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1. Introduction and motivation 

In this paper we introduce an efficient scheme for the numerical approximation of the solution (Y, U, V ) of a family of

Forward-Backward Stochastic Differential Equations (FBSDEs hereafter) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

Y t = y 0 + 

∫ t 

0 

b ( Y s ) ds + 

∫ t 

0 

σ ( Y s ) 
� dW s , y 0 ∈ R 

d 

U t = ξ + 

∫ T 

t 

f ( s, Y s , U s , V s ) ds −
∫ T 

t 

V 

� 
s dW s , t ∈ [0 , T ] , 

(1.1) 

where W is a Brownian motion, T > 0 is a deterministic terminal time and the functions b, σ, f, ξ satisfy some conditions

specified in the sequel in order to grant that the solution of (1.1) exists and it is unique. FBSDEs of the form (1.1) are

particularly popular in financial mathematics: in typical applications, the (forward) process Y describes the evolution of 

a financial asset, while the (backward) SDE for U is related to the value of the portfolio that hedges the terminal payoff

ξ through the trading strategy V . BSDEs allow for the treatment of non-linear pricing problems and this originated their 
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popularity in finance. More recently, in the aftermath of the 20 07–20 09 financial crisis, the valuation of financial products

has been revisited in several aspects, often by means of advanced BSDEs treatments. The possibility of a default of both

agents involved in the transaction and the presence of multiple sources of funding are represented at the level of valuation

equations by introducing typically non-linear FBSDEs for value adjustments (xVA), see e.g. [2] . 

The history of BSDEs goes back to [3] and originates from the theory of stochastic optimal control. First existence and

uniqueness results have been obtained in the seminal paper of [4] and have been further extended in several directions,

including the presence of jumps, see [5] and reflection [6–10] . Applications in mathematical finance are abundant. We refer

the reader to [11,12] and the surveys in [13,14] for numerous references and several applications in finance, both in complete

and incomplete markets. In view of applications, an important issue concerns the approximation of the solution of a BSDE: 

the most relevant contribution is based on the dynamic programming approach, introduced by Briand et al. [15] in a Marko-

vian setting. In this case, the rate of convergence for deterministic time discretization has been studied by Zhang [16] , who

transformed the problem to computing a sequence of conditional expectations. This opened the door to several approaches 

to attack the problem, as significant progress has been made in computing the conditional expectations: [17] adopted the 

Malliavin calculus approach, while [12] proposed the linear regression method based on the Least-Squares Monte Carlo ap- 

proach in [18] . The approach of [19,20] was based on quantization, a technique that will be treated in the sequel as it

represents the main source of inspiration for our work. Since then, the literature on BSDE flourished and attained high level

of generality, including the non Markovian setting. In the case where the terminal condition is not necessarily Markovian, 

Briand and Labart [21] proposed a forward scheme based on Wiener chaos expansion, for which conditional expectations 

can be efficiently computed through the chaos decomposition formula. 

In this paper, in view of financial applications to pricing and hedging, we consider the case of decoupled FBSDEs like

(1.1) (that is, when the forward SDE for Y does not exhibit a dependence on U) in a Markovian setting. Even in the one

dimensional case, the numerical procedures described above require several computations coupled with Monte Carlo simu- 

lations, which leads to algorithms that are too time consuming in view of concrete applications. 

The aim of our study is to provide a new numerical scheme for the solution of FBSDEs that allows to improve the

approximation of the solution of (1.1) . We follow the spirit of [19,20] , where Pagès and coauthors applied the optimal quan-

tization technique to compute the conditional expectations. We extend their approach by considering an algorithm that is 

entirely based on fast quantization: in particular, our procedure does not rely on Monte Carlo simulation in any step of the

algorithm. 

We now give a brief overview on quantization. Quantization of random vectors provides the best possible discrete ap- 

proximation to the original distribution, according to a distance that is commonly measured using the squared Euclidean 

norm. Many numerical procedures have been developed to obtain optimal quadratic quantizers of the Gaussian (and even 

non-Gaussian) distribution in high dimension, mostly based on stochastic optimization algorithms, see [22] and references 

therein. While theoretically sound and deeply investigated, optimal quantization typically suffers from the numerical burden 

that the algorithms involve. Indeed, the procedure to be performed to obtain the optimal grids is highly time-consuming, 

especially in the multi-dimensional case, where stochastic algorithms are necessary. Recursive marginal quantization, or 

fast quantization, introduced in [23] represents a very useful innovation in order to overcome the above-mentioned com- 

putational difficulties. Sub-optimal (stationary) quantizers of the stochastic process at fixed discretization dates (hence, of 

random variables) are obtained in a very fast recursive way, to the point that recursive marginal quantization has been 

successfully applied to many models for which a (time) discretization scheme is available, see e.g. the non exaustive list 

of papers: [1,24–26] for the multi dimensional case. We also mention [27] where recursive quantization has been applied 

outside the usual Euler scheme. 

Here, we propose a scheme for the system (1.1) that is similar to the one in [1] , based on recursive quantization, with a

crucial difference: in a nutshell, we introduce a new discretization scheme for the control process V that we express in terms

of U and Y instead of U and the Brownian motion W (details will be provided in the sequel). This apparently small difference

leads to a simpler numerical procedure, as there will be no need to discretize the Brownian motion increments. This reduces

the computational time required to solve the FBSDE. In fact, in the approximation of the conditional expectations required in 

our scheme, we only need the transition probabilities of the quantized process ̂  Y , while [1] need to additionally compute a

conditional expectation involving the Brownian increments, that they estimate via Monte Carlo simulations. Such procedure 

implies an additional numerical effort which is not required in our case. In other words, once the process Y has been

discretized in space via recursive marginal quantization to get ̂  Y , we apply our backward approximation scheme in order to 

get an explicit and fully quantization-based algorithm. 

We provide two numerical experiments. The first involves a one dimensional BSDE with known analytical solution, so 

that we can test our approximated solution in a case where there exists a closed form for the control. Here our procedure

reveals to be fast and accurate. The same accuracy is obtained when we consider a multi-dimensional example. We treat 

the case of a basket option, for which a semi-closed form solution for the price is known in terms of a multivariate Fourier

integral, see [28] . 

The rest of the paper is organised as follows: in Section 2 we briefly introduce the FBSDE and we recall the main exis-

tence and uniqueness results in order for our working setting to be well-posed. In Section 3 we illustrate our new scheme

for the control U . Section 4 provides the essentials on recursive marginal quantization that we apply in Section 5 to the

computation of conditional expectations. In Section 6 we study the error, while in Section 7 we illustrate some numerical

tests. Section 8 concludes. 
2 
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2. Forward-Backward stochastic differential equations 

We start by fixing some notations. Vectors will be column vectors and, for x ∈ R 

d , | x | denotes the Euclidean norm and

〈 x, y 〉 denotes the inner product. Matrices are elements of R 

q ×d , with | y | = 

√ 

T race [ yy � ] and 〈 x, y 〉 = T race [ xy � ] . Let ( �, F , P )
be a probability space rich enough to support an R 

q -valued Brownian motion W = (W t ) t∈ [0 ,T ] . Let F = (F t ) t∈ [0 ,T ] be the

filtration generated by W , assumed to satisfy the standard assumptions. We consider the following spaces: 

• L 2 is the space of all F T -measurable R 

d -valued random variables X : � �→ R 

d such that ‖ X ‖ 2 = E 

[| X | 2 ] < ∞ . 

• H 

2 ,q ×d is the space of all predictable R 

q ×d -valued processes φ : � × [0 , T ] �→ R 

q ×d such that E 

[ ∫ T 
0 | φt | 2 dt 

] 
< ∞ . 

• S 
2 the space of all adapted processes φ : � × [0 , T ] �→ R 

q ×d such that E 

[
sup 0 ≤t≤T | φt | 2 

]
< ∞ . 

Let Y = ( Y t ) t∈ [0 ,T ] be an R 

d -valued process solving the stochastic differential equation (henceforth SDE): 

Y t = y 0 + 

∫ t 

0 

b ( Y s ) ds + 

∫ t 

0 

σ ( Y s ) 
� dW s , y 0 ∈ R 

d (2.1) 

and let us consider the following standing assumption: 

Assumption 2.1. The vector fields b : R 

d �→ R 

d and σ : R 

d �→ R 

q ×d satisfy the following conditions 

| b(y ) − b(z) | ≤ L 1 | y − z| , (2.2) 

| σ (y ) − σ (z) | ≤ L 2 | y − z| , (2.3) 

| σ (y ) | ≤ L 3 (1 + | y | ) , | b(y ) | ≤ L 3 (1 + | y | ) , (2.4) 

for some positive constants L 1 , L 2 , L 3 . 

It is well known that under such regularity conditions there exists a unique adapted right continuous with left limits 

(henceforth RCLL) strong solution Y y 0 = (Y 
y 0 

t ) t∈ [0 ,T ] to (2.1) which is a homogeneous Markov process. It is also well known

that the solution Y y 0 satisfies the following: for all couples (t, y 0 ) , (t, y ′ 
0 
) ∈ [0 , T ] × R 

d and p ≥ 2 we have 

E 

[
sup 

0 ≤t≤T 

∣∣Y y 0 t − y 0 
∣∣p 

]
≤ L 4 ( 1 + | y 0 | p ) T , (2.5) 

E 

[
sup 

0 ≤t≤T 

∣∣∣Y y 0 t − Y 
y ′ 0 

t 

∣∣∣p 
]

≤ L 5 

(| y 0 − y ′ 0 | p 
)
, (2.6) 

where L 4 , L 5 are positive constants. To alleviate notations we will simply write Y for the solution, omitting the dependence

on the initial condition y 0 . We investigate a backward SDE with a terminal condition and a generator that depends on the

state process solving the forward SDE (2.1) . More precisely, we consider the backward stochastic differential equation 

U t = ξ + 

∫ T 

t 

f ( s, Y s , U s , V s ) ds −
∫ T 

t 

V 

� 
s dW s , t ∈ [0 , T ] , (2.7) 

where V = (V t ) t∈ [0 ,T ] is a process in H 

2 ,q ×1 . We will also work under the following: 

Assumption 2.2. (i ) The function f : [0 , T ] × R 

d × R × R 

q → R is Lipschitz continuous, uniformly in t ∈ [0 , T ] : ∣∣ f (t, y, u, v ) − f 
(
t, y ′ , u 

′ , v ′ 
)∣∣ ≤ L 6 

(∣∣y − y ′ 
∣∣+ 

∣∣u − u 

′ ∣∣+ 

∣∣v − v ′ 
∣∣)

for a positive constant L 6 . 

(ii ) The terminal condition ξ is of the form ξ = h (Y T ) , for a given Borel function h : R 

d → R . 

The system formed by the forward SDE (2.1) and the backward SDE (2.7) is a decoupled forward-backward SDE. Decou- 

pled here means that the forward SDE for Y does not exhibit a dependence on U . The following result for FBSDE is standard,

see e.g. [29] Theorem 3.1.1, Theorem 4.1.3. 

Theorem 2.3. Under assumptions 2.1 and 2.2 there exists a unique solution (Y, U, V ) ∈ S 
2 (R 

d ) × S 
2 (R ) × H 

2 ,q ×1 to the FBSDE

(2.1) –(2.7) . 

In the study of the numerical error in Section 6 we will also need one last assumption, that we include here for com-

pleteness: 
3 
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Assumption 2.4. We have q = d and the matrix σσ� is uniformly elliptic, namely, for every y ∈ R 

d , denoting by a i j (y ) , i, j =
1 , . . . , d the elements of [ σ (y ) σ (y ) � ] , there exists λ0 > 0 such that 

1 

λ0 

|| ξ || 2 ≤
d ∑ 

i, j=1 

a i j (y ) ξi ξ j ≤ λ0 || ξ || 2 , ξ ∈ R 

d . 

Remark 2.5. This ensures that for every y ∈ R 

d , the matrix σ (y ) is positive definite, hence invertible, and bounded. The

inverse matrix σ (y ) −1 is also bounded. 

3. A generic scheme for FBSDEs 

We introduce here the proposed numerical scheme to approximate the solution of the FBSDE (2.1) –(2.7) . To do so, we

fix a time discretization: let n ∈ N , � = �n = 

T 
n and set t k = 

T k 
n . The scheme, whose derivation is detailed in Appendix Ap-

pendix A is: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

˜ U t n = h ( Y t n ) and for k = 0 , . . . , n − 1 ˜ U t k = E 

[˜ U t k +1 

∣∣F t k 

]
+ � f ( t k , Y t k , E 

[ ˜ U t k +1 

∣∣F t k 

]
, ̃  V t k ) ˜ V t k = 

1 
�

[ 
σ
(
Y t k 
)� ] −1 

E 

[˜ U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
−
[ 
σ
(
Y t k 
)� ] −1 

E 

[ ˜ U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)
. 

(3.1) 

where ˜ U and 

˜ V are approximations of U and V (for more details, see Section A.3 ) and where Y denotes a suitable (time)

discretization of Y that, at this point, is left unspecified. The scheme is similar to the one proposed in [1] , which we recall

here for the reader’s ease: ⎧ ⎨ ⎩ 

˜ U t n = h ( Y t n ) and for k = 0 , . . . , n − 1 ˜ U t k = E 

[˜ U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) f ( t k , Y t k , E 

[ ˜ U t k +1 

∣∣F t k 

]
, ̃  V 

PS 
t k 

) ˜ V 

PS 
t k 

= 

1 
� E 

[ ˜ U t k +1 

(
W t k +1 

− W t k 

)∣∣F t k 

]
. 

(3.2) 

The novelty is a new discretization scheme for the control process: ̃  V t k , k = 0 , . . . , n − 1 , in Eq. (3.1) is no longer a function of

( ̃  U t k +1 
, W t k 

, W t k +1 
) , as it is the case for ̃  V PS 

t k 
, but depends only on 

˜ U t k +1 
, Y t k , Y t k +1 

. This leads to a simpler numerical procedure.

Indeed, since Y is approximated indipendently from U and V , there will be no need to discretize the Brownian motion 

increments and this will result in a speed-up of the computational time required to solve the FBSDE. More details on this

will be given in Remark 6.4 . From a practical point of view, once the stochastic process Y has been discretized in space via

recursive marginal quantization, thus obtaining ̂ Y , the scheme reads as in Eq. (5.1) and the backward recursion is explicit 

and fully quantization-based. 

We stress that, for the moment, we introduced a general, yet original, discretization for the FBSDE (2.1) –(2.7) . The role

of recursive marginal quantization will become apparent as we approximate the conditional expectations appearing in the 

scheme above. For this we refer to Section 5 . 

4. A primer on recursive product marginal quantization 

We provide some background on recursive marginal quantization. We consider a diffusion process Y as in (2.1) and 

its discretized version Y over a given time grid. Quantizing the diffusion process Y via recursive marginal quantization 

(henceforth RMQ) means the following: we consider the discretized analog Y of Y and, for each given point in time, we

project every single random variable Y t k +1 
on a finite grid of points by exploiting the fact that the conditional law of Y t k +1 

given its value at time t k is known. When the discretization Y is chosen to be the Euler scheme, the conditional law of Y t k +1 

given Y t k is Gaussian. This technique was first introduced in [23] and was further developed in [26] and applied in different

settings, such as [24] among others. 

Let us now provide a minimum insight on RMQ. The Euler scheme of Y , solution to Eq. (2.1) , is defined via the recursion

Y t k +1 
= Y t k + � b 

(
Y t k 
)

+ σ
(
Y t k 
)� (

W t k +1 
− W t k 

)
, y 0 ∈ R 

d , (4.1) 

for � = �n = 

T 
n and t k = 

kT 
n . For notational simplicity, in this section we set Y k := Y t k . 

Remark 4.1. Some extensions are possible: 

a) The results presented here can be extended without any technical issue, yet with additional notational burden, to the 

case when the coefficients b and σ are no longer time homogeneous (this is the setting in [1] ). 

b) It is possible to consider higher order schemes such as e.g. the Milstein discretization as in [27] . This has an obvious
implication on the shape of the conditional distribution of Y k +1 given Y k . 

4 
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We define the Euler operator, which allows one to express the distribution of Y 
� 

k +1 given { Y � k = y } , with � = 1 , . . . , d

E k (y, z) := y + � b ( y ) + 

√ 

� σ( y ) 
� z, y ∈ R 

d , z ∈ R 

q . (4.2) 

Our target is discretizing Y k +1 via a finite grid, 	k +1 , under the constraint that the resulting approximating error has to be

minimal. Namely, using the Euler operator, we consider the L 2 -distortion at time t k +1 , D k +1 , which is defined as the square

of the L 2 -distance between the random variable Y k +1 and the grid 	k +1 

D k +1 ( 	k +1 ) = E 

[ (
dist 

(
Y k +1 	k +1 

)2 
] 

= E 

[ 
dist 

(
E k 
(
Y k , Z k +1 

)
, 	k +1 

)2 
] 

(4.3) 

for Z k +1 ∼ N 

(
0 , I q 

)
, and we aim at finding a grid 	
 

k +1 
that minimizes the distortion function. For a given size of the grid,

it is known that an optimal quantizer exists (see e.g. [30] ). Moreover, in the one-dimensional case, if the density of the

random variable to be discretized is absolutely continuous and log-concave, then the optimal quantizer is unique. 

Remark 4.2. The conditional distribution of the Euler process Y is Gaussian. Also, each component of a Gaussian vector is 

Gaussian. 

To quantize the vector Y k ∈ R 

d , [26] consider each component of the vector separately: they quantize Y 
� 

k over a grid 	� 
k 

of size N 

� 
k 

for � = 1 , . . . , d and then they define its product quantization 

̂ Y k , i.e., the quantizer of the whole vector, on the

product grid 	k = 

⊗ d 
� =1 	

� 
k 

of size N k = N 

1 
k 

× . . . × N 

d 
k 

as ̂  Y k = 

(̂ Y 1 
k 

, . . . , ̂  Y d 
k 

)
. 

More precisely, for any k = 0 , . . . , n and any given � ∈ { 1 , . . . , d} , ̂ Y � 
k 

denotes the quantization of Y 
� 

k on the grid 	� 
k 

={ 
y 

�,i � 
k 

, i � = 1 , . . . , N 

� 
k 

} 
. The idea of [26] is as follows: assume we have access to 	� 

k 
, an N 

� 
k 
-quantizer, for � = 1 , . . . , d, of the

� -th component Y 
� 

k of Y k . They define a componentwise recursive product quantizer 	k = 

⊗ d 
� =1 	

� 
k 

of size N k = N 

1 
k 

× . . . × N 

d 
k 

of the vector Y k = 

(
Y 

� 

k 

)
� =1 , ... ,d 

via 

	k = 

{ (
y 1 ,i 1 

k 
, . . . , y 

d,i d 
k 

)
, y �,i � 

k 
∈ 	� 

k for � ∈ { 1 , . . . , d} and i � ∈ 

{
1 , . . . , N 

� 
k 

}} 
. (4.4) 

To leverage the conditional normality feature, suppose now that Y k has already been quantized and that we have the asso- 

ciated weights P 

(̂ Y k = y i 
k 

)
, i ∈ I k , where y i 

k 
:= 

(
y 

1 ,i 1 
k 

, . . . , y 
d,i d 
k 

)
, i := ( i 1 , . . . , i d ) ∈ I k and 

I k = 

{
( i 1 , . . . , i d ) , i � ∈ 

{
1 , . . . , N 

� 
k 

}}
, k ∈ { 0 , . . . , n } . (4.5) 

By setting ̃  Y � 
k 

= E � 
k 

(̂ Y k , Z k +1 

)
, one can approximate each component of D k +1 

(
	k +1 

)
via ˜ D 

� 
k +1 

(
	� 

k +1 

)
, � = 1 , . . . , d where 

˜ D 

� 
k +1 

(
	� 

k +1 

)
:= E 

[ 
dist 

(˜ Y � k +1 , 	
� 
k +1 

)2 
] 

= E 

[ 
dist 

(
E � k 

(̂ Y k , Z k +1 

)
, 	� 

k +1 

)2 
] 

= 

∑ 

i ∈ I k 
E 

[ 
dist 

(
E � k 

(
y i k , Z k +1 

)
, 	� 

k +1 

)2 
] 
P 

(̂ Y k = y i k 
)
. 

(4.6) 

Such approximation allows [26] to introduce the sequence of product recursive quantizations of ̂ Y = 

(̂ Y k 
)

k =0 , ··· ,n , for k = 

0 , . . . , n − 1 , as ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

˜ Y 0 = ̂

 Y 0 = y 0 , ̂ Y k = 

(̂ Y 1 
k 
, . . . , ̂  Y d 

k 

)
̂ Y � 

k 
= Proj 	� 

k 

(˜ Y � 
k 

)
and 

˜ Y � 
k +1 

= E � 
k 

(̂ Y k , Z k +1 

)
, � = 1 , . . . , d 

E � 
k 
(y, z) = y � + �b � (y ) + 

√ 

�
(
σ � •( y ) | z ), z = 

(
z 1 , . . . , z q 

)
∈ R 

q 

y = 

(
y 1 , . . . , y d 

)
, b = 

(
b 1 , . . . , b d 

)
and 

(
σ � •( y ) | z ) = 

∑ q 
m =1 

σ �m ( y ) z m 

(4.7) 

where for every matrix A ∈ M (d, q ) , a � • = [ a � j ] j=1 , ... ,q 
. 

We conclude this section by providing some information about the computation of transition probabilities. In [26] three 

methods are proposed: the first one, in their Proposition 3.1, concerns the computation of transition probabilities of the 

whole vector ̂ Y , the second covers the case where the diffusion matrix is diagonal and the third is a corollary to their

Proposition 3.1 for the case where we are interested only in one component of the whole vector. We refer the reader to

this paper for all the details on how to instantaneously compute these probabilities once the quantization grids have been 

obtained. 

5. Computing the conditional expectations 

Our numerical scheme (3.1) has been conceived in such a way that computing the conditional expectations, with respect 

to (F t k 
) 

k =0 , ... ,n 
, only requires the knowledge of the stochastic process Y . We will see that this results, from the practical

point of view, in a handy, easy to understand and ready-to-use numerical scheme. 
5 
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Before proceeding, we now rigorously prove that for every k = 0 , . . . , n − 1 ˜ U t k = u k ( Y t k ) and 

˜ V t k = v k ( Y t k ) 

for given Borel functions u k : R 

d → R and v k : R 

d → R 

q . 

Proposition 5.1. For every k ∈ { 0 , . . . , n − 1 } the update rule for the control satisfies ̃  V t k = v k ( Y t k ) and for every l ∈ { 0 , . . . , n } we

have ˜ U t l 
= u l ( Y t l ) , where v k : R 

d → R 

q and u l : R 

d → R are ⎧ ⎨ ⎩ 

v k (y ) := 

1 

�
(σ ( y ) 

� ) 
−1 

[ g 1 ,k (y ) + � · g 2 ,k (y ) b ( y ) ] , k = 0 , . . . , n − 1 

u n (y ) := h (y ) , and u l (y ) := g 3 ,l (y ) + � · f 
(
t l , y, g 3 ,l (y ) , v l (y ) 

)
, l = 0 , . . . , n − 1 

with g 1 ,k : R 

d → R 

d , g 2 ,k : R 

d → R and g 3 ,l : R 

d → R as follows ⎧ ⎨ ⎩ 

g 1 ,k (y ) := E [ u k ( E k −1 (y, Z k ) ) [ E k −1 (y, Z k ) − y ] ] 

g 2 ,k (y ) := E [ u k (E k −1 (y, Z k )) ] 

g 3 ,l (y ) := E [ u l+1 (E l (y, Z l+1 )) ] 

and for Z j ’s i.i.d., Z j ∼ N (0 , I q ) . 

Proof. First of all notice that, by definition of ˜ U t n , we immediately have ˜ U t n = h ( Y t n ) =: u n ( Y t n ) . We now work on the control

at time t n −1 . By recalling (cf. Section A.1 ) that (t k +1 − t k ) = � we find: 

˜ V t n −1 
= 

1 

�

[ 
σ
(
Y t n −1 

)� ] −1 

E 

[ ˜ U t n 

(
Y t n − Y t n −1 

)∣∣F t n −1 

]
−
[ 
σ
(
Y t n −1 

)� ] −1 

E 

[˜ U t n 

∣∣F t n −1 

]
b 
(
Y t n −1 

)
= 

1 

�

[ 
σ
(
Y t n −1 

)� ] −1 

E 

[
u n ( Y t n ) 

(
Y t n − Y t n −1 

)∣∣F t n −1 

]
+ 

[ 
σ
(
Y t n −1 

)� ] −1 

E 

[
u n ( Y t n ) 

∣∣F t n −1 

]
b 
(
Y t n −1 

)
. 

Now, from Eq. (4.2) , we have Y t k +1 
= E k ( Y t k , Z k +1 ) , where Z k +1 ∼ N (0 , I q ) and the Z k ’s, k = 0 , . . . , n − 1 are i.i.d., and so 

˜ V t n −1 
= 

1 

�

[ 
σ
(
Y t n −1 

)� ] −1 

E 

{
u n 

(
E n −1 ( Y t n −1 

, Z n ) 
)[
E n −1 ( Y t n −1 

, Z n ) − Y t n −1 

]|F t n −1 

}
+ 

[ 
σ
(
Y t n −1 

)� ] −1 

E 

[
u n (E n −1 ( Y t n −1 

, Z n )) 
∣∣F t n −1 

]
b 
(
Y t n −1 

)
= 

1 

�

[ 
σ
(
Y t n −1 

)� ] −1 [
g 1 ,n ( Y t n −1 

) + � g 2 ,n ( Y t n −1 
) b 
(
Y t n −1 

)]
=: v n −1 ( Y t n −1 

) , 

where we have used the fact that ( Y t j ) j=0 , ... ,n 
is a Markov process (see e.g. [1, Section 3.2.1] ) measurable w.r.t F t n −1 

and Z n 

is independent of F t n −1 
and, for y ∈ R 

d , g 1 ,n (y ) and g 2 ,n (y ) are defined as in the statement. 

We now proceed by induction (notice that the values of k and l for which the claims hold are shifted): we assume that˜ 

 t k +1 
= u k +1 ( Y t k +1 

) and ̃

 V t k = v k ( Y t k ) and we prove that this implies that ˜ U t k 
= u k ( Y t k ) and ̃

 V t k −1 
= v k −1 ( Y t k −1 

) . 

The proof on 

˜ V t k −1 
is analogous to what we have just done for ˜ V t n −1 

, so we omit it. It remains the ˜ U t k 
-part, which we

develop now: ˜ U t k = E 

[ ˜ U t k +1 

∣∣F t k 

]
+ � f 

(
t k , Y t k , E 

[ ˜ U t k +1 

∣∣F t k 

]
, ̃  V t k 

)
= E 

[
u k +1 ( Y t k +1 

) 
∣∣F t k 

]
+ � f 

(
t k , Y t k , E 

[
u k +1 ( Y t k +1 

) 
∣∣F t k 

]
, v k ( Y t k ) 

)
= E 

[
u k +1 (E k ( Y t k , Z k +1 )) 

∣∣F t k 

]
+ � f 

(
t k , Y t k , E 

[
u k +1 (E k ( Y t k , Z k +1 )) 

∣∣F t k 

]
, v k ( Y t k ) 

)
= g 3 ,k ( Y t k ) + � f 

(
t k , Y t k , g 3 ,k ( Y t k ) , v k ( Y t k ) 

)
=: u k ( Y t k ) , 

where we have used the functions g 3 ,k introduced in the statement. �

In summary, we can compute the conditional expectations in the discretization scheme (3.1) as follows, by exploiting 

Proposition 5.1 and the Markovianity of the discrete time stochastic process ( Y t k ) k =0 , ... ,n ⎧ ⎪ ⎨ ⎪ ⎩ 

E [ ̃  U t k +1 
|F t k ] = E [ u k +1 ( Y t k +1 

) |F t k ] = E [ u k +1 ( Y t k +1 
) | Y t k ] 

E [ ̃  U t k +1 

(
Y t k +1 

− Y t k 
)|F t k ] = E [ u k +1 ( Y t k +1 

) 
(
Y t k +1 

− Y t k 
)|F t k ] 

= E [ u k +1 ( Y t k +1 
) 
(
Y t k +1 

− Y t k 
)| Y t k ] . 
6 
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5.1. Approximation via quantization 

As a final step, now we approximate Y via ̂  Y , which is obtained as explained in Section 4 and we get the quantized final

version of the recursive discretization scheme (3.1) (we recall that, for every k = 0 , . . . , n , ̂  Y t k is the quantization of Y t k ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

̂ U t n = h ( ̂  Y t n ) and for k = 0 , . . . , n − 1 ̂ U t k = E 

[̂ U t k +1 
| ̂  Y t k 
]

+ � f 
(
t k , ̂

 Y t k , E [ ̂  U t k +1 
| ̂  Y t k ] , ̂

 V t k 

)
=: ̂  u k ( ̂  Y t k ) 

̂ V t k = 

1 
�

[ 
σ
(̂ Y t k 
)� ] −1 

E 

[̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 
]

−
[ 
σ
(̂ Y t k 
)� ] −1 

E 

[̂ U t k +1 
| ̂  Y t k 
]
b 
(̂ Y t k 
)

=: ̂  v k ( ̂  Y t k ) , 

(5.1) 

with 

̂ u k : 	k → R and 

̂ v k : 	k → R 

q Borel functions, for k = 0 , . . . , n − 1 . Namely, the conditional expectations in (3.1) are

approximated as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

E [ ̃  U t k +1 
|F t k ] = E [ u k +1 ( Y t k +1 

) | Y t k ] ≈ E 

[̂ U t k +1 
| ̂  Y t k 
]

= E [ ̂  u k +1 ( ̂  Y t k +1 
) | ̂  Y t k ] 

E [ ̃  U t k +1 

(
Y t k +1 

− Y t k 
)|F t k ] = E [ u k +1 ( Y t k +1 

) 
(
Y t k +1 

− Y t k 
)| Y t k ] 

≈ E [ ̂  U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k ] 

= E [ ̂  u k +1 ( ̂  Y t k +1 
) 
(̂ Y t k +1 

−̂ Y t k 
)| ̂  Y t k ] . 

(5.2) 

The approximating scheme is then fully explicit, since for every ˜ ω ∈ � such that ̂  Y t k ( ̃  ω ) = y i 
k 

, for a given i ∈ I k , we have ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

E 

[̂ u k +1 ( ̂  Y t k +1 
) | ̂  Y t k 

]
( ̃  ω ) = 

∑ 

j ∈ I k +1 ̂

 u k +1 ( y 
j 

k + 1 ) P 

(̂ Y t k +1 
= y j 

k + 1 | ̂  Y t k = y i k 
)

E 

[̂ u k +1 ( ̂  Y t k +1 
) 
(̂ Y t k +1 

−̂ Y t k 
)| ̂  Y t k 

]
( ̃  ω ) = 

∑ 

j ∈ I k +1 ̂

 u k +1 ( y 
j 

k + 1 ) 
(
y j 

k + 1 − y i k 
)
P 

(̂ Y t k +1 
= y j 

k + 1 | ̂  Y t k = y i k 
)
. 

(5.3) 

Remark 5.2. As expected and already announced, the proposed discretization scheme is fully driven by the process ̂  Y , which

is the quantization of the Euler scheme process Y . 

We conclude the theoretical part of the paper by studying, In the next section, the error associated with our scheme

(5.1) . 

6. The error 

The analysis is divided in two parts: 

• Section 6.1 : error in time 
• Section 6.2 : error in space. 

Here Y denotes the Euler scheme relative to the stochastic process Y . Moreover, recall that we work under Assumption

2.4 . 

Remark 6.1. a) Assumption 2.4 ensures that for every y ∈ R 

d , the matrix σ (y ) is positive definite, hence invertible, and

bounded. The inverse matrix σ (y ) −1 is also bounded. More precisely, denoting by || · || F the Frobenius norm 

1 , we have that

for every y ∈ R 

d 

|| σ−1 (y ) || 2 F ≤ λ0 . 

This will be crucial in Section 6.2 . b) Assumption 2.4 , together with a Lipschitz continuity condition on h with Lipschitz

constant K, is required by [16, Lemma 2.5 (i)] to prove that the control process V admits a càdlàg version. This, in turn, is

needed in [16, Theorem 3.1] to prove the following: 

n ∑ 

i =1 

E 

{∫ t i +1 

t i 

[| V t − V t i −1 
| 2 + | V t − V t i | 2 

]
dt 

}
≤ C(1 + | y 0 | 2 )�, 

where C is a constant depending only on T and K and we recall that � = �n = 

T 
n . The results by Zhang are contained in [1,

Theorem 3.1] . We adapt them below, in Theorem 6.3 , to our setting. 
1 Recall that given a matrix B := b i j , i, j = 1 , . . . , d, || B || F := 

√ 

tr (BB � ) = 

√ ∑ 

i, j (b i, j ) 2 . 

7 
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6.1. Time discretization error 

Studying the error of our scheme (3.1) with respect to time means computing a proper distance between (U, V ) and

( ̃  U , ̃  V ) . Inspired by [1] , we will adapt to our setting their Theorem 3.1. 

Before stating the time discretization error result, we need to introduce, as typically done in the literature, the continuous 

time extension of ( ̃  U t k 
) 

k =0 , ... ,n 
, denoted by ( ̃  U t ) t∈ [0 ,T ] . We introduce the random variable 

M T := 

n ∑ 

k =1 ̃

 U t k − E 

[˜ U t k |F t k −1 

]
and we notice that M T ∈ L 2 and so, by the martingale representation theorem, M admits the following representation: 

M T = 

∫ T 

0 

˜ V 

� 
s dW s , 

for an (F t ) t∈ [0 ,T ] -progressively measurable stochastic process ̃  V , with values in R 

q , such that E 

[ ∫ T 
0 | ̃  V s | 2 ds 

] 
< ∞ . As a conse-

quence, 

˜ U t k − E 

[˜ U t k |F t k −1 

]
= 

∫ t k 

t k −1 ̃

 V 

� 
s dW s (6.1) 

and we introduce the continuous extension ( ̃  U t ) t∈ [0 ,T ] as follows: if t ∈ [ t k , t k +1 ) , 

˜ U t = ̃

 U t k − (t − t k ) f 
(
t k , Y t k , E 

[˜ U t k +1 
|F t k 

]
, ̃  V t k 

)
+ 

∫ t 

t k 

˜ V 

� 
s dW s . (6.2) 

Remark 6.2. Recalling Eq. (3.2) and exploiting Eq. (6.1) , we get, for every k = 0 , . . . , n − 1 , 

˜ V 

PS 
t k 

= 

1 

�
E 

[ ˜ U t k +1 

(
W t k +1 

− W t k 

)∣∣F t k 

]
= 

1 

�
E 

[∫ t k +1 

t k 

˜ V s ds |F t k 

]
. 

This is extensively used in the proof of [1, Theorem 3.1] , which we mimic here, to prove the error bounds with respect to

time. 

Theorem 6.3. i) Under Assumption 2.2 , let f : [0 , T ] × R 

d × R × R 

q → R be Lipschitz with respect to time and let h : R 

d → R be

Lipschitz. Then there exists a real constant C > 0 only depending on b, σ, f, T such that, for every n ≥ 1 

max 
k =0 , ... ,n 

E 

[| U t k − ˜ U t k | 2 
]

+ 

∫ T 

0 

E 

[| V t −˜ V t | 2 
]
dt ≤ C 

(
� + 

∫ T 

0 

E 

[| V s − V s | 2 
]
ds 

)
, 

where s = t k if s ∈ [ t k , t k +1 ) . 

ii) Assume moreover that b, σ and f are continuously differentiable in their spatial variable with bounded partial derivatives 

and that f is 1 
2 -Hölder continuous with respect to time. Then the process V admits a càdlàg modification and ∫ T 

0 

E 

[| V s − V s | 2 
]
ds ≤ C ′ �, 

for a real positive constant C ′ (only depending on b, σ, f, T ), so that we have 

max 
k =0 , ... ,n 

E 

[| U t k − ˜ U t k | 2 
]

+ 

∫ T 

0 

E 

[| V t −˜ V t | 2 
]
dt ≤ ˜ C �, 

for a real positive constant ˜ C (only depending on b, σ, f, T ). 

Proof. Part ii ) is a consequence of i ) and it is obtained via [16, Lemma 2.5 (i) and Theorem 3.1] . 

The proof of i ) is the same as the one in [1, Theorem 3.1 a)] relatively to Steps 2 and 3, while something has to be

made precise relatively to Step 1. Indeed, the two schemes (3.2) and (3.1) differ in the control discretization. Nevertheless,

since here Y is the Euler scheme of Y , namely Y t k +1 
− Y t k = �b( Y t k ) + σ ( Y t k ) 

� (W t k +1 
− W t k 

) , k = 0 , . . . , n − 1 , also Step 1 in

[1, Theorem 3.1] can be retraced straightforwardly. �

Remark 6.4. Despite the fact that the time error bounds for our proposed scheme are the same as in [1] , our recursions

only require the discretization of the process Y and this results in an increased numerical efficiency, namely in the speed-up

of the computational time. What is more, in the approximation of the conditional expectations required in our scheme, we 

only need the transition probabilities of the quantized process ̂  Y , i.e., for i ∈ I k , j ∈ I k +1 : 

P 

(̂ Y t k +1 
= y j 

k + 1 | ̂  Y t k = y i k 
)
. 
8 
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This is not the case in [1] , where the authors, in their scheme (3.2) for ˜ V PS , need to additionally compute E [ ̂  Y t k +1 
(W t k +1 

−
 t k 
) |F t k 

] , k = 0 , . . . , n − 1 . So, they have to estimate, for i ∈ I k , j ∈ I k +1 , the weights (we stick to their notation) 

πW,k 
i j 

:= 

1 

P ( ̂  Y t k = y i 
k 
) 
E 

[ 
(W t k +1 

− W t k ) 1 { ̂  Y t k +1 
= y j 

k + 1 , ̂
 Y t k = y i k } 

] 
, 

which is done via Monte Carlo simulation (see [1, Section 5] ), hence requiring additional numerical effort, which is not

needed in our case. 

6.2. Space discretization (quantization) error 

Here we study the quadratic quantization error induced by the approximation of ( ̃  U t k 
, ̃  V t k ) in (3.1) by ( ̂  U t k 

, ̂  V t k ) in (5.1) , for

every k = 0 , . . . , n . We intuitively expect both the error components || ̃  U t k 
− ̂ U t k 

|| 2 
2 

and || ̃  V t k −̂ V t k || 2 2 
to be written as functions

of the quantization error || Y t i −̂ Y t i || 2 2 
for i = k, . . . , n . 

We start by discussing the error || ̃  U t k 
− ̂ U t k 

|| 2 
2 
, for k = 0 , . . . , n , for which a bound is given in the following Lemma, cor-

responding to [1, Theorem 3.2 a), Equation (31)] . We provide a sketch of its proof below. 

Lemma 6.5. Under Assumptions 2.1 and 2.2 and assuming that h is [ h ] Lip 

-continuous, we have that for every k = 0 , . . . , n 

|| ̃  U t k − ̂ U t k || 2 2 ≤
n ∑ 

i = k 
e (1+ L 6 )(t i −t k ) K i (b, σ, T , f ) || Y t i −̂ Y t i || 2 2 (6.3) 

where K n (b, σ, T , f ) = [ h ] 2 
Lip 

and for every k = 0 , . . . , n − 1 the other K k ’s are provided in [1 , Theorem 3.2 a)]. 

Proof. The proof is essentially the same as the one of [1, Theorem 3.2 a), Equation (31)] and it has to be carried out in two

steps: first, propagate the Lipschitz property through the functions u k , k = 0 , . . . , n − 1 defined in Proposition 5.1 , second,

introduce the quantization scheme and find a backward recursive inequality satisfied by || ̃  U t k 
− ̂ U t k 

|| 2 
2 
. Given the nature 

of the two numerical schemes in Eqs. (3.2) and (3.1) , which differ on the control process side, the presence of ˜ V t k in the

scheme for ˜ U t k 
requires additional care. More precisely, when retracing the proof of [1, Prop. 3.4 b)] , to prove that u k defined

in Proposition 5.1 is [ u k ] Lip 

-continuous, we find, for y, y ′ ∈ R 

d : 

| u k (y ) − u k (y ′ ) | = | E [ u k +1 (E k (y, Z k +1 )) ] + � · f ( t k , y, E [ u k +1 (E k (y, Z k +1 )) ] , v k (y ) ) 

−E 

[
u k +1 (E k (y ′ , Z k +1 )) 

]
− � · f 

(
t k , y 

′ , E 

[
u k +1 (E k (y ′ , Z k +1 )) 

]
, v k (y ′ ) 

)| 
and exploting the Lipschitzianity Assumption 2.2 (i ) on f it follows that 

| u k (y ) − u k (y ′ ) | ≤ ( 1 + �L 6 ) E 

[| u k +1 (E k (y, Z k +1 )) − u k +1 (E k (y ′ , Z k +1 )) | 
]
( 1 + �L 6 ) 

+�L 6 | y − y ′ | + �| v k (y ) − v k (y ′ ) | . 
A priori this seems slightly different from the proof of [1, Prop. 3.4 b)] because of the presence of the term �| v k (y ) −
v k (y ′ ) | . Nevertheless, it suffices to rewrite ̃  V t k as: ̃  V t k = 

1 
� E 

[
u k +1 

(
E k ( Y t k , Z k +1 ) 

)√ 

�Z k +1 

∣∣F t k 

]
to be able to proceed exactly as

in [1] . �

We now focus on || ̃  V t k −̂ V t k || 2 2 
. 

Theorem 6.6. Under Assumptions 2.1 and 2.4 and if b is continuously differentiable with bounded derivative, there exist positive 

constants ̂ C and C , only depending on (λ0 , L 3 , L 4 ) , such that for every k = 0 , . . . , n : 

|| ̃  V t k −̂ V t k || 2 2 ≤
1 

�
[k ] 

2 

Lip 

|| Y t k −̂ Y t k || 2 2 + 

( ̂ C 

�
+ C 

)
|| ̃  U t k +1 

− ̂ U t k +1 
|| 2 2 (6.4) 

where [k ] Lip 

is the Lipschitz constant of the function k (x ) : R 

d → R , k (x ) := E [ u k +1 ( E k (x, Z) ) · Z] for Z ∼ N (0 , I q ) . 

Proof. We start by noticing that ∣∣∣∣˜ V t k −̂ V t k 

∣∣∣∣2 
2 

= 

∣∣∣∣˜ V t k − E 

[˜ V t k | ̂  Y t k 
]

+ E 

[˜ V t k | ̂  Y t k 
]

−̂ V t k 

∣∣∣∣2 
2 

≤
∣∣∣∣˜ V t k − E 

[˜ V t k | ̂  Y t k 
] ∣∣∣∣2 

2 ︸ ︷︷ ︸ 
(I) 

+ 

∣∣∣∣E 

[˜ V t k | ̂  Y t k 
]

−̂ V t k 

∣∣∣∣2 
2 ︸ ︷︷ ︸ 

(I I ) 

. 
9 
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Let us focus on (I) . By exploting Eqs. (4.1) , (4.2) and Proposition 5.1 , we find 

˜ V t k = 

1 

�
E 

[ ˜ U t k +1 

(
W t k +1 

− W t k 

)∣∣F t k 

]
= 

1 

�
E 

[
u k +1 

(
E k ( Y t k , Z k +1 ) 

)√ 

�Z k +1 

∣∣F t k 

]
where we used 

(
W t k +1 

− W t k 

)
=: 

√ 

�Z k +1 , with Z k +1 ∼ N (0 , I q ) independent of F t k 
. So, we have, being σ ( ̂  Y t k ) ⊂ σ ( Y t k ) ⊂ F t k 

and using the tower property of conditional expectation: ∣∣∣∣˜ V t k − E 

[˜ V t k | ̂  Y t k 
] ∣∣∣∣2 

2 
= 

∣∣∣∣∣∣ 1 

�
E 

[
u k +1 

(
E k ( Y t k , Z k +1 ) 

)√ 

�Z k +1 

∣∣F t k 

]
− 1 

�
E 

[
u k +1 

(
E k ( Y t k , Z k +1 ) 

)√ 

�Z k +1 

∣∣̂ Y t k 
]∣∣∣∣∣∣2 

2 

≤ 1 

�

∣∣∣∣∣∣k 

(
Y t k 
)

− k 

(̂ Y t k 
)∣∣∣∣∣∣2 

2 

≤ 1 

�
[k ] 

2 

Lip 

∣∣∣∣Y t k −̂ Y t k 

∣∣∣∣2 
2 

where in the second passage we defined k (x ) = E [ u k +1 

(
E k (x, Z k +1 ) 

)
Z k +1 ] , we used the definition of conditional expecta-

tion as best L 2 -approximation and exploited the Lipschitzianity of k , for which we refer to [1, Prop. 3.4 (b)] (therein k 

corresponds to z k ). 

Now, consider (I I ) : since σ ( ̂  Y t k ) ⊂ σ ( Y t k ) ⊂ F t k 
and by recalling the definition of ˜ V t k and 

̂ V t k in Eqs. (3.1) and (5.1) we

have ∣∣∣∣E 

[˜ V t k | ̂  Y t k 
]

−̂ V t k 

∣∣∣∣2 
2 

= 

∣∣∣∣E 

[˜ V t k −̂ V t k | ̂  Y t k 
]∣∣∣∣2 

2 

= 

∣∣∣∣∣∣E 

[
1 

�

[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

(
Y t k +1 

− Y t k 
)

− 1 

�

[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)
+ 

[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

b 
(
Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

b 
(̂ Y t k 
)∣∣∣̂ Y t k 

]∣∣∣∣∣∣2 
2 

≤ 2 

�2 

∣∣∣∣∣∣E 

[[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

(
Y t k +1 

− Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 

]∣∣∣∣∣∣2 
2 ︸ ︷︷ ︸ 

(I I a ) 

+2 

∣∣∣∣∣∣E 

[[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

b 
(
Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

b 
(̂ Y t k 
)∣∣∣̂ Y t k 

]∣∣∣∣∣∣2 
2 ︸ ︷︷ ︸ 

(I I b) 

. 

We are hence led to focus now on (I I a ) and (I I b) . We start by (I I b) . By exploiting the definition of conditional expectation

with respect to ̂  Y t k as best L 2 -approximation among square integrables σ ( ̂  Y t k ) -measurables random vectors, we find: ∣∣∣∣∣∣E 

[[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

b 
(
Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

b 
(̂ Y t k 
)∣∣∣̂ Y t k 

]∣∣∣∣∣∣2 
2 

≤
∣∣∣∣∣∣[ σ (̂ Y t k 

)� ] −1 

E 

[ ˜ U t k +1 

∣∣∣̂ Y t k 

] 
b 
(̂ Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 

E 

[̂ U t k +1 

∣∣∣̂ Y t k 

]
b 
(̂ Y t k 
)∣∣∣∣∣∣2 

2 

≤ || (σ (·) � ) −1 || 2 F 

∣∣∣∣∣∣E 

[ ˜ U t k +1 
− ̂ U t k +1 

∣∣∣̂ Y t k 

] 
b 
(̂ Y t k 
)∣∣∣∣∣∣2 

2 

≤ λ0 

∣∣∣∣∣∣E 

[ ˜ U t k +1 
− ̂ U t k +1 

∣∣∣̂ Y t k 

] 
b 
(̂ Y t k 
)∣∣∣∣∣∣2 

2 

where we have used the fact that || A || 2 ≤ || A || F for any matrix A and Remark 2.5 on the boundedness of the norm of

σ (·) −1 . Now notice that the boundedness of the derivative of b implies its uniform continuity and so, since the quantizer ̂  Y t k 
takes values on a compact set, b( ̂  Y t k ) is also bounded. Namely, there exists c̄ > 0 , only depending on L 3 and L 4 , such that

|| b (̂ Y t k 

)|| 2 
2 

≤ c̄ 2 and we find 

λ0 

∣∣∣∣∣∣E 

[ ˜ U t k +1 
− ̂ U t k +1 

∣∣∣̂ Y t k 

] 
b 
(̂ Y t k 
)∣∣∣∣∣∣2 

2 

≤ λ0 c̄ 2 
∣∣∣∣∣∣E 

[ ˜ U t k +1 
− ̂ U t k +1 

∣∣∣̂ Y t k 

] ∣∣∣∣∣∣2 
2 

= λ0 c̄ 2 
∣∣∣∣∣∣˜ U t k +1 

− ̂ U t k +1 

∣∣∣∣∣∣2 
2 

where the error 
∣∣∣∣˜ U t k +1 

− ̂ U t k +1 

∣∣∣∣2 
2 

has already been studied in [1] and for this we refer to Eq. (6.3) . 

We now move to the last term, (I I a ) . Using again the definition of conditional expectation with respect to ̂ Y t k as best

L 2 -approximation among square integrables σ ( ̂  Y t k ) -measurables random vectors and the fact that the Frobenius norm of the 
10 
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matrix σ (·) −1 is bounded (see Remark 2.5 ), we have: ∣∣∣∣∣∣E 

[[ 
σ
(
Y t k 
)� ] −1 ˜ U t k +1 

(
Y t k +1 

− Y t k 
)

−
[ 
σ
(̂ Y t k 
)� ] −1 ̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 

]∣∣∣∣∣∣2 
2 

≤
∣∣∣∣∣∣[ σ (̂ Y t k 

)� ] −1 

E 

[˜ U t k +1 

(
Y t k +1 

−̂ Y t k 
)| ̂  Y t k 

]
−
[ 
σ
(̂ Y t k 
)� ] −1 

E 

[̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 

]∣∣∣∣∣∣2 
2 

≤ λ0 

∣∣∣∣∣∣E 

[
E 

[˜ U t k +1 

(
Y t k +1 

−̂ Y t k 
)| ̂  Y t k +1 

]| ̂  Y t k 
]

− E 

[̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 
]∣∣∣∣∣∣2 

2 

where in the last equality we used σ ( ̂  Y t k ) ⊆ σ ( ̂  Y t k +1 
) . Now, by definition of conditional expectation with respect to ̂  Y t k +1 

we

find: 

λ0 

∣∣∣∣∣∣E 

[
E 

[˜ U t k +1 

(
Y t k +1 

−̂ Y t k 
]| ̂  Y t k +1 

)| ̂  Y t k 
]

− E 

[̂ U t k +1 

(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 
]∣∣∣∣∣∣2 

2 

≤ λ0 

∣∣∣∣∣∣E 

[(˜ U t k +1 
− ̂ U t k +1 

)(̂ Y t k +1 
−̂ Y t k 

)| ̂  Y t k 
]∣∣∣∣∣∣2 

2 

≤ λ0 

∣∣∣∣∣∣˜ U t k +1 
− ̂ U t k +1 

∣∣∣∣∣∣2 
2 

·
∣∣∣∣∣∣̂ Y t k +1 

−̂ Y t k 

∣∣∣∣∣∣2 
2 

where in the last passage we have used conditional Cauchy-Schwartz inequality. Hence, it appears again the error term ∣∣∣∣˜ U t k +1 
− ̂ U t k +1 

∣∣∣∣2 
2 
, for which we refer to Eq. (6.3) . It remains, then, to deal with the error 

∣∣∣∣̂ Y t k +1 
−̂ Y t k 

∣∣∣∣2 
2 
. 

We begin this last part of the proof by recalling that, for every k = 0 , . . . , N, ̂ Y t k is the stationary quantizer relative to

 t k 
obtained via recursive marginal quantization as explained in Section 4 . Namely, E ( Y t k | ̂  Y t k ) = ̂

 Y t k and so, via conditionl

Jensen’s inequality and the tower property, in case when g is convex we have E [ g( ̂  Y t k )] ≤ E [ g( Y t k )] . So when g is the square

function, we find ∣∣∣∣̂ Y t k +1 
−̂ Y t k 

∣∣∣∣2 
2 

= E 

[
( ̂  Y t k +1 

−̂ Y t k ) 
2 
]

= E 

[
( ̂  Y t k +1 

) 2 + ( ̂  Y t k ) 
2 − 2 ̂

 Y t k ̂
 Y t k +1 

]
≤ E 

[
( Y t k +1 

) 2 + ( Y t k ) 
2 − 2 E 

[
Y t k +1 

E 

[
Y t k | ̂  Y t k 

]∣∣̂ Y t k +1 

]]
= 

∣∣∣∣Y t k +1 
− Y t k 

∣∣∣∣2 
2 

≤ ˜ c 

n 

, 

for a positive ˜ c only depending on L 3 and where we recalled the L 2 -estimate associated to the increments in the Euler

scheme. To conclude it suffices to collect all the terms. �

7. Numerical tests 

In this section, we present two numerical experiments based on an implementation of our quantization-based BSDE 

solver. The first experiment involves a one-dimensional linear BSDE where the solution for the value process and the con- 

trol is known in closed-form. This first test allows us to compare our newly proposed numerical approximation for the 

control with the closed-form solution. The second example focuses on a two-dimensional BSDE with known explicit solu- 

tion, allowing us to validate the procedure also in the multivariate case. The implementation of the routines was performed 

by means of the Java programming language and it is available at https://github.com/AlessandroGnoatto . Numerical tests 

were performed on a laptop equipped with a 4 core 2.9 GHz Intel Core i7 processor with 16 GB of RAM. 

7.1. A linear BSDE: hedging in the Black-Scholes model 

We first consider the linear FSDE: 

dY t = rY t dt + σY t dW t , Y 0 = y 0 > 0 , 

where r = 0 . 04 , σ = 0 . 25 and y 0 = 100 . We associate to this forward process the BSDE 

U t = ξ + 

∫ T 

t 

f ( s, Y s , U s , V s ) ds −
∫ T 

t 

V 

� 
s dW s , t ∈ [0 , T ] , 

with 

ξ = ( Y T − K ) 
+ 
, f ( t, y, u, v ) = −rv , 

for K = 100 and T = 1 . This corresponds to the well-known Black-Scholes model for the evaluation of a European Call option

on Y , maturity T = 1 and strike price K. For this BSDE the solution is analytically known, namely the process Y is given by

a direct application of the Black-Scholes formula, whereas the control satisfies 

V t = 

∂U 

∂y 
(t, Y t ) σY t = N ( d 1 (t, Y t ) ) σY t , 
11 
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Fig. 1. Comparison between the exact and approximated hedging over the quantization grid at different time steps. Top left panel: 20th and terminal time 

step. Top right panel: 15 th time step. Bottom left panel 10th time step. Bottom right panel 5 th time step. 

 

 

 

 

 

 

 

where N is the cumulative distribution function of the standard Gaussian and 

d 1 (t, y ) := 

log y 
K 

+ 

(
r + 

σ 2 

2 

)
(T − t) 

σ
√ 

T − t 
. 

This example provides a validation of our proposed methodology in a simple case where a closed form solution to the BSDE

is known. The exact solution for U , given the specified data, is U 0 = 11 . 8370 . We apply our proposed algorithm by using a

quantization grid consisting of 50 points, a time discretization with 20 points and a uniform time mesh. The approximate 

initial value for the price U is 11.7548. Since the novelty of our approach is given by the new scheme for the control, we

show that the scheme produces a reliable approximation for the control by comparing our approximation with the exact 

solution. The reader is referred to Fig. 1 , where we compare the exact and the quantization-based approximation for V over

the quantization grid. We observe that the newly proposed scheme provides a very good approximation. 

Concerning the execution time, we observe that the generation of the quantization grid for the present experiment re- 

quires 3447 milliseconds and the computation of the backward recursion is completed in 52 milliseconds. Such values rep- 

resent an improvement with respect to [1] because we are able to approximate the control process by means of a single

run of the algorithm. This is not the case in [1] : their quantized control is expressed in terms of the following weights πW,k 
i j 

for k = 0 , . . . , n with (see Remark 6.4 ) 

πW,k 
i j 

:= 

1 

P ( ̂  Y t k = y i 
k 
) 
E 

[ 
(W t k +1 

− W t k ) 1 { ̂  Y t k +1 
= y j 

k + 1 , ̂
 Y t k = y i k } 

] 
, 

which need to be estimated by means of Monte Carlo simulations at each step of the backward recursion. In [1] they use 10 7 

paths. To give a comparison, we performed a simulation of 10 7 Brownian paths in the context of our Java implementation

and this required additional 3648 milliseconds. Such paths, once simulated, can be stored and reused on every step of the

backward recursion, however one should add also the computational time required by the estimation of πW,k 
i j 

. 
12 
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Table 1 

Prices for the two-dimensional basket put option. Quant n 2 ,n 3 n 1 
means quantization 

with n 1 time steps and (n 2 , n 3 ) quantization points for (Y 1 , Y 2 ) . 

K Quant 10 , 10 
10 

Quant 15 , 15 
10 

Quant 20 , 20 
10 

(rel. err.) Fourier Transform 

100.00 7.1230 7.3901 7 . 4910 (1 , 75%) 7.6246 

105.00 9.6365 9.8937 9 . 9941 (1 , 55%) 10.151 

110.00 12.522 12.773 12 . 872 (1 , 35%) 13.048 

115.00 15.755 15.996 16 . 091 (1 , 16%) 16.280 

120.00 19.298 19.522 19 . 609 (1 , 00%) 19.808 

 

 

 

 

 

 

In summary, a conservative estimate of the computation time of the methodology of [1] is twice as large in this case. 

7.2. A Multivariate BSDE: pricing a basket option 

Here we consider a multi-dimensional example, arising in financial mathematics in the context of option pricing, where 

we consider two underlying assets. We first consider a linear SDE of the form: 

d 

(
Y 1 t 

Y 2 t 

)
= r 

(
Y 1 t 

Y 2 t 

)
d t + 

(
σ 1 Y 1 t 0 

0 σ 2 Y 2 t 

)(
1 0 

ρ
√ 

1 − ρ2 

)
d 

(
W 

1 
t 

W 

2 
t 

)
with initial data (Y 1 

0 
, Y 2 

0 
) � = (y 1 

0 
, y 2 

0 
) � ∈ R 

2 + and where r = 0 . 04 , σ 1 = 0 . 3 , σ 1 = 0 . 2 , ρ = 0 . 7 and y 1 
0 

= y 2 
0 

= 100 and the two

Brownian motions W 

1 , W 

2 are independent. We associate to this forward process the BSDE 

U t = ξ + 

∫ T 

t 

f ( s, Y s , U s , V s ) ds −
∫ T 

t 

V 

� 
s dW s , t ∈ [0 , T ] , 

with 

ξ = 

(
K − 0 . 6 Y 1 T − 0 . 4 Y 2 T 

)+ 
, f ( t, y, u, v ) = −rv , 

for K = { 100 , 105 , 110 , 115 , 120 } and T = 1 . This corresponds to pricing a basket put option, for which the price in semi 

closed-form is available in the literature and is given in terms of a two-dimensional Fourier integral. Indeed, by proceeding 

along the lines of [28] , it is possible to prove the following lemma, which provides the Fourier transform of a basket put

option in dimension d. 

Lemma 7.1. Let x j , j = 1 , . . . , d be log-asset price processes. Let ω j , j = 1 , . . . , d be the corresponding quantities. Finally, denote

by K > 0 the strike of a d-dimensional basket option having payoff( 

K −
d ∑ 

j=1 

ω j e 
x j 

) + 

Then the Fourier transform of the payoff function of the d-dimensional basket option above is given by 

�( z 1 , . . . , z d ) = 

K 
1+ ∑ d 

j=1 
i z j ∏ d 

j=1 ω 
i z j 
j 

∏ d 
j=1 	( i z j ) 

	
(
2+ ∑ d 

j=1 i z j 
)

Im 

(
z j 
)

< 0 , j = 1 , . . . , d 

where 	(z) , z ∈ C , is the complex gamma function. 

We fix d = 2 and, by means of Lemma 7.1 , we can recover the exact price at time t via 

U t = e −r(T −t) 1 

(2 π) 2 

∫ ∞ +i Im ( z 1 ) 

−∞ +i Im ( z 1 ) 

∫ ∞ +i Im ( z 2 ) 

−∞ +i Im ( z 2 ) 

ϕ ( −z 1 , −z 2 ) �( z 1 , z 2 ) d z 1 d z 2 , 

where ϕ denotes the joint characteristic function of the logarithmic asset prices. In the case of the bivariate Black-Scholes 

model we have, for (z 1 , z 2 ) ∈ C 

2 

ϕ(z 1 , z 2 ) = exp 

⎧ ⎨ ⎩ 

i ( z 1 , z 2 ) 

⎛ ⎝ 

log Y 1 t + 

(
r − (σ 1 ) 2 

2 

)
(T − t) 

log Y 2 t + 

(
r − (σ 2 ) 2 

2 

)
(T − t) 

⎞ ⎠ − 1 

2 

( z 1 , z 2 ) 

(
(σ 1 ) 2 ρσ 1 σ 2 

ρσ 1 σ 2 (σ 2 ) 2 

)(
z 1 
z 2 

)⎫ ⎬ ⎭ 

. 

The two-dimensional integral for the semi-closed form price has been truncated and approximated via a two-dimensional 

Fast Fourier Transform with 256 points per dimension. In Table 1 we report a comparison between the quantization price

and the Fourier price, which is our benchmark. Each row provides the prices for a different choice of the strike price. We use

10 points to discretize the time dimension and we use different sizes of the quantization grid: 10, 15 and 20 points. Even

though we are using a relatively low number of quantization points, we observe a satisfactory precision of the quantization- 

based approach: using just 20 points, the relative error is always below 2% , as shown in Table 1 . 
13 
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Let us comment on the calculation time also for the present experiment. The generation of the quantization grid is 

the most demanding part of the algorithm. For the two-dimensional quantization grids with 10,15,20 points per dimension 

the computation time is, respectively, 5913, 30284 and 91415 milliseconds. The subsequent computation of the backward 

recursion requires on average 450 milliseconds. We emphasize again that applying the methodology of [1] would require an 

additional Monte Carlo simulation: using 10 7 paths to generate the trajectories of a Brownian motion increases the execution 

time by 6780 milliseconds. We recall that, as an additional step, inside the backward recursion one needs to estimate the

transition weights πW,k 
i j 

. 

For the sake of completeness we report that the two-dimensional Fourier pricer requires on average 395 milliseconds, 

however let us stress that this refers only to the computation of the expectation at time zero without the price sensitivities.

The quantization algorithm instead provides the value of the conditional expectation over the whole quantization tree at 

each point in time. 

8. Conclusion 

We provided a useful modification for the scheme of the control in [1] that allows to improve the algorithm for the

approximation of the solution of a family of decoupled FBSDEs. Thanks to this simplification, we can apply a fully based

recursive marginal quantization approach that does not involve any Monte Carlo simulation in any step of the procedure. 

We applied the scheme in some univariate and multidimensional FBSDE examples and we found very good results even with 

a parsimonious number of quantization and time discretization points. This opens the door to more ambitious applications, 

like the computation of xVA on single and multiple positions, along the lines of [31–33] . 
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Appendix A. Derivation of the numerical scheme 

We provide here all the details relative to the scheme derivation. 

A1. Scheme for the value process U

Following [34] we provide a step by step derivation of the numerical scheme for the process U . Let (Y, U, V ) be the

adapted solution to the FBSDE (2.1) –(2.7) . Restricting ourselves to two consecutive points in time t k +1 and t k , we write 

U t k = U t k +1 
+ 

∫ t k +1 

t k 

f (s, Y s , U s , V s ) ds −
∫ t k +1 

t k 

V 

� 
s dW s (A.1) 

and taking F t k 
-conditional expectations on both sides we get 

U t k = E 

[
U t k +1 

∣∣F t k 

]
+ 

∫ t k +1 

t k 

E 

[
f (s, Y s , U s , V s ) | F t k 

]
ds. 

Let us first concentrate on the integral term, using θ1 ∈ [0 , 1] we write ∫ t k +1 

t k 

E 

[
f (s, Y s , U s , V s ) | F t k 

]
ds = (t k +1 − t k ) 

{
(1 − θ1 ) E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
+ θ1 f ( t k , Y t k , U t k , V t k ) } + R 

U 

where the error term R U is defined as 

R 

U := 

∫ t k +1 

t k 

(
E 

[
f (s, Y s , U s , V s ) | F t k 

]
− (1 − θ1 ) E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
+ θ1 f ( t k , Y t k , U t k , V t k ) 

)
ds. 

Hence we arrive at 

U t k = E 

[
U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) 

{
(1 − θ1 ) E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
+ θ1 f ( t k , Y t k , U t k , V t k ) } + R 

U . 
14 
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Remark A.1. In most situations, we do not have an exact simulation scheme for the solution of the forward SDE (2.1) . This

means in general that we are not able to simulate Y (i.e. the exact solution of (2.1) ), and we need to introduce a suitable

discretization Y , such as the Euler-Maruyama scheme, the Milstein discretization or higher order scheme as presented e.g. 

in [35] . 

For the moment, let Y be a discretization scheme for Y , which is still left unspecified. We write 

U t k = E 

[
U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) 

{
(1 − θ1 ) 

(
E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
+ R 

f 1 
)

+ θ1 

(
f ( t k , Y t k , U t k , V t k ) + R 

f 2 
)}

+ R 

U , 

where 

R 

f 1 := E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
− E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
R 

f 2 := f ( t k , Y t k , U t k , V t k ) − f ( t k , Y t k , U t k , V t k ) . 

Setting R f := (1 − θ1 ) R 
f 1 + θ1 R 

f 2 we finally arrive at 

U t k = E 

[
U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) 

{
(1 − θ1 ) E 

[
f ( t k +1 , Y t k +1 

, U t k +1 
, V t k +1 

) 
∣∣F t k 

]
+ θ1 f ( t k , Y t k , U t k , V t k ) 

}
+ R 

U + R 

f . 
(A.2) 

We observe that in (A.2) the discretization error is due to the time discretization and the choice of the numerical scheme

for the forward process Y . Further sources of error will arise in the space dimension as we will approximate the conditional

expectations appearing in (A.2) . 

A2. Scheme for the control 

We derive the newly proposed scheme for the numerical approximation of the control process V . What is tipically done

in the literature is obtaining a discretization scheme for V which involves the increments of the Brownian motion. This is

done by multiplying Eq. (A.1) by (W t k +1 
− W t k 

) and then taking as usual conditional expectations and truncating the error

terms. We will proceed here in a different way, which is new, up to our knowledge. Our objective, indeed, is to derive an

update rule for the control that only involves Y (i.e. the process that we will quantize in the sequel) and not W . To this end

we consider again the BSDE (A.1) and multiply both sides by 
∫ t k +1 

t k 
σ (Y s ) 

� dW s : 

U t k 

∫ t k +1 

t k 

σ (Y s ) 
� dW s = U t k +1 

∫ t k +1 

t k 

σ (Y s ) 
� dW s + 

∫ t k +1 

t k 

f (r, Y r , U r , V r ) d r 

∫ t k +1 

t k 

σ (Y s ) 
� d W s 

−
∫ t k +1 

t k 

V 

� 
s d W s 

∫ t k +1 

t k 

σ (Y s ) 
� d W s . 

(A.3) 

We take then F t k 
-conditional expectations on both sides, thus obtaining the following identity 

U t k E 

[∫ t k +1 

t k 

σ (Y s ) 
� dW s 

∣∣∣∣F t k 

]
︸ ︷︷ ︸ 

(A ) 

= E 

[
U t k +1 

∫ t k +1 

t k 

σ (Y s ) 
� dW s 

∣∣∣∣F t k 

]
︸ ︷︷ ︸ 

(B ) 

+ E 

[∫ t k +1 

t k 

f (r, Y r , U r , V r ) d r 

∫ t k +1 

t k 

σ (Y s ) 
� d W s 

∣∣∣∣F t k 

]
︸ ︷︷ ︸ 

(C) 

− E 

[∫ t k +1 

t k 

V 

� 
s d W s 

∫ t k +1 

t k 

σ (Y s ) 
� d W s 

∣∣∣∣F t k 

]
︸ ︷︷ ︸ 

(D ) 

. 

(A.4) 

We now analyze every conditional expectation in (A.4) starting from (D ) : 

• (D) Via Itô isometry we find 

E 

[ ∫ t k +1 
t k 

V � s d W s 

∫ t k +1 
t k 

σ ( Y s ) 
� d W s 

∣∣∣F t k 

] 
= E 

[ ∫ t k +1 
t k 

σ ( Y s ) 
� V s ds 

∣∣∣F t k 

] 
and using θ2 ∈ [0 , 1] we have 

E 

[∫ t k +1 

t k 

σ ( Y s ) 
� V s ds 

∣∣∣∣F t k 

]
= (t k +1 − t k ) 

{ 
(1 − θ2 ) E 

[ 
σ
(
Y t k +1 

)� 
V t k +1 

∣∣∣F t k 

] 
+ θ2 σ

(
Y t k 
)� 

V t k 

} 
+ R 

V −θ , 

where 

R V −θ := E 

[ ∫ t k +1 
t k 

[ 
σ ( Y s ) 

� V s − (1 − θ2 ) σ
(
Y t k +1 

)� 
V t k +1 

− θ2 σ
(
Y t k 

)� 
V t k 

] 
ds 

∣∣∣F t k 

] 
. 
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We now take into account the impact of the numerical scheme to approximate Y , namely we insert Y : 

E 

[ ∫ t k +1 

t k 
σ ( Y s ) 

� V s ds 
∣∣F t k 

]
= (t k +1 − t k ) 

{ 
(1 − θ2 ) E 

[ 
σ
(
Y t k +1 

)� 
V t k +1 

∣∣∣F t k 

] 
+ θ2 σ

(
Y t k 
)� 

V t k 

} 
+ R 

V −θ + R 

V −Y , 

with 

R V −Y := (t k +1 − t k ) 
{ 
(1 − θ2 ) 

(
σ
(
Y t k +1 

)� − σ
(
Y t k +1 

)� )
V t k +1 

+ θ2 

(
σ
(
Y t k +1 

)� − σ
(
Y t k +1 

)� )
V t k 

} 
. 

• (C) We have: 

E 

[∫ t k +1 

t k 

f (r, Y r , U r , V r ) d r 

∫ t k +1 

t k 

σ ( Y s ) 
� d W s 

∣∣∣∣F t k 

]
= 0 . 

Indeed, we write: 

E 

[∫ t k +1 

t k 

f (r, Y r , U r , V r ) d r 

∫ t k +1 

t k 

σ ( Y s ) 
� d W s 

∣∣∣∣F t k 

]
= E 

[∫ t k +1 

t k 

(∫ t k +1 

t k 

f (r, Y r , U r , V r ) dr 

)
σ ( Y s ) 

� dW s 

∣∣∣∣F t k 

]
and the claim follows since σ (Y s ) is almost surely bounded thanks to Assumption 2.4 and given that | ∫ T 0 f (r, Y r , U r , V r ) |
is in L 2 (recall that by assumption f is a standard parameter). 

• (A) Here, too: 

U t k E 

[∫ t k +1 

t k 

σ ( Y s ) 
� dW s 

∣∣∣∣F t k 

]
= 0 . 

• (B) A distinctive feature of our numerical scheme is based on the following simple observation: we can exploit the 

dynamics (2.1) to express the stochastic integral in (B ) as follows 

E 

[
U t k +1 

∫ t k +1 

t k 

σ ( Y s ) 
� dW s 

∣∣∣∣F t k 

]
= E 

[
U t k +1 

(
Y t k +1 

− Y t k −
∫ t k +1 

t k 

b ( Y s ) ds 

)∣∣∣∣F t k 

]
. (A.5) 

Splitting the conditional expectation on the right hand side, we obtain two simple conditional expectations that can be 

suitably estimated, once we have an approximation for the transition probabilities of the forward process Y . We write 

E 

[
U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
= E 

[
U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
+ R 

U−Y , 

where 

R U−Y := E 

[
U t k +1 

(
Y t k +1 

− Y t k +1 

)∣∣F t k 

]
− E 

[
U t k +1 

∣∣F t k 

](
Y t k − Y t k 

)
, 

while for the second expectation in (A.5) we have 

E 

[
U t k +1 

∫ t k +1 

t k 

b ( Y s ) ds 

∣∣∣∣F t k 

]
= (t k +1 − t k )(1 − θ2 ) E 

[
U t k +1 

b 
(
Y t k +1 

)∣∣F t k 

]
+ (t k +1 − t k ) θ2 E 

[
U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)

+ R 

b−θ + R 

b−Y , 

where 

R 

b−θ := E 

[
U t k +1 

(∫ t k +1 

t k 
b ( Y s ) ds − (t k +1 − t k ) 

{
(1 − θ2 ) b 

(
Y t k +1 

)
+ θ2 b 

(
Y t k 
)})∣∣F t k 

]
R 

b−Y := (t k +1 − t k )(1 − θ2 ) E 

[
U t k +1 

(
b 
(
Y t k +1 

)
− b 
(
Y t k +1 

))∣∣F t k 

]
+ (t k +1 − t k ) θ2 E 

[
U t k +1 

∣∣F t k 

](
b 
(
Y t k 
)

− b 
(
Y t k 
))

. 

By regrouping all terms (A ) , (B ) , (C) and (D ) we obtain the following relation, providing an implicit update rule for the

control process V (the explicit rule for the control V will be specified in the next subsection): 

0 = E 

[
U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
+ R 

U−Y − (t k +1 − t k )(1 − θ2 ) E 

[
U t k +1 

b 
(
Y t k +1 

)∣∣F t k 

]
− (t k +1 − t k ) θ2 E 

[
U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)

− R 

b−θ − R 

b−Y 

− (t k +1 − t k ) 
{ 
(1 − θ2 ) E 

[ 
σ
(
Y t k +1 

)� 
V t k +1 

∣∣∣F t k 

] 
+ θ2 σ

(
Y t k 
)� 

V t k 

} 
− R 

V −θ − R 

V −Y . 

(A.6) 
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A3. The truncated scheme 

Starting from Eqs. (A.2) and (A.6) and by truncating all error terms, we obtain the following system of two equations (for

each k ) for the couple ( ̃  U , ̃  V ) , where ( ̃  U , ̃  V ) are approximations of (U, V ) where we recall that Y is a suitable discretization

of Y ˜ U t k = E 

[˜ U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) 

{
(1 − θ1 ) E 

[
f ( t k +1 , Y t k +1 

, ̃  U t k +1 
, ̃  V t k +1 

) 
∣∣F t k 

]
+ θ1 f ( t k , Y t k , ̃

 U t k , ̃
 V t k ) 
}

0 = E 

[˜ U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
− (t k +1 − t k )(1 − θ2 ) E 

[˜ U t k +1 
b 
(
Y t k +1 

)∣∣F t k 

]
− (t k +1 − t k ) θ2 E 

[˜ U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)

− (t k +1 − t k ) 
{ 
(1 − θ2 ) E 

[ 
σ
(
Y t k +1 

)� ˜ V t k +1 

∣∣∣F t k 

] 
+ θ2 σ

(
Y t k 
)� ˜ V t k 

} 
. 

(A.7) 

Remark A.2. The second equation above (which is the truncation of Eq. (A.6) ) provides an approximation scheme for ̃  V t k as

a function of ̃  V t k +1 
, ̃  U t k +1 

, Y t k , Y t k +1 
. 

In particular, if we set θ1 = θ2 = 1 , we obtain the recursive scheme (which is not yet fully explicit): ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

˜ U t k = E 

[ ˜ U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) f ( t k , Y t k , ̃

 U t k , ̃
 V t k ) ˜ V t k = 

1 
(t k +1 −t k ) 

[ 
σ
(
Y t k 
)� ] −1 

E 

[ ˜ U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
−
[ 
σ
(
Y t k 
)� ] −1 

E 

[˜ U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)
, 

where 

[ 
σ
(
Y t k 

)� ] −1 

denotes the (q × d) left-inverse of the matrix σ
(
Y t k 

)� 
. 

Remark A.3. In Section 6 , focusing on the error analysis, for simplicity, we consider the case when q = d and we work

under Assumption 2.4 , which guarantees the invertibility of σ . 

In [1] the scheme is made fully explicit by performing a conditioning inside the driver, which results in the following ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

˜ U t n = h ( Y t n ) and for k = 0 , . . . , n − 1 ˜ U t k = E 

[˜ U t k +1 

∣∣F t k 

]
+ (t k +1 − t k ) f ( t k , Y t k , E 

[ ˜ U t k +1 

∣∣F t k 

]
, ̃  V 

PS 
t k 

) ˜ V 

PS 
t k 

= 

1 
(t k +1 −t k ) 

E 

[˜ U t k +1 

(
W t k +1 

− W t k 

)∣∣F t k 

]
. 

(A.8) 

So, borrowing this idea, we are now in a position to finally state our proposed scheme as (recall that (t k +1 − t k ) = � for

every k = 0 , . . . , n − 1 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˜ U t n = h ( Y t n ) and for k = 0 , . . . , n − 1 ˜ U t k = E 

[˜ U t k +1 

∣∣F t k 

]
+ � f ( t k , Y t k , E 

[ ˜ U t k +1 

∣∣F t k 

]
, ̃  V t k ) 

˜ V t k = 

1 
�

[ 
σ
(
Y t k 
)� ] −1 

E 

[˜ U t k +1 

(
Y t k +1 

− Y t k 
)∣∣F t k 

]
−
[ 
σ
(
Y t k 
)� ] −1 

E 

[ ˜ U t k +1 

∣∣F t k 

]
b 
(
Y t k 
)
. 

(A.9) 
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