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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Findings indicate that dried feed sam
ples yield more accurate predictions 
than wet sample calibrations. 

• Prediction errors increase with moisture 
level and when above 50%, moisture 
may hinder the ability to accurately 
predict nutrition profile of feed. 

• For wet samples, the development of 
predicting models on the wet or dry 
basis doesn’t seem to have an effect on 
the accuracy of predictions.  
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A B S T R A C T   

The application of Near Infrared (NIR) spectroscopy for analyzing wet feed directly on farms is increasingly 
recognized for its role in supporting harvest-time decisions and refining the precision of animal feeding practices. 
This study aims to evaluate the accuracy of NIR spectroscopy calibrations for both undried, unprocessed samples 
and dried, ground samples. Additionally, it investigates the influence of the bases of reference data (wet vs. dry 
basis) on the predictive capabilities of the NIR analysis. The study utilized 492 Corn Whole Plant (CWP) and 405 
High Moisture Corn (HMC) samples, sourced from various farms across Italy. Spectral data were acquired from 
both undried, unground and dried, ground samples using laboratory bench NIR instruments, covering a spectral 
range of 1100 to 2498 nm. The reference chemical composition of these samples was analyzed and presented in 
two formats: on a wet matter basis and on a dry matter basis. 

Abbreviations: DM, dry matter; DMres, residual of dry matter; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; ADF, acid detergent fiber; WSC, 
water soluble carbohydrate; R2cv, multiple correlation coefficient of cross validation of calibration; R2val, multiple correlation coefficient of validation determi
nation; SECV, standard error of cross validation; SEP, standard error of prediction; SEPc, standard error of prediction corrected for bias; RPD, ratio of performance to 
deviation; Bias, average difference between reference method and NIR analytical values. 
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The study revealed that calibrations based on undried samples generally exhibited lower predictive accuracy 
for most traits, with the exception of Dry Matter (DM). Notably, the decline in predictive performance was more 
pronounced in highly moist products like CWP, where the average error increased by 60–70%. Conversely, this 
reduction in accuracy was relatively contained (10–15%) in drier samples such as HMC. The Standard Error of 
Cross-Validation (SECV) values for DMres, Ash, CP, and EE were notably low, at 0.39, 0.30, 0.29, 0.21% for CWP 
and 0.49, 0.14, 0.25, 0.14% for HMC, respectively. These results align with previous studies, indicating the 
reliability of NIR spectroscopy in diverse moisture contexts. 

The study attributes this variance to the interference caused by water in ’as is’ samples, where the spectral 
features predominantly reflect water content, thereby obscuring the spectral signatures of other nutrients. In 
terms of calibration development strategies, the study concludes that there is no significant difference in pre
dictive performance between undried calibrations based on either ’dry matter’ or ’as is’ basis. This finding 
emphasizes the potential of NIR spectroscopy in diverse moisture contexts, although with varying degrees of 
accuracy contingent upon the moisture content of the analyzed samples. Overall, this research provides valuable 
insights into the calibration strategies of NIR spectroscopy and its practical applications in agricultural settings, 
particularly for on-farm forage analysis.   

1. Introduction 

In numerous dairy regions globally, corn (Zea mays L.), harvested for 
silage, is a pivotal feed and energy source in dairy diets, offering higher 
Dry Matter (DM) and digestible nutrient yields compared to many other 
feed crops [25,52]. As per United States Department of Agriculture 
(USDA) statistics, corn also constitutes the largest portion of global grain 
production [49]. 

As highlighted by Castro Campos [8], crop quality is susceptible to 
various factors, including weather conditions, plant diseases, and insect 
infestations, all of which can significantly impact farm profitability. 
Consequently, the precision and timeliness of feed quality monitoring 
become imperative to optimize feeding systems effectively. This neces
sity can be addressed by adopting rapid and economically viable tech
nological solutions, as advocated by Modroño et al. [31] and da Silveira 
et al. [48]. 

Near Infrared (NIR) spectroscopy is recognized as a rapid, valid, and 
accurate analytical technique, meeting the growing demand for quick 
quantification of feed nutrients [43]. Its application spans from large 
feed industries to small farms, where the evaluation and quantification 
of feed nutrients predominantly depend on NIR instruments [7]. The 
availability of rapid NIR analysis directly at farms, particularly for 
undried feed materials without the need for sample preparation, offers 
substantial convenience for field testing. This approach enables swift 
assessment of compositional changes [11] and facilitates feed payments 
based on quality [15]. NIR techniques have been employed for many 
years to analyze and predict the composition of undried samples 
[39,35,16,53]. However, the accuracy of these predictions can be 
compromised by high moisture content [27], primarily due to the strong 
absorption bands of water [54,39]. These bands can overlap and obscure 
spectral features of other nutrients, and may also lead to non-linear re
lationships between spectra and chemical properties [1]. While NIR 
analysis of wet forages is increasingly popular for its practical benefits, 
the specific impact of high-water content on the accuracy of NIR analysis 
remains somewhat unclear. This is due to the limited number of studies 
[46,34,42] that have compared the performance of calibrations devel
oped for the same feed using both wet and dried, ground samples. 

The composition of feed nutrients is commonly reported on a Dry 
Matter (DM) basis, a practice particularly relevant for feeds like silages, 
which exhibit significant moisture variability. Consequently, it is 
imperative that calibrations are evaluated based on their performance 
with data expressed on a DM basis, aligning with the reporting format 
predominantly utilized by nutritionists. While previous studies, Park 
et al. [35] have employed NIR spectroscopy for the analysis of undried 
silages, these have predominantly reported performance metrics solely 
on a wet basis. However, there is a scarcity of literature that delves into 
the application of NIR in analyzing undried samples when expressed in 
varying forms [37,39]. This gap in research underscores the importance 
of evaluating calibrations for undried, unground products with 

reference values expressed on both DM and wet bases. This evaluation is 
essential for a thorough understanding of the calibration accuracy across 
diverse contexts. 

The principal objective of this research was to evaluate the accuracy 
of Near-Infrared (NIR) spectroscopic predictions pertaining to two 
widely used corn-based products, namely Corn Whole Plant (CWP) and 
High Moisture Corn (HMC). This evaluation focused on comparing cal
ibrations developed using undried samples against those using dried and 
ground samples. The secondary objective was to investigate, specifically 
for undried products, the variations in NIR spectroscopic performance 
when calibrations are developed with reference values expressed either 
on a wet matter or a dry matter basis. This dual-focused approach aims 
to provide a comprehensive understanding of the efficacy of NIR spec
troscopy in different states of sample preparation and varying moisture 
content contexts. 

This is a retrospective study based on samples and data collected at 
the CNX laboratory of the University of Padua from 2010 and 2014. 

1.1. Samples collection 

The study used 492 corn whole plant (CWP) and 405 high moisture 
corn (HMC) samples, collected either for commercial or research pur
poses. Samples arrived either fresh or frozen at the lab and in this case, 
they were thawed before any analysis. In order to create an independent 
validation data set, samples received in 2010–––2013 were used to 
develop calibration sets (CWP = 456; HMC = 364) and those received in 
2014 (CWP = 36; HMC = 41) were used to validate prediction models. 
This methodological design, leveraging historical samples for calibra
tion alongside unseen samples from future period for validation, was 
intentionally chosen to demonstrate our potential for real-world appli
cation in NIR, ensuring our findings are translatable to feed analysis 
practices. 

Despite the initial concern over the size of validation set, our thor
ough review of the literature and subsequent statistical analyses affirm 
its adequacy. Some findings [19,47,5] demonstrate successful calibra
tion and validation outcomes with a similar validation set size or even 
smaller than our validation set (n = 36). 

1.2. Sample preparation and spectra collection 

Undried and unground samples were scanned using a Foss NIRSys
tem 5000 (1100–2498 nm, 2 nm, Foss Analytical Hillerød, Denmark) 
scanning monochromator equipped with a sample transport attachment. 
Each sample was thoroughly mixed and packed into a natural product 
cup (215 × 56 × 43 mm) in order to allow scanning of an extended 
surface by sliding up and down in front of the scanning window. The 
instrument was set to first scan the white reference (16 scans) and then 
the sample, collecting and then averaging 32 scans. Spectra was 
collected as absorbance in logarithmic scale (log 1/R). 
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Samples of about 200 g of CWP and 100 g of HMC were oven drying 
at 60 ◦C for 48 h, in pre-tared aluminum pans. After drying, samples 
were allowed to cool down for at least 2hrs, then they were ground in a 
laboratory blade mill (Fritsch Pulverisette 19, Fritsch Gmbh, Germany) 
through a 1 mm screen, and stored in a sealed plastic cup for consecutive 
NIR scanning and chemical analysis. 

Dried and ground samples were then packed into ring cups (diameter 
50 mm) and scanned on a second Foss NIRSystem 5000 instrument 
equipped with drawer system with rotating ring cups. Scanning setting 
was similar as for the wet samples with 16 scans of the white reference 
and 32 scans of the sample. 

1.3. Chemical analysis 

Samples were analyzed for residual dry matter (DM) by oven at 
105 ◦C (AOAC International, 2003); Ash as gravimetric residue after 
incineration at 550 ◦C; Crude protein (Nitrogen × 60.25) by the Kjeldahl 
method [4]; EE [4]; Neutral detergent fiber (aNDF) with amylase and 
sodium sulphite used in the NDF procedure and tared F57 bags with 25 
μm pore size [2,18], Acid detergent fiber (ADF) (ANKOM Technology. 
2015b); WSC [9] and Starch [3]. 

Overall DM was calculated from the partial DM recorded drying at 
60 ◦C and the residual DM of the ground samples. Nutrients values were 
expressed on a DM and also on wet basis. 

1.4. NIR calibrations and statistics 

Spectra of undried samples were associated to wet chemistry values 
expressed on a wet and DM basis, while spectra of dried and ground 
samples where combined only with wet chemistry on DM basis. Com
mon pretreatments used in NIR applications were tested, like smoothing 
(15pt, first order interpolating polynomial) [40,41], in combination 
with Autoscale or Mean Center [21,33] or the combination of Smoothing 
at 15pt and Standard Normal Variate (SNV) [6], de-trending (DET) 
(second order interpolating polynomial) and first derivative (second 
order interpolating polynomial) [41], with a window size of 7 points and 
quadratic polynomial smoothing applied before calibration. The pre
treatments were based on previous experience with the same dataset. 
Calibration performance was evaluated based on the standard error of 
cross validation (SECV; Shenk & Westerhaus [44], the coefficient of 

determination for cross validation (RSQCV), the ratio of performance to 
deviation (RPD) (Williams, 2001). For the validation set, predicting 
performances were evaluated base on standard error of prediction (SEP), 
the coefficient of determination (r2val), bias and slope and standard 
error of prediction corrected for bias (SEPc). 

All calculation procedures were computed by R software (R version 
x64 40.1.0 & R studio version 1.30.1093) with pls prospectr [50], 
metrics [22], e1071 [30] and Spectracus (https://github.com/mari 
ofajardo/Spectracus) packages. Calibration and validation were devel
oped and computed based on Partial Least Square (PLS) regression 
selecting the optimal numbers of PLS factor based on SECV. 

2. Results and discussion 

2.1. Chemical composition of samples for major components 

Table 1 presents the descriptive statistics of the chemical composi
tion for this study, expressed both on a dry and wet basis. Data on a wet 
basis accurately reflect the chemical composition of samples, incorpo
rating the dilution effect of moisture. As a result, nutrients expressed on 
a wet basis are invariably lower in magnitude than those expressed on a 
dry matter (DM) basis. For example, the average DM of Corn Whole 
Plant (CWP) samples was 34.6 %, implying that mean concentration 
values on a wet basis are roughly one-third of those on a DM basis. This 
phenomenon also leads to smaller standard deviations (SDs) for wet 
basis data compared to those on a DM basis, primarily due to the water 
dilution effect. However, the coefficient of variation (CV), which in
dicates relative variability, tends to be higher for wet basis measure
ments. This is because CV is influenced by variations in both nutrient 
and moisture concentrations. 

The data sets for both products demonstrate a wide range of varia
tions, attributable to the samples being collected over a four-year period 
and encompassing different corn hybrids, locations, and growing con
ditions. Such diversity ensures that the calibrations comprehensively 
represent the variation in the products. Greater variation within a 
product is advantageous for the development of NIR calibrations, as it 
lays the groundwork for creating accurate and robust predictive models 
[10]. 

When compared with the composition statistics of Italian samples, as 
detailed in [26], the concentrations of chemical components in this 

Table 1 
Chemical composition of CWP and HMC silage samples.   

Range  Mean  CV  SD 

dry basis wet basis dry basis wet basis dry basis wet basis dry basis wet basis  

%DM %  %DM %  %DM %  %DM % 

CWP  
DM  190.41–570.68   340.59  − 180.07  − 60.25 
DMres 890.13–950.76 − 920.69 − 10.67 − 10.55 −

Ash 20.26–60.35 0.77–20.24 40.06 10.37 190.46 170.52 0.79 0.24 
CP 40.30–90.73 10.46–40.50 70.04 20.43 10.37 20.58 0.73 0.50 
EE 10.57–30.71 0.36–10.61 20.49 0.86 150.26 260.74 0.38 0.23 
aNDF 260.70–640.73 10.05–270.19 440.54 150.32 120.17 180.02 50.42 20.76 
ADF 120.52–420.61 50.14–150.37 240.94 80.51 160.60 180.33 40.14 10.56 
WSC 0.03–140.95 0.01–40.98 30.54 10.20 660.67 650.83 20.36 0.79 
Starch 150.62–460.33 20.26–240.76 310.52 110.05 170.61 310.04 50.55 30.43 
HMC         
DM − 420.55–850.75  − 640.90  − 110.39  − 70.39 
DMres 890.55–960.75 − 920.52 − 10.60 − 10.48 −

Ash 10.09–20.48 0.58–10.65 10.63 10.05 140.11 150.24 0.23 0.16 
CP 50.72–120.01 20.89–80.72 80.94 50.80 110.30 190.31 10.01 10.12 
EE 20.36–40.98 10.14–30.51 30.62 20.32 130.81 190.40 0.50 0.45 
aNDF 30.89–40.26 20.86–230.62 150.14 90.63 510.12 450.38 70.74 40.37 
Starch 360.24–750.35 170.78–570.78 60.08 390.07 130.05 210.68 70.84 80.47 

Dry basis: as a dry matter basis; wet basis: as a wet matter basis; CWP: corn whole plant; HMC: high moisture corn; Mean: conventional chemical analysis mean; SD: 
Standard deviation; CV = Coefficient of Variation; DM: dry matter; CP: crude protein; NDF: neutral detergent fiber; ADF: acid detergent fiber; WSC: water-soluble 
carbohydrate. 
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research for both CWP and HMC samples align well with typical values. 
This comparison underscores the representativeness of our study’s 
findings within a broader geographical and agricultural context. 

2.2. Spectra comparison of dried and undried silages 

The raw spectra of CWP and HMC samples were averaged, and the 
resultant mean spectrum is depicted in Fig. 1(a) and Fig. 2(a). As 

illustrated, moisture exerts a significant influence on the spectra of 
undried samples, characterized by two prominent and broad peaks 
around 1450 nm and 1970 nm. These peaks are associated with the O–H 
overtones of water, as identified by Murray [32]. It was observed that 
the average absorption for both wet products was consistently higher 
than that for dried products. This difference is attributed to the com
bined effects of the larger particle sizes and higher water content in 
undried products compared to their dried and milled counterparts [24]. 

Fig. 1. CWP dried and undried samples spectra: a) Results obtained before spectral processing; 2b) Results obtained after applying (SNV + Detrend + Savitzky 
Golay) preprocessing methods. 
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Upon comparing the average absorption spectra of the two wet products, 
a notable distinction emerges. Specifically, the average spectrum of wet 
CWP, as shown in Fig. 1(a), exhibits higher absorbance than that of wet 
HMC in Fig. 2(a), primarily attributed to the larger particle size and 
higher moisture content in CWP, as discussed by Philippeau & Michalet- 
Doreau [38]. In contrast, the dried samples of both products revealed 
more distinct spectral features. Notably, major characteristic peaks are 
observable in the 2000–2100 nm and 2250–2400 nm regions. These 
peaks correspond to the combination of CHO-H wavebands (carbohy
drates) and C–H chemical bonds (fats), as identified by Hoffman et al. 
[23] and Givens et al. [20], respectively. The substantial water content 

in undried samples appears to obscure e certain spectral information 
that is distinctly visible in dry products. This observation suggests that 
the high moisture content in undried silage samples may pose limita
tions to the accuracy of spectral prediction. 

Mathematical treatments, aimed at reducing the effects of particle 
size, resulted in the average spectra of both wet and dry samples largely 
overlapping post-treatment. An additional observation of interest is the 
slight shift in the water peaks for both products. Concerning the shifts in 
the first derivative of NIRS spectra, as presented in Fig. 1(b). Specifically 
pertains to the water absorption bands at 1450 nm and 1930 nm in 
samples with varying moisture content. The absorption peaks in undried 

Fig. 2. HMC dried and undried samples spectra: a) Results obtained before spectral processing; 5b) Results obtained after applying (SNV + Detrend + Savitzky 
Golay) preprocessing methods. 
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samples are not merely elevated but also exhibit broader dispersion 
when compared to their drier counterparts. This phenomenon manifests 
as a bifurcated shift where the peak’s most pronounced increase in ab
sorption (on its left side) shifts leftward, while its most pronounced 
decrease (on the right side) shifts rightward. This dual shift reflects a 
broader and more intense absorption feature, indicative of the increased 
moisture content’s effect on both the intensity and the spectral width of 
these absorption bands. 

This nuanced interpretation has been informed by a reexamination of 
the spectral data in conjunction with established spectroscopic princi
ples, notably those discussed by Workman & Weyer [55]. It highlights 
the intricate relationship between physical properties of the samples and 
its spectral signatures in NIR spectroscopy, emphasizing the necessity 
for accurate data interpretation. 

2.3. Calibration and validation statistics 

2.3.1. NIR analysis of dried samples for major components 
Table 2 delineates the performances of the optimal calibration 

models developed for dried samples. The calibration equations for Dry 
Matter Residue (DMres) of Corn Whole Plant (CWP) and Crude Protein 
(CP), Ether Extract (EE), and Neutral Detergent Fiber (NDF) of High 
Moisture Corn (HMC) exhibited a Cross-Validation Coefficient of 
Determination (R2cv) greater than 0.90. According to Shenk & West
erhaus [45], such values are indicative of excellent model performance. 
A comparative analysis of the calibration performance between these 
two distinct dried samples revealed that the R2

CV for the main nutrients 
(CP, EE, aNDF, and Starch) was generally lower for CWP than for HMC. 
This discrepancy can be attributed to the lesser variability in CWP 
composition, as documented by Reeves et al. [39] and evidenced in 
Table 1. 

The robustness of our models, as evidenced by our results, aligns 
with the findings from both the feed and broader agricultural sectors, 
demonstrating that a validation set of approximately 36 samples is 
sufficient for rigorous NIR spectroscopy analysis. This decision mirrors 
the methodological rigor observed in studies such as those conducted by 
[47] and [5], where smaller validation sets did not compromise the 
quality or applicability of NIR spectroscopy calibrations. 

The SECV values for DMres, Ash, CP and EE were specifically 0.39, 
0.30, 0.29, 0.21 % for CWP and 0.49, 0.14, 0.25, 0.14 % for HMC, 
respectively, results which are consistent with studies reported by Fassio 
et al. [16] and Marchesini et al. [29]. In the case of dried and ground 
CWP, Cozzolino et al. [12] reported generally higher R2cv values and 

lower SECV compared to this study. This difference is primarily due to 
the fact that our calibration datasets exhibited less variability. 

As delineated in Table 2, HMC generally exhibited superior predic
tive accuracy compared to CWP in validation. For HMC, all nutrients, 
with the exception of Ash, demonstrated a validation coefficient of 
determination (r2val) equal to or greater than 0.84. In contrast, for CWP, 
only Crude Protein (CP) and Starch achieved an r2val above 0.80. 
Additionally, the Standard Error of Prediction (SEP) values were 
consistently lower for HMC than for CWP, excluding Starch. 

Notably, the bias values were relatively large. The bias test, as out
lined by Windham & Coleman [54], indicated significant values for most 
nutrients in both CWP and HMC. Consequently, bias correction was 
implemented to reduce the SEP, following the methodology of Davies & 
Fearn [13]. The resulting SEPc (Table 4 and Table 5) values were 
generally consistent with the SECV (Table 3) for both CWP and HMC. 
However, exceptions were observed for Ash and CP in CWP, where the 
errors nearly doubled post-correction. 

The observed larger biases in the validation sets can be attributed to 
the fact that these sets comprised samples collected in different years. 
This approach was deliberately chosen to mimic the real-world scenario 
of NIR analytical routines, where established calibration models are 
applied to predict new and unknown samples. This scenario underscores 
the necessity of continuous monitoring of NIRS prediction perfor
mances, even when using well-established calibration models. Such 
monitoring can be effectively achieved through regular internal con
trols, which may include conducting wet chemistry analyses routinely or 
participating in proficiency testing. Proficiency tests often involve ring 
test samples provided by recognized organizations such as the National 
Forage Testing Association (NFTA), the Association of American Feed 
Control Officials (AAFCO), or Bipea. These measures are crucial for 
ensuring the ongoing accuracy and reliability of NIR analysis in varying 
sample conditions. 

In their study, Fatemi et al. [17] developed a NIR calibration equa
tion using a well-known and publicly accessible corn dataset [14]. When 
compared to our results, their calibration exhibited a higher R2cv and a 
lower SECV for CP and Starch, specifically 0.93 versus 0.84. This dif
ference can be attributed to the lower standard deviation (SD) in their 
study compared to ours. Furthermore, when comparing the performance 
of the NIR equation for CP in HMC samples with a previous study by 
Fassio et al. [16], our research demonstrates better performance. Our 
R2cv is higher and our SECV is lower than those reported by Fassio et al. 
(2022), with values of 0.94 versus 0.85 and 0.25 versus 0.52, 
respectively. 

Table 2 
Accuracy of near infrared spectroscopy (NIRS) in analyzing CWP and HMC dried samples for nutrient parameters.   

Calibration  Validation  

PLS f R2cv SECV  r2val SEP SEPc Slope Bias RPD 

CWP n = 456  n = 36 
DMres 6  0.94 0.39   0.73  0.83  0.23  0.32  0.80*  0.54 
Ash 10  0.85 0.30  0.47  0.97  0.71  0.44  0.65*  10.03 
CP 10  0.82 0.29  0.86  0.62  0.46  0.81  − 0.4*  10.88 
EE 9  0.69 0.21  0.56  0.26  0.26  0.68  0.04  10.53 
aNDF 8  0.87 10.98  0.78  30.53  20.39  0.72  − 20.60*  10.44 
ADF 7  0.83 10.75  0.72  10.63  10.56  0.81  0.45  10.85 
WSC 4  0.51 10.66  0.76  20.91  10.05  0.47  − 20.72*  0.73 
Starch 5  0.84 20.16  0.86  20.27  20.27  0.89  − 0.11  20.68 
HMC n = 364  n = 41 
DMres 3  0.88 0.49   0.93  0.58  0.53  0.92  − 0.22*  30.22 
Ash 8  0.64 0.14  0.71  0.28  0.26  0.64  − 0.11*  10.49 
CP 10  0.94 0.25  0.91  0.38  0.36  0.92  − 0.12*  30.26 
EE 8  0.92 0.14  0.84  0.28  0.27  0.82  − 0.10*  10.46 
aNDF 6  0.94 10.84  0.95  30.09  20.56  0.92  10.72*  20.86 
Starch 5  0.87 20.80  0.95  30.00  20.61  0.93  − 10.47*  30.27 

PLS f: the PLS factors used to develop the best partial least square regression; R2cv: multiple correlation coefficient of cross validation; R2: multiple correlation co
efficient of validation determination; SECV: standard error of cross validation; SEP: standard error of prediction; SEPc: standard error of performance corrected for bias; 
RPD: ratio of performance to deviation; Bias: average difference between reference method and NIRS analytical values; * Significant difference (P < 0.05). 
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2.3.2. NIR calibration performances of undried samples using reference 
data expressed on dry or, wet matter basis 

Calibrations conducted on a wet matter basis exhibited superior 
performance compared to those on a dry matter basis for both CWP and 
HMC, as evidenced by higher R2cv, greater RPD, and lower SECV values 
(refer to Table 3). Specifically, on a wet basis, most nutrients for both 
products were predicted with an R2cv greater than 0.70, with the 
notable exceptions of Ash (0.54 for CWP and 0.66 for HMC), WSC (0.53), 
and Starch (0.68). These findings align closely with those reported by 
Parrini et al. [36] in their study on fresh pasture samples, where they 
observed an R2cv for CP and NDF of approximately 0.89. However, it is 
noteworthy that their SECV for CP was higher than that observed in our 
study. Additionally, Park et al. [35], in one of the earlier studies on NIRS 
calibration for undried silages, reported SECV values for NDF and ADF of 
0.53 % and 0.41 %, respectively. These values are lower than those 
found in our current study, highlighting the variability in calibration 
performance across different sample types and study conditions. 

In the study conducted by Park et al. [35], grass silage samples were 
preprocessed using liquid nitrogen and subsequently pulverized to 
enhance homogeneity by reducing particle size. In contrast, our Corn 
Whole Plant (CWP) samples were scanned in their received state, with a 
notable variation in length of cut ranging from 5 to 20 mm. Although 
spectral preprocessing techniques such as derivatives and SNV were 
employed to minimize the effect of particle size, it is conceivable that the 
substantial variability in CWP particle size may have influenced the 
calibration performance in our study. This hypothesis is supported by 
Lowett et al. [28], who indicated that increased particle size can detri
mentally affect calibration performance, potentially explaining our re
sults. In our study, HMC exhibited a smaller particle size compared to 
CWP and consequently demonstrated better predictive accuracy for the 
same nutrients. Additionally, HMC had a higher DM content (64.9 % vs. 
34.6 % for CWP), which suggests that the pronounced water peaks in 
HMC may have obscured some spectral information, as illustrated in 
Fig. 1. The results for Ashes and WSC in this study are in line with those 
reported by Thomson et al. [51] for fresh grass calibration. The limited 
absorption of inorganic substances like ashes in the NIR region could 
account for the lower performance observed in Ashes prediction. 

The lower concentration of nutrients in wet basis data, as shown in 
Table 1, typically leads to an expectation of reduced SECV for wet basis 
calibrations. Additionally, higher R2cv and RPD could be anticipated, 
primarily due to the larger CV associated with wet basis data. However, 
a significant contributing factor to these improved metrics, particularly 
for R2cv and RPD, is the observed strong correlation between all nutri
ents and DM content on a wet basis, as detailed in the supplementing 

material. This correlation is noteworthy because DM content was 
accurately predicted in our study, thereby enhancing the overall cali
bration performance for nutrients on a wet basis. 

While feed analyses are universally reported on a DM basis, as per the 
guidelines in feeding recommendations (NASEM, 2021), this necessi
tates the conversion of predictions initially made on a wet basis to a DM 
basis. This conversion process and its outcomes are detailed in the 
validation tables (Tables 4 and 5). Notably, results obtained on a wet 
matter basis exhibited higher validation coefficients of determination 
(r2val) and lower SEP and SEPc compared to those on a DM basis, 
aligning with the observed calibration performances. However, a sig
nificant deterioration in validation statistics was observed when wet 
matter predictions were converted to a DM basis, resulting in perfor
mances similar to those of direct dry basis calibrations. For instance, the 
r2val for CP in CWP was 0.50 on a wet basis (Table 4), but this value 
dropped to 0.09 when converted to a DM basis, performing worse than 
the 0.30 r2val obtained with direct dry basis calibrations. Similarly, the 
accuracy of CP prediction, as indicated by SEP, was 0.50 on a wet basis, 
but increased to 1.11 when converted to a DM basis, closely mirroring 
the SEP of dry basis predictions. This trend of deteriorating accuracy 
upon conversion from wet to dry basis is also evident in HMC across all 
nutrients (Table 5). For example, the SEP for aNDF in HMC was 1.52 on a 
wet basis, but increased to 2.46 when converted to a DM basis, closely 
approximating the 2.53 SEP observed in dry basis calibrations. 

When comparing the calibration performances of dried and ground 
samples (as shown in Table 2) with those of wet samples (Tables 4 and 
5), distinct effects are observed for CWP and HMC. Using the SEPc of dry 
ground samples as a benchmark, the prediction errors for CWP undried 
and unground samples (Table 4) were, on average, 60 % and 73 % 
higher for the dry and wet converted basis, respectively. The most sig
nificant increase in prediction error was observed for CP (0.46 vs. 1.0 
and 1.13 % DM) and for Starch (2.27 vs. 4.27 and 5.09 % DM), where the 
error approximately doubled with calibrations on wet samples 
compared to the dry and ground ones. Conversely, for HMC, the increase 
in prediction error was more contained, averaging 10–15 %, with the 
largest discrepancy observed in the prediction of CP. An analysis of the 
error distribution in undried calibrations reveals a correlation with 
nutrient concentration, particularly for CWP, as detailed in the supple
menting material. This trend was somewhat expected, given the slope 
observed in the validation results, which indicated greater prediction 
errors for samples with compositions at the extreme ends of the distri
bution. This phenomenon could be attributed to the fact that water 
peaks in the spectra may obscure information related to individual nu
trients, thereby reducing sensitivity, especially at nutrient 

Table 3 
Calibration performance of NIRS in analyzing CWP and HMC undried samples for nutrient parameters based on wet matter basis (%) and dry matter basis (%).  

Calibration PLS f  R2
cv  SECV  RPD 

dry basis wet basis dry basis wet basis dry basis wet basis dry basis wet basis 

CWP n = 456 
DM − 5  − 0.78  − 20.69  − 20.16 
Ash 

CP 
7 7 0.41  0.54 0.59  0.16 10.30  10.48 
7 6 0.33  0.71 0.56  0.25 10.22  10.86 

EE 4 4 0.19  0.51 0.34  0.15 10.11  10.44 
aNDF 9 5 0.45  0.76 40.03  10.17 10.35  20.06 
ADF 10 9 0.54  0.73 20.83  0.72 10.48  10.92 
WSC 

Starch 
5 
10 

6 0.41  0.53 10.82  0.54 10.31  10.46 
9  0.47  0.68  30.97  10.90  10.38  10.76 

HMC n = 364 
DM − 5  − 0.98  − 10.07  − 60.78 
Ash 4 5  0.55  0.66  0.15  0.09  10.49  10.72 
CP 8 5 0.71  0.81 0.54  0.47 10.86  20.30 
EE 8 5 0.73  0.82 0.27  0.19 10.92  20.34 
aNDF 8 8 0.86  0.83 20.79  10.73 20.69  20.45 
Starch 5 6 0.72  0.89 40.00  20.70 10.90  30.04 

PLS f: the PLS factors used to develop the best partial least square regression; R2cv: multiple correlation coefficient of cross validation; SECV: standard error of cross 
validation; RPD: ratio of performance to deviation. 
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concentrations that deviate significantly from the mean. 
In the context of related research, Thomson et al. [51] conducted a 

study involving the collection of spectra from undried, unground mix
tures of grasses and clover silages obtained from commercial farms in 
the UK. They developed calibrations on both a dry and wet basis, 
observing generally better accuracy and robustness for calibrations 
based on the wet basis. However, it is important to note that Thomson 
et al. reported prediction errors on a mean relative basis. Consequently, 
their wet basis predictions were not converted to a dry basis, which 
limits direct comparability with the findings of our study. In a separate 
study, Pérez-Marín et al. [37] analyzed 121 TMR using NIR instruments 
to predict DM, CP, and NDF on both an “as DM basis” and an “as is 
basis”. Their results were found to be similar to those of our study, 
further validating our findings and underscoring the relevance of the 
chosen basis for calibration in NIR spectroscopy analysis. 

3. Conclusion 

Optimal and most accurate predictions using NIR spectroscopy were 
observed with samples that had been dried and milled. However, in field 
or farm applications, there is often a necessity to scan undried samples, 
where preprocessing steps such as moisture removal and particle size 
reduction are not feasible. This study, utilizing laboratory NIR in
struments, highlights potential limitations in the accuracy of NIR pre
dictions when conducted on undried and unground samples. 

When analyzing undried and unground samples in their natural 
state, deciding whether to develop calibrations based on data expressed 
on a ’wet matter’ or ’dry matter’ basis presents a challenge, as neither 
approach offers a clear, overarching advantage. Generally, calibrations 
based on wet matter appear to yield slightly better results, particularly 
with very wet materials like CWP, as demonstrated in this study. 
Therefore, it becomes imperative to report actual prediction perfor
mances on a dry matter basis, as these more accurately reflect the true 
precision of the calibrations. 

For drier products such as HMC, which are analyzed in their natural 
state, calibrations developed on a dry matter basis are effective. This 
approach has the added benefit of eliminating the need for result con
version when used for diet formulation, streamlining the process. 
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