes provided in output
y the untrained graph convolution. Finally, the authors proposed to
se a ridge classifier as a readout for its computational efficiency.
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4. Richness of representations

4.1. Average feature entropy

In the context of graph random features, a fundamental concern
revolves around the diversity and expressiveness of the representations
they capture. Given their random and untrained nature, it is crucial to
assess their effectiveness in encapsulating various graph structures and
patterns. To quantify this, we rely on a suitably adapted average state
entropy (ASE), a metric that has been used to assess the richness of
dynamics in reservoir computing [11,23,24].

Considering reservoir layers with fixed number of units 𝑢 and a
iven sequence, the instantaneous state entropy, computed with effi-
ient estimator of Renyi’s quadratic entropy [25], for each time-step 𝑡

and layer 𝑙 is defined as

𝐻 (𝑙)(𝑡) = − log

(

1
𝑢2

𝑢
∑

𝑗=1

( 𝑢
∑

𝑘=1

(

ℎ(𝑙)𝑗 (𝑡) − ℎ(𝑙)𝑘 (𝑡)
)

))

, (1)

here ℎ(𝑙)𝑗 (𝑡) is the 𝑗th component of the reservoir state 𝐡(𝑙)(𝑡) and  is
a Gaussian kernel. Given an input time-series of length 𝑇 , the ASE is
then defined as

𝐴𝑆𝐸(𝑙) = 1
𝑇

𝑇
∑

𝑡=1
𝐻 (𝑙)(𝑡) (2)

With this definition, ASE quantifies the richness of each deep reser-
oir layer, averaged across the length of the time-series. To adapt it
o our setting, we first observe how an entropy akin to Eq. (1) is
ufficient to capture the richness of a graph representation within a
ayer, since we do not have a time dimension. Then, as we concatenate
he representations of all the layers to obtain the graph features, we
ake the average of the entropy of the layers to quantify the richness
f the entire graph representation. This entropy reflects the diversity
f node representations within the layers: intuitively, more diverse
epresentations can provide richer features from which the successive
ayers and the trainable readout can extract relevant patterns. Finally,
o obtain an average measure of the quality of graph features for a
articular dataset, we calculate average feature entropy (AFE) by taking
he mean over all the graphs it contains.

More formally, considering a dataset of 𝑚 graphs 𝑚 = {1,… ,𝑚},
he entropy of a graph’s random features is computed for graph 𝐺𝑖 at
ach layer 𝑙 as

(𝑙)(𝑖) = − log

(

1
𝑢2

𝑢
∑

𝑗=1

( 𝑢
∑

𝑘=1

(

ℎ(𝑙)𝑗 (𝑖) − ℎ(𝑙)𝑘 (𝑖)
)

))

, (3)

where ℎ(𝑙)𝑗 (𝑖) is the 𝑗th component of the hidden representation of 𝑖 at
ayer 𝑙, 𝑢 is the number of units in layer 𝑙, and  is a Gaussian kernel.1
he feature entropy of 𝑖 is then calculated as the average of all layers
s

(𝑖) =
1
𝐿

𝐿
∑

𝑙=1
𝐻 (𝑙)(𝑖) . (4)

Finally, average feature entropy is obtained by taking the mean of
graph feature entropy over all graphs in the training dataset:

𝐴𝐹𝐸𝑚
= 1

𝑚

𝑚
∑

𝑖=1
𝐻(𝑖) . (5)

1 In particular, the size of the Gaussian kernel  is set to 0.3 times the
standard deviation of unit activations for the given layer, similarly to [11].
3 
4.2. Hypothesis stability

Let us consider the supervised learning setting [26–28]. Based on
a random observation of 𝑋 ∈  one has to estimate 𝑌 ∈  sampled
ccording to 𝜇 over  =  ×  by choosing a suitable function

𝑓 ∶  → ̂ in a set  . A learning algorithm 𝒜𝜔, characterized by
hyperparameters 𝜔, selects 𝑓 ∈  , by exploiting a set of 𝑚 labeled
samples 𝑚 =

{(

𝑋1, 𝑌1
)

,… ,
(

𝑋𝑚, 𝑌𝑚
)}

=
{

𝑍1,… , 𝑍𝑚
}

with 𝑍 ∈ 
sampled independently from 𝜇. Formally

𝑓 = 𝒜𝜔(𝑚). (6)

The generalization error of 𝑓 , i.e., the error of 𝑓 in approximating
P{𝑌 |𝑋}, is defined as

𝖫(𝑓 ) = E𝑍
{

𝓁(𝑓,𝑍)
}

, (7)

where 𝓁 ∶ × → [0, 1] is a loss function which measures the pointwise
quality of the approximation. Since 𝖫(𝑓 ) cannot be explicitly computed,
we can compute the empirical error [26], i.e., the empirical risk or
training error

𝖫̂(𝒜𝜔(𝑚)) = 𝖫̂emp(𝒜𝜔(𝑚)) =
1
𝑛

∑

𝑍∈𝑚

𝓁(𝒜𝜔(𝑚), 𝑍). (8)

nother possible estimator is the leave one out error [29]

̂ loo(𝒜𝜔(𝑚)) =
1
𝑚

∑

𝑍∈𝑚

𝓁(𝒜𝜔(𝑚 ⧵𝑍), 𝑍), (9)

amely the average error on a single sample of 𝑚 kept away from the
earning phase.

In this setting it is possible to prove that [30]
{

𝖫(𝒜𝜔(𝑚)) ≤ 𝖫̂∗(𝒜𝜔(𝑚)) +𝖬(𝒜𝜔) + 𝛥(𝑚, 𝛿)
}

≥ 1 − 𝛿, (10)

amely, the generalization error of 𝑓 is bounded by one of its empirical
stimator 𝖫̂∗ ∈ {𝖫̂emp, 𝖫̂loo} plus a term 𝖬(𝒜𝜔) which measures the risk
ue to the choice of the algorithm and its hyperparameters (i.e., the
ore the algorithm tends to memorize/fit/extract-information and not

earn from the data the larger is this term), plus a confidence term2

(𝑛, 𝛿) which measures the risk associated to the sample (i.e., the less
ata we have or the larger confidence we require, the larger is this
erm).

A very effective way to estimate 𝖬(𝒜𝜔) is the one based on Al-
orithmic Stability (AS) [28–35]. AS allowed multiple times to shed
ew light on generalization [32] or on more complex phenomena like
verparameterization [3]. The underlying idea of AS is actually simple:
he more accurate the model chosen by the algorithm is and the more
imilar are the models chosen when the training data are (slightly)
odified then the more the algorithm generalizes.

Many different notions of stability exist [4,29,31,34], e.g., uniform
tability, hypothesis stability (HS), cross validation and leave one out
tability, error stability, and pointwise HS. Nevertheless, the one that
as been shown to be the most important/powerful/insightful to un-
erstand complex phenomena is the HS. HS, while inducing looser
ounds with respect to, e.g., uniform stability [29–31], can be esti-
ated from the data and it is strongly dependent on the properties

f the algorithm [3,4,29,30,34]. HS can be defined in two different
ays [29,36,37]

𝑚 ,𝑍𝑖
|

|

𝓁(𝒜𝜔(𝑚), 𝑍𝑖) − 𝓁(𝒜𝜔((𝑚 ⧵𝑍𝑖) ∪𝑍′
𝑖 ), 𝑍𝑖)|| ≤ 𝛽emp, (11)

𝑚 ,𝑍′ |
|

𝓁(𝒜𝜔(𝑚), 𝑍′) − 𝓁(𝒜𝜔(𝑚 ⧵𝑍𝑖), 𝑍′)|
|

≤ 𝛽loo, (12)

here 𝑍′ is a sample sampled according to 𝜇. Then, if we use 𝖫̂emp
n Bound (10) we have that 𝖬(𝒜𝜔) ∝ 𝛽emp,while if we use 𝖫̂loo in
ound (10) we have that 𝖬(𝒜𝜔) ∝ 𝛽loo.

2 We will not discuss this term since it is independent from 𝒜 .
𝜔
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Note also that if 𝓁 is 𝐿-Lipschitz continuous with respect to a notion
of distance 𝚍(⋅, ⋅) where 𝚍 ∶ ̂ × ̂ → R we can state that

emp ≤ 𝐿 E𝑚 ,𝑋𝑖
𝚍(𝒜𝜔(𝑚)(𝑋𝑖),𝒜𝜔(𝑚 ⧵𝑍𝑖 ∪𝑍′

𝑖 )(𝑋𝑖)), (13)

loo ≤ 𝐿 E𝑚 ,𝑋′𝚍(𝒜𝜔(𝑚)(𝑋′),𝒜𝜔(𝑚 ⧵𝑍𝑖)(𝑋′)). (14)

hese formulations of the HS are quite useful since they can be esti-
ated in a fully unsupervised way once the models have been trained.
his is quite useful when we do not simply want to estimate the stability
f the end-to-end trained model but, for example, we want also to
stimate the stability of the different representation layers of a deep
odel. In fact, after 𝑓 = 𝒜𝜔(𝑚) has been trained, we can change

he target ̂ of the 𝑓 into a portion of the inner representation which
enerates 𝑓 and, provided a notion of distance 𝚍(⋅, ⋅) that can be applied
o them, the quantities of Eqs. (13) and (14) can be computed.

In fact, note that the quantities of Eqs. (11)–(14) can be easily
stimated both with practical approaches (e.g., Bootstrap [38] or Bag
f Little Bootstrap [39] if we want to reduce the computational effort)
r with theoretical approaches [3,30] obtaining 𝛽emp and 𝛽loo.

Moreover, in some specific cases, it is possible to bound, instead
f estimating, the HS [3,4]. Specifically, let us consider that 𝑓 can be
xpressed as 𝑓 (𝑋) = 𝒘𝜙(𝑋), where 𝝓 ∶  → R𝐷 and 𝒘 ∈ R𝐷, then

loo, 𝛽emp ∝ 𝖢𝗈𝗇𝖽(𝐇𝐇′), (15)

here 𝐇 = [𝝓(𝑋1),… ,𝝓(𝑋𝑛)]′, 𝐇𝐇′ is the Gram matrix, and 𝖢𝗈𝗇𝖽

ndicates the condition number (the ratio between the largest and
mallest singular values). Note also that, the same property holds when
e consider inner layer of the representation 𝜙(𝑋) as we discussed for

he quantities of Eqs. (13) and (14). In the context of our analysis,
atrix 𝐇 collects the representations with random features of the

raphs, and we therefore use the condition number of the Gram matrix
𝐇′ for HS.

. Experimental results

In this section, we illustrate our experimental setting3 and we
resent evidence of the fact that Algorithmic Stability, through the
ondition number, and the richness of graph representations, measured
s average feature entropy, are able to provide useful insights about
he effectiveness of over-parametrization for improving the generaliza-
ion abilities of neural models based on graph random features. After
resenting the considered datasets and the experimental setup, we will
how how the two aforementioned techniques behave in under- and
ver-parameterized settings on the considered datasets and show some
onsistent behavior of the metrics that we observed. After that, we
tudy how the proposed metrics can be exploited not only for the choice
f over- or under- parameterization of the network, but for model
election as an alternative to grid-search with performance estimation.
ur results are encouraging, showing that in many settings the metric
alues have strong correlation with the measured generalization error.

.1. Datasets

In order to evaluate empirically the extraction of graph random
eatures, we considered seven commonly adopted benchmark datasets
or graph classification from the TUDatasets collection [40], five per-
aining to bioinformatics and two social network datasets. DD [41],
NZYMES [41] and PROTEINS [41] represent proteins as graphs with
econdary structures, such as amino acids as nodes, annotated with
hysical and chemical information. Nodes are connected by an edge
f they are either neighbors in the amico acid sequence or are less than

Å apart. The task on ENZYMES consists in classifying 6 high-level

3 Code: https://github.com/giovannidonghi/overparam-random-graph-
ets.
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Table 1
Statistics of the datasets used for the experiments.

Dataset # classes # graphs avg. # nodes avg. # edges

DD 2 1178 284.32 715.66
ENZYMES 6 600 32.63 62.14
PROTEINS 2 1113 39.06 72.82
NCI1 2 4110 29.87 32.30
PTC_MR 2 344 14.29 14.69
IMDB-BINARY 2 1000 19.77 96.53
IMDB-MULTI 3 1500 13.00 65.94

classes of enzymes, and for DD and PROTEINS it is to predict if a given
protein is an enzyme. NCI1 [42] and PTC_MR [43] consist of molecule
graphs, where each node represents an atom, with labels encoding atom
type, and edges given by chemical bonds. The task here is to predict
whether molecules are carcinogenic or not. Finally, we also use two
social network datasets, IMDB-BINARY and IMDB-MULTI [44], which
contain ego-networks with information about actors/actresses linked
by collaborations, with the task of predicting the genre of movies in
which they act. Some summary statistics of these datasets are reported
in Table 1.

5.2. Experimental setup

We study the behavior of the model described in Section 3 varying
the number of units in the graph convolutional layers and the gain hy-
perparameter 𝜃. As the purpose of this paper is to investigate the impact
of over-parameterization and how to analyze it through the metrics of
entropy and stability, rather than to develop a model with state of the
art performance, we use the same four layer configuration of U-GCN,
whose performance was shown to be competitive with the state of the
art [9]. The number of units for each layer 𝑢 spanned from 10 to 10,000
per layer, in the set {10, 20, 30, 50, 75, 100, 250, 500, 1000, 2000, 3000,
5000, 7500, 10000}. Since we use four layers and concatenate two dif-
ferent readouts, the resulting graph representation is up to size 80,000.
However, since the weights are not trained, we just have to perform
the forward phase which is extremely fast even with a high number
of features to extract. Then, we trained a ridge classifier character-
ized by a regularization hyperparameter 𝛼 taking values in the set
{0, 10−4,… , 105}. We also considered multiple values of 𝜃, the gain
for weight initialization, in the set {0.01, 0.1, 0.5, 1, 5∕3, 3, 5, 10, 30, 50}.
Following the validation procedure of [45], we estimate the perfor-
mance and metrics of the untrained models by performing 5-fold
cross-validation, repeating the whole procedure 5 times to account for
the random initialization.

5.3. Metrics calculation

Entropy
Due to the high computational cost of evaluating Eq. (3) for all the

graphs in the training set for all combinations of hyperparameters, we
computed an unbiased estimator of the entropy in Eq. (5) by averaging
over a subset (10%) of the graphs.

Conditioning
Given the matrix 𝐇 collecting representations of all training graphs,

we computed the condition number of the gram matrix 𝐇𝐇′. Given the
high values of such condition numbers, we used equality 𝖢𝗈𝗇𝖽(𝐇𝐇′) =
𝖢𝗈𝗇𝖽(𝐇)2 to check for numerical problems. When this inequality is
not satisfied (at least within an order of magnitude), we consider
the resulting condition number too inaccurate due to the numerical
issues. We used increased precision (up to octuple precision, using the
Advanpix4 Multiprecision Computing Toolbox for MATLAB) for this

4 https://www.advanpix.com/

https://github.com/giovannidonghi/overparam-random-graph-nets
https://github.com/giovannidonghi/overparam-random-graph-nets
https://www.advanpix.com/
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Fig. 1. Results showing the logarithm of the condition number together with training, validation and test accuracy for regularization hyperparameter 𝛼 = 0, fixed value of gain
hyperparameter 𝜃 (shown in brackets) and varying number of units per layer. Error bars indicate standard deviation across runs. The singularity threshold is the minimum number
of units per layer required for the Gram matrix 𝐇𝐇′ to not be singular.
sanity check. Only for the DD, ENZYMES and PROTEINS datasets the
sanity check was satisfied, while for the other datasets the condition
number continued to increase by increasing the precision, thus it was
considered unreliable due to the numerical instability. Therefore, these
cases (indicated with N/A in tables and not shown in plots) were
discarded to provide a reliable analysis. Furthermore, since the rank
of 𝐇𝐇′ is necessarily lower than or equal to the number of features,
we compute its condition number only after the singularity threshold,
where the number of features equals the number of training graphs.

5.4. Results

In order to keep the reading from becoming too heavy, only a
subset, the most informative, of the plots is reported and discussed,
with additional ones available as supplementary material, on which
similar considerations hold. We report in Fig. 1 the results of some
configurations that reach competitive performance for DD, ENZYMES
and PROTEINS datasets. We report Algorithmic Stability estimated via
the condition number of the Gram matrix, together with accuracies
achieved on training, validation and test sets, at varying number of
units. Similarly, in Fig. 2, we report the results for average feature
entropy with the same configurations, with the addition of plots for
IMDB-BINARY and IMDB-MULTI.

For a more general and comprehensive visualization of the results,
we show the values of the different metrics varying both hyperparame-
ters in Fig. 3, alongside the performance on the test set with validated
regularization hyperparameter 𝛼. The condition number is computed
and shown only after the singularity threshold.

Other than the qualitative assessment given by visual inspection
of the plots in Figs. 1–3, we want to understand more generally how
good Algorithmic Stability and entropy are as indicators of model
5 
Table 2
Spearman’s rank correlation coefficient between metrics (‘‘Cond’’ stands for the
condition number of the Gram matrix) and test performance, both with validated
regularization hyperparameter 𝛼 and without regularization. Correlations are marked
based on 𝑝-value, with ∗ if 𝑝 < 0.05, ∗∗ if 𝑝 < 0.01 and ∗∗∗ if 𝑝 < 0.001. Negative
correlation is best for condition number, positive correlation is best for entropy. We
indicate the cases where the computation of the condition number was unstable, as
described in Section 5.3, with n/a.

Spearman’s correlation with performance

Dataset Cond Entropy

valid. 𝛼 𝛼 = 0 valid. 𝛼 𝛼 = 0

DD −0.264∗ −0.711∗∗∗ 0.764∗∗∗ 0.441∗∗∗

ENZYMES −0.451∗∗∗ −0.541∗∗∗ 0.650∗∗∗ 0.615∗∗∗

PROTEINS −0.231∗ −0.589∗∗∗ 0.400∗∗∗ −0.195∗

NCI1 n/a n/a 0.433∗∗∗ 0.445∗∗∗

PTC_MR n/a n/a 0.222∗∗ 0.270∗∗

IMDB-BINARY n/a n/a 0.446∗∗∗ 0.367∗∗∗

IMDB-MULTI n/a n/a 0.210∗ −0.138

performance, and if they can be used to identify good hyperparame-
ter without requiring supervision. We thus propose two quantitative
approaches to assess the quality of the proposed metrics as proxies
for the generalization capacity of the models: we compute Spearman’s
rank correlations between metrics and performance, and we measure
the performance gap between optimal choice of hyperparameters with
model selection on the validation set and the metric-driven choice.
We favored Spearman’s rank correlation, which measures monotonicity
and not linearity, instead of Pearson’s correlation as we observed that
in some cases the relationships were not linear. For each dataset,
Spearman’s rank correlation between metric and test performance is
calculated over all pairs of hyperparameters, gain 𝜃 and number of
hidden units 𝑢, to obtain an indication of monotonicity, and therefore
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Fig. 2. Results showing the entropy together with training, validation and test accuracy for regularization hyperparameter 𝛼 = 0, fixed value of gain hyperparameter 𝜃 (shown in
brackets) and varying number of units per layer. Error bars indicate standard deviation across runs. The singularity threshold is the minimum number of units per layer required
for the Gram matrix 𝐇𝐇′ to not be singular.
of how closely the two metrics follow the performance on the test
set (thus the generalization). Correlations with performance, both with
validated regularization hyperparameter 𝛼 and without regularization,
are reported in Table 2, together with the significance level of the t-test
for Spearman’s rank correlation. The relationships between metrics and
performance are also visualized in Fig. 4. Additional plots and Pearson’s
correlations are available in the supplementary materials.

While correlation gives us an intuition of the overall trend of perfor-
mance and metrics, we would also like to know if we can successfully
use the metrics as proxies of performance. We want to measure how
close to the optimum we can get by only considering the given metric
of the graph representations, without even training multiple classifiers
and keeping the best performing one. For this assessment we consider
the margin between the optimal choice of hyperparameters with stan-
dard model selection (the best performing pair of hyperparameters gain
𝜃 and number of units per layer 𝑢 on the validation set), and the pair
that would be selected by the given metric (with lowest condition
6 
number or highest entropy). For this case as well we considered both
validated regularization hyperparameter 𝛼 and no regularization at all,
reporting the observed results in Table 3.

6. Discussion

From the results of Fig. 1, of the models’ performance without
regularization, we clearly observe the phenomenon of double-descent:
on DD and PROTEINS in particular, we observe how accuracy on the
test set drops quite significantly around the interpolation threshold, yet
on all three datasets once we increase the number of units into the over-
parameterized regime performance increases. The condition number of
the Gram matrix mirrors this trend, with very high values just over
the singularity threshold, and then it generally continues to decrease
with a higher number of units. Thus, Algorithmic Stability shows us
that, in over-parameterized regimes, adding more neurons can enhance
generalization rather than hinder it.
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Fig. 3. Entropy (the higher the better), logarithm of the condition number of Gram matrix (the lower the better) and performance measured with accuracy (the higher the better)
with validated regularization hyperparameter 𝛼, on DD, ENZYMES and PROTEINS datasets, at varying number of hidden units per layer 𝑢 (horizontal axis) and gain hyperparameter
𝜃 (vertical axis). The condition number is computed only after the singularity threshold, and it is shown accordingly.
Observing the results of average feature entropy in Fig. 2, we can
see that the richness of the representations can give us similar insights
to the condition number on DD, ENZYMES and PROTEINS datasets:
on ENZYMES and PROTEINS we see entropy clearly distinguishing the
under- and over-parameterized regimes, while on DD there is a steady
growth with the increase of number of units. In these cases, therefore,
entropy captures the increase in the richness of representations that
over-parameterization allows, which is reflected in the generalization of
the model. We report also the results on the IMDB datasets in Figs. 2(d)
and 2(e), where we observe a different behavior. In this case, the model
struggles to even fit the training data, even after reaching the singular-
ity threshold. Additionally, test performance either does not improve
or even worsens as the number of units increases. These results suggest
that on the IMDB datasets over-parameterization is not beneficial for
generalization, and we can see that entropy supports this, showing
a decreasing trend. Average feature entropy is thus informative also
in cases in which over-parameterization is not successful, where the
condition number might instead be too high to be calculated robustly.

From Fig. 3 we can draw some more general observations on
the DD, ENZYMES and PROTEINS dataset. First, we observe how
7 
the accuracy on the test set generally increases after the interpola-
tion/singularity threshold (which is not explicitly reported but can be
seen from the presence of the condition number). Thus the use of
graph random features appears to benefit from an over-parameterized
regime. While without the use of regularization in Fig. 1 we clearly
observed double-descent, in this case the use of regularization mitigates
the phenomenon. Algorithmic Stability, as measured by the condition
number of the Gram matrix, and the average feature entropy, as a
measure of the richness of representations, are able to tell us that
overall adding more neurons can improve generalization instead of
hurting it, as can also be seen from the plots in Fig. 4 thanks to the
color indicating the number of hidden units. In some cases, such as with
the DD dataset, we can see a striking similarity between the entropy
and the achieved performance, and a region in the hyperparameter
space with lowest condition number overlaps very well with the best
generalization results.

The more quantitative results of Table 2 give further supporting
evidence. We observe very good and significant negative correlation
between the logarithm of the condition number and performance with-
out regularization, while when 𝛼 ≠ 0 entropy seems to be the best
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Fig. 4. Visualizations of the relationship between performance with entropy (left column) and logarithm of the condition number (right column), for DD, ENZYMES and PROTEINS
datasets. Entropy is correlated to performance with regularization, the condition number to performance without regularization (complementary plots available in supplementary
materials). For each pair of hyperparameters, gain 𝜃 and number of hidden units 𝑢, we plot the respective measures, with color indicating 𝑢. We additionally plot the isotonic
regression line to observe the measure of monotonicity captured by Spearman’s rank correlation.
Table 3
Comparison of test performance (accuracy) with different model selection: standard model selection using validation performance
(Val) and using the two metrics to select hyperparameters (‘‘Cond’’ stands for the condition number of the Gram matrix). Accuracy
is reported with standard deviation over 5 runs. We report results both with validated regularization hyperparameter 𝛼 and without
regularization. We indicate the cases where the computation of the condition number was unstable, as described in Section 5.3, with
n/a.

Comparison of model selection
Dataset valid. 𝛼 𝛼 = 0

Val Cond Entropy Val Cond Entropy
DD 0.786 0.787 0.771 0.763 0.769 0.750

±0.006 ±0.002 ±0.009 ±0.008 ±0.005 ±0.009
ENZYMES 0.646 0.579 0.608 0.647 0.581 0.563

±0.021 ±0.011 ±0.016 ±0.022 ±0.013 ±0.014
PROTEINS 0.741 0.730 0.744 0.701 0.713 0.615

±0.009 ±0.004 ±0.006 ±0.011 ±0.010 ±0.013
NCI1 0.811 n/a 0.789 0.790 n/a 0.728

±0.004 ±0.006 ±0.008 ±0.007
PTC_MR 0.626 n/a 0.600 0.614 n/a 0.582

±0.014 ±0.018 ±0.026 ±0.035
IMDB-MULTI 0.414 n/a 0.408 0.404 n/a 0.398

±0.024 ±0.004 ±0.008 ±0.005
IMDB-BINARY 0.669 n/a 0.666 0.664 n/a 0.654

±0.005 ±0.012 ±0.006 ±0.007
8 
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Table 4
Comparison of test performance (accuracy, with standard deviation) of U-GCN (first column of Table 3) with results of models
from the literature, as reported in the cited papers, on untrained graph networks (PyramidalRNGG [46] and FDGNN [15]),
and with the best performing model for each dataset found by the comparison in [45]. The best result for each dataset is
indicated in bold, and missing results are indicated with n/a.

Dataset Model

U-GCN P-RGNN FDGNN Best from [45]

DD 0.786 ± 0.006 0.737 ± 0.012 n/a 0.766 ± 0.043
ENZYMES 0.646 ± 0.021 0.472 ± 0.045 n/a 0.596 ± 0.045
PROTEINS 0.741 ± 0.009 0.711 ± 0.026 0.768 ± 0.029 0.737 ± 0.035
NCI1 0.811 ± 0.004 0.705 ± 0.019 0.778 ± 0.016 0.800 ± 0.014
PTC_MR 0.626 ± 0.014 n/a 0.634 ± 0.054 n/a
IMDB-MULTI 0.414 ± 0.024 0.497 ± 0.008 0.500 ± 0.013 0.485 ± 0.033
IMDB-BINARY 0.669 ± 0.005 0.723 ± 0.014 0.724 ± 0.036 0.712 ± 0.039
I
C
i

indicator of good generalization. In the absence of regularization,
we find that the condition number serves as a superior performance
indicator: this may be due to the fact that regularization increases
the generalization ability of the models, thus the bound given with
Algorithmic Stability is more indicative in its absence. As we previously
observed, over-parameterization does not seem to be beneficial for the
IMDB datasets, and this is reflected in the very low correlation with
entropy for IMDB-MULTI, while for IMDB-BINARY the still significant
correlation indicates that entropy can reflect the lower performance
with increasing number of units, as seen in plot 2(d).

Moreover, in Table 3 we show that, thanks to this high corre-
lation, in most cases the two considered measures can be used to
perform model selection: selecting the hyperparameters that show bet-
ter Algorithmic Stability or higher representation richness leads to test
performances comparable or slightly lower than with standard grid-
search model selection by using performance on the validation set.
However, there are exceptions, such as the ENZYMES dataset, where
the gap is more pronounced. We highlight how this kind of model
selection allowed by the two metrics is the more surprising considering
that it is subject to substantial limitations: it is performed without
information on the task to perform, and does not require the fitting
of any model except for the one with the selected hyperparameters,
since only the fast feature extraction is required to compute the metrics,
which are also computationally cheaper than training models. This
approach could thus be used to obtain cheaply and in an unsupervised
fashion (without requiring task-specific labels) relatively good model
hyperparameters for untrained graph networks. The particular case of
IMDB, on which we did not observe significant correlation but we see
here good model selection, is due to low sensitivity of the performance
to hyperparameters observed on these datasets.

Finally, we compare the results of the model we considered, U-
GCN [9], with those of two other relevant randomized untrained mod-
els for graphs embedding in the literature: PyramidalRGNN [46] and
FDGNN [8]. In Table 4 we show the comparison with the results
reported in these two papers, and with the results of the best graph
neural network model identified with the fair model comparison whose
validation procedure we used [45]. While we stress how the purpose
of our paper is in the analysis of the effects of over-parameterization
using graph random features and in the use of average feature entropy
and hypothesis stability to assess them, we observe how the untrained
graph convolution is competitive with (or generally comparable to)
the results in the literature, with the exception of the IMDB datasets
which we identified as cases in which over-parameterization is not
beneficial. Furthermore, by comparing with Table 3, we observe that
for the datasets DD, ENZYMES and NCI1 on which U-GCN appears to
have an advantage over the other models, even a model selection using
entropy would still result in stronger results.

7. Conclusions

In this paper, we studied the generalization abilities of
over-parameterized neural models based on graph random features, an-

alyzing Algorithmic Stability and representation richness. We observed

9 
how the condition number of the Gram matrix of graph representations
and average feature entropy are good indicators for the generalization
of the models, and are able to identify when over-parameterization is
beneficial for learning. The applicability of conditioning computations
varies across datasets, presenting challenges in its reliability as an
indicator of model performance. When accurately assessed (on three
out of seven considered datasets), the conditioning of the Gram matrix
proves to be significantly correlated with model performance in the
absence of regularization. Entropy provides a consistent and easy to
compute metric across datasets, exhibiting a good correlation with
model accuracy, especially in scenarios where regularization is applied.
Thanks to their good correlation with performance, we showed how the
considered metrics can be used for model selection without requiring
supervision and achieving in most cases comparable results to a classic
grid search approach. Further research could be conducted to refine
this unsupervised hyperparameter selection strategy to facilitate its
practical application.

This work represents a step in understating over-parameterized
neural models based on graph random features, yet moving forward
there are still several aspect that require further study. Our analysis
is conducted with a fixed number of layers and with just one model
architecture: deeper models and alternative architectures could unveil
new insights into their generalization capabilities. Additionally, a layer-
wise analysis using the considered metrics may offer an avenue to
understand how information processing varies across different layers,
which could lead to the development of effective dynamic network
growth strategies.
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