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Università degli Studi di Padova

Department of Mathematics “Tullio Levi-Civita”

Ph.D. Course in Mathematical Sciences

Curriculum: Mathematics

Cycle XXXVI

Contributions to Nonlinear PDEs arising
in Conformal Geometry, Mean Field

Games and Choquard models

Coordinator of the Ph.D. program:
Prof. Giovanni Colombo

Supervisor:

Prof. Annalisa Cesaroni

Co-Supervisor:

Prof. Luca Martinazzi

Ph.D. candidate:

Chiara Bernardini

Academic year: 2022/2023



iv



Abstract

The goal of this thesis is to analyze certain nonlinear elliptic Partial Differential Equa-
tions (briefly PDEs) that arise in Conformal Geometry, Mean Field Games theory, and
Choquard models. Our primary focus is on the study of the existence and nonexistence
of solutions, analyzing their asymptotic behavior, and examining the occurrence of con-
centrating phenomena. The contents of this manuscript have been organized into three
distinct parts, each one focusing on a specific topic.

The first part of this work deals with some prescribed curvature problems. In particu-
lar, in Chapter 1 we address the problem of existence and compactness of entire solutions
to the Gaussian curvature equation on R2 in the case of power-type and sign-changing
prescribed curvature; while in Chapter 2 we deal with the corresponding prescribed Q-
curvature problem in R4. While these two issues are undoubtedly interconnected, it is
essential to recognize that each possesses distinct features that warrant in-depth analysis
and attention. The content of Part I corresponds to the research papers [17, 18].

In the second part, we study second-order ergodic Mean-Field Games systems defined
in the whole space RN with a coercive potential V and aggregating nonlocal coupling,
given in terms of a Riesz-type interaction kernel. In Chapter 3, we prove that the
strength of the attractive term and the behavior of the diffusive part interact to produce
three distinct regimes for the existence and nonexistence of classical solutions in our
MFG system. On the other hand, in Chapter 4, exploiting a variational approach and
a concentration-compactness argument, we show that in the vanishing viscosity limit,
there is concentration of mass around minima of the potential V . This leads to proving
existence of solutions to the potential-free system. The content of Part II corresponds to
the research papers [19, 20].

The third part of this thesis focuses on boundary value problems for Choquard equa-
tions. More in detail, we investigate the existence of solutions when the domain is an
annulus or an exterior domain, considering both Neumann and Dirichlet boundary con-
ditions. The results of Chapter 5 are presented in the work [21].
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Chapter 0

Introduction

This doctoral thesis is devoted to studying specific nonlinear elliptic Partial Differ-
ential Equations that arise in the context of Conformal Geometry, Mean Field Games
theory, and Choquard models. More in detail, we use methods from Calculus of Vari-
ations, Regularity theory, and Optimal Control, to explore fundamental properties of
nonlinear elliptic equations, such as the existence of solutions, their qualitative prop-
erties, and asymptotic decay. We also investigate concentration, blow-up, and singular
phenomena.

The manuscript is split into three parts, each focusing on a specific and distinct topic.
This introduction aims to clarify how our problems are closely connected, particularly in
terms of the tools and techniques employed to prove our results.

Part I concerns a classical question in Geometric Analysis and more specifically
in Conformal Geometry: the problem of prescribing curvature. In a nutshell: the task
consists of finding whether a given function on a manifold M endowed with a metric g,
can be the curvature of a conformal metric gu = e2ug. For a more thorough explanation,
please refer to Section I.1. Our focus will be to investigate prescribed curvature problems
defined in the whole Euclidean space R2 and R4 with the standard flat metric, assuming
to have Gaussian curvature, and respectively Q-curvature, of the form 1 − |x|p. When
dealing with prescribed curvature which is unbounded and changes sign, new challenges
arise that cannot be tackled using the same methods as in previous works. A different
approach is necessary.

Firstly, I studied existence and compactness of entire solutions to the following pre-
scribed Gaussian curvature equation in R2

−∆u = (1− |x|p)e2u (1)

(refer to work [17]). If u satisfies (1), then the metric e2u|dx|2 has Gaussian curvature
equal to 1 − |x|p. Using a variational approach together with a blow-up argument, I
showed that (1) has solutions with prescribed total curvature equal to

Λ :=

ˆ
R2

(1− |x|p)e2udx ∈ R,

if and only if
p ∈ (0, 2) and (2 + p)π ≤ Λ < 4π

and I proved that such solutions remain compact as Λ → Λ̄ ∈ [(2 + p)π, 4π), while they
produce a spherical blow-up as Λ ↑ 4π.

1



2 0. Introduction

As the Q-curvature is a higher-order equivalent of the Gaussian curvature, I have
investigated also the related prescribed Q-curvature problem, that is{

∆2u = (1− |x|p)e4u, in R4

Λ :=
´
R4(1− |x|p)e4udx <∞

(2)

(see paper [18]). I showed that for every polynomial P of degree 2 such that lim
|x|→+∞

P =

−∞, and for every Λ ∈ (0, 16π2), there exists at least one solution to problem (2) which
assume the form u = w + P , where w behaves logarithmically at infinity. Conversely, I
proved that all solutions to (2) have the form v + P , where

v(x) =
1

8π2

ˆ

R4

log

(
|y|

|x− y|

)
(1− |y|p)e4udy

and P is a polynomial of degree at most 2 bounded from above. Moreover, if u is a
solution to (2), it has the following asymptotic behavior

u(x) = − Λ

8π2
log |x|+ P + o(log |x|), as |x| → +∞.

In the following two parts of the thesis, we shifted our attention to some nonlinear
equations featuring nonlocal interactions. Over the last few years, the problem of mod-
eling the collective behavior of a large number of interacting individuals has gained a
lot of attention in the mathematical community. As one can easily guess, for simple
systems it is possible to analyze each path separately and describe their behavior mathe-
matically. However, as the number of individuals grows, the system becomes exceedingly
complex, and tracking all the components becomes an impossible task. The key idea
for addressing these challenges consists of using averaged information about the system.
As a result, studying nonlinear equations that involve nonlocal interactions, has started
to emerge as a new paradigm for modeling the collective behavior of many-body systems.

Part II focuses on a nonlocal problem arising from Mean Field Games. This recent
theory describes Nash equilibria of differential games, with a very large number of iden-
tical and rational infinitesimal players aiming at minimizing a certain common cost by
anticipating the distribution of the overall population. Please refer to Section II.1 for a
general presentation of the theory of Mean-Field Games and its developments.

In particular, we consider second-order ergodic Mean-Field Games systems defined
in the whole space RN , with a coercive potential V , and aggregating nonlocal cou-
pling given in terms of a Riesz interaction kernel. Equilibria solve the following system
of PDEs where a Hamilton-Jacobi-Bellman equation is combined with a Kolmogorov-
Fokker-Planck equation for the mass distribution:

−∆u+ 1
γ |∇u|

γ + λ = V (x)−
´
RN

m(y)
|x−y|N−αdy

−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0´
RN m =M, m ≥ 0

in RN . (3)

In this setting, every player of the game is attracted to regions where the population is
highly distributed, and the external potential V discourages agents from being far away
from the origin. Due to the interplay between aggregating forces (described in terms of
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the Riesz attractive term and the coercive potential V ) and dissipation (caused by the
diffusive term in the system), we will obtain three different regimes for the existence and
nonexistence of classical solutions to the MFG system (3). By means of a Pohozaev-type
identity, we prove nonexistence of regular solutions to the MFG system without potential
in the Hardy-Littlewood-Sobolev-supercritical regime. On the other hand, using a fixed
point argument, we show the existence of classical solutions in the Hardy-Littlewood-
Sobolev-subcritical regime at least for masses smaller than a given threshold value. In
the mass-subcritical regime, we show that this threshold can be taken to be +∞. Refer
to work [20] for more details.

Moreover, considering the MFG system (3) with a small parameter ε > 0 in front of
the Laplacian, I investigated concentration phenomena in the vanishing viscosity limit.
More in-depth, assuming some restrictions on the strength of the attractive nonlocal
term depending on the growth of the Hamiltonian, I studied the asymptotic behavior of
solutions as ε→ 0. First, using a variational approach and a concentration-compactness
argument, I obtained existence of classical solutions to potential-free MFG systems with
Riesz-type coupling. Secondly, as expected when the diffusion becomes negligible, I
proved concentration of mass around minima of the potential V . See paper [19].

Finally, in Part III of this dissertation we address boundary value problems for the
Choquard equation. This nonlocal nonlinear PDE appears in physical models of multi-
particle systems. At macro scales, the Choquard equation can be used to model boson
stars and even the formation of black holes and dark matter galactic halos. At atomic
scales, it was used by Prof. Roger Penrose to relate quantum mechanics and general
relativity. Over the past decade, Choquard-type equations and other classes of nonlinear
equations with nonlocal interactions, have emerged as a mathematical framework for
modeling the behavior of self-interacting many-body systems at various scales: from
atoms and molecules to flock patterns in animal swarms, up to the formation of stars
and galaxies.

In [21], we consider the following nonlinear Choquard equation

−∆u+ V u = (Iα ∗ |u|p)|u|p−2u in Ω ⊂ RN ,

where N ≥ 2, p ∈ (1,+∞), V (x) is a continuous radial function such that infx∈Ω V > 0
and Iα is the Riesz potential of order α ∈ (0, N). Assuming Neumann or Dirichlet
boundary conditions, we prove the existence of a positive radial solution to the corre-
sponding boundary value problem when Ω is an annulus, or an exterior domain of the
form RN \ Ba(0). We provide also a nonexistence result, that is if p ≥ N+α

N−2 the cor-
responding Dirichlet problem does not have any nontrivial regular solution in strictly
star-shaped domains. Finally, when considering annular domains, letting α → 0+ we
obtain an existence result for the corresponding local problem with power-type nonlin-
earity.

0.1 Organization of the thesis

Each chapter of this thesis corresponds to a different paper as follows.
Part I:

• Bernardini C.; Existence and Compactness of Conformal Metrics on the Plane with
Unbounded and Sign-Changing Gaussian Curvature, Vietnam J. Math. 51, 463–487
(2023) doi:10.1007/s10013-021-00540-5.

https://doi.org/10.1007/s10013-021-00540-5
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• Bernardini C.; Existence and asymptotic behavior of non-normal conformal metrics
on R4 with sign-changing Q-curvature, to appear in Commun. Contemp. Math.
(2022) doi:10.1142/S0219199722500535.

Part II:

• Bernardini C., Cesaroni A.; Ergodic Mean-Field Games with aggregation of Choquard-
type, J. Differential Equations 364, 296-335 (2023) doi:10.1016/j.jde.2023.03.045.

• Bernardini C.; Mass concentration for Ergodic Choquard Mean-Field Games, (2022)
submitted (preprint ArXiv: 2212.00132)

Part III:

• Bernardini C., Cesaroni A.: Boundary value problems for Choquard equations,
(2023) submitted (preprint Arxiv 2305.09043)

Finally, during my Ph.D. studies, I had the opportunity to work on a slightly different
topic concerning elliptic regularity. This issue is not contained in the present manuscript,
we recall briefly the main result obtained, and we refer to the original paper for a complete
treatment of the problem.

• Bernardini C., Vespri V., Zaccaron M.: A note on Campanato’s Lp-regularity with
continuous coefficients. Eurasian Math. Journal 13 (2022) no.4, 44–53.

We consider local weak solutions of elliptic equations in variational form with data in
Lp. We refine the classical approach due to Campanato and Stampacchia and we prove
the Lp-regularity for the solutions assuming the coefficients are merely continuous. This
result shows that it is possible to prove the same sharp Lp-regularity results that can
be proved via the classical singular kernel approach also with the variational regularity
approach introduced by De Giorgi.

https://doi.org/10.1142/S0219199722500535
https://doi.org/10.1016/j.jde.2023.03.045
https://arxiv.org/abs/2212.00132
https://arxiv.org/abs/2305.09043
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Introduction

In the first part of this thesis, we investigate some nonlinear Partial Differential
Equations related to curvature invariants in Conformal Geometry. A model of such
differential equations is the prescribed Gaussian curvature equation under conformal
change of metrics, or analogously the prescribed Q-curvature equation. In what follows,
we provide some preliminary notions and facts about the geometric quantities arising in
the treatment. Afterwards, we give a brief introduction to our problems.

I.1 Prescribing curvature in conformal geometry

Let (M, g) be a 2-dimensional Riemannian manifold with Gaussian curvature Kg. We
consider a metric gu conformal to g, that is gu := e2ug for some function u ∈ C∞(M). If
we denote by Kgu the Gaussian curvature of (M, gu), the Gaussian Curvature Equation
reads as follows

−∆gu+Kg = Kgue
2u (I.1)

where ∆g is the Laplace-Beltrami operator with respect to the metric g. Notice that for
n = 2 it is defined as

∆g :=
1√
|g|

∂

∂xi

(
gij
√

|g| ∂
∂xi

)
and it holds

∆guφ = e−2u∆gφ, for all φ ∈ C∞(M),

hence ∆g is a conformally covariant operator. Equation (I.1) provides a relation between
Kg and Kgu , so it shows how the Gaussian curvature behaves under conformal change of
metrics. Moreover, identity (I.1) can be used to prove that the total Gaussian curvature
is preserved under conformal change of metrics. More in detail, if M is closed (compact
without boundary) and orientable, we have

ˆ
M
Kg d volg =

ˆ
M
Kgu d volgu

namely the total Gaussian curvature is a global conformal invariant, and using the Gauss-
Bonnet Theorem it holds ˆ

M
Kg d volg = 2πχ(M)

where χ(M) is the Euler characteristic of M . A classical problem in Conformal Geometry
is the problem of prescribing Gaussian curvature: that is finding whether a given
smooth function K on the manifold (M, g), can be the Gaussian curvature of a conformal
metric gu. Therefore, the question concerns the set of solutions u to

−∆gu+Kg = Ke2u, in M. (I.2)

7
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In other words, if u solves (I.2), then the conformal metric gu = e2ug has Gaussian
curvature equal to K.

The case when the surface M is the two-dimensional sphere S2 with the standard
round metric gS2 , is the well-known Nirenberg problem (raised by Nirenberg in the years
1969-1970). Fundamental progress on the Nirenberg problem was made by Kazdan-
Warner [118, 119], Aubin [7], Chang-Yang [49–51], Chang-Gursky-Yang [47], Chen-Ding
[56] and many others. More broadly, in [119] Kazdan and Warner provided some neces-
sary and sufficient conditions for a smooth function K on a given compact 2-manifold
to be the Gaussian curvature of some metric, their results depended on the sign of the
Euler characteristic of the consider manifold.

On the other hand, if (M, g) = (R2, |dx|2) we have Kg = 0 and ∆g is the classical
Laplace operator, so (I.2) reduces to

−∆u = Ke2u, in R2. (I.3)

The first problem we investigate in this thesis deals with a specific instance of equation
(I.3). Therefore, we briefly focus on the literature that pertains to this specific situation.
The study of equation (I.3) started with the work of Liouville [138] who considered the
case K = 1 (so (I.3) is called Liouville equation when K = const. > 0) and proved that
any solution can be given by

u(ζ, ξ) = log

(
2|f ′(z)|

1 + |f(z)|2

)
, z = ζ + ξi ∈ C.

Later around the thirties Ahl’fors [4] studied solutions to equation (I.3) when K is a
negative constant, proving that in this case (I.3) does not have any solution in the entire
space R2 (see also the works of Wittich [183], Sattinger [174] and Oleinik [161]). The first
existence result for solutions to equation (I.3) on the entire plane, when the function K is
nonpositive and satisfies further growth conditions at infinity, was given by Ni [159] and
it was then refined by McOwen [147] using a weighted Sobolev space approach. Later,
a complete classification of all possible solutions to (I.3) in some important cases when
K is nonpositive was obtained in [62–65]. If K is a positive constant Chen and Li [57]
studied the following problem {

−∆u = Ke2u on R2´
R2 e

2udx <∞,
(I.4)

proving that every solution to (I.4) is radially symmetric with respect to some point in
R2. In particular, all such solutions have the form

u(x) = log
2λ

1 + λ2|x− x0|2
− log

√
K, (I.5)

where λ > 0 and x0 ∈ R2. On the other hand, if K(x) is positive in some region, under
suitable assumptions on the behavior of K at infinity, existence of solutions to equation
(I.3) has been studied by McOwen [148], Aviles [8] Cheng and Lin [59, 60, 62] and many
others. Finally, the study of compactness of solutions to (I.3) started with the seminal
paper of Brézis and Merle [32], which led to a broader study, both in dimension 2 (see
for instance the work of Li and Shafrir [129]), greater than 2 (using powers of the Lapla-
cian, or GJMS-operators see e.g. [82, 83, 140, 143, 158]), or in dimension 1 (using the
1/2-Laplacian see e.g. [79, 80]).
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Given a 4-dimensional Riemannian manifold M endowed with a metric g, the Q-
curvature Q4

g and the Paneitz operator P 4
g are defined as follows

Q4
g := −1

6

(
∆gRg −R2

g + 3|Ricg|2
)

P 4
g := ∆2

g + divg

(
2

3
Rgg − 2Ricg

)
d,

where Rg denotes the scalar curvature, Ricg the Ricci tensor, ∆g the Laplace-Beltrami
operator and d is the differential (acting on functions). These definitions have been in-
troduced by Branson [25], Branson-Ørsted [28] and Paneitz [162], and then generalized
to higher order Q-curvatures Q2m

g and Paneitz operators P 2m
g on a 2m-dimensional Rie-

mannian manifold (M, g) (see [26, 27, 105] and also [87, 88]). Even if explicit formulas
for P 2m

g and Q2m
g in a general manifold do not exist when 2m > 4, a formal definition is

given in [105] (based on the work of Fefferman-Graham [86]).
The Paneitz operator and the Q-curvature are related by a generalized version of the

Gauss identity, indeed they satisfy

P 2m
g u+Q2m

g = Q2m
gu e

2mu

(compare with identity (I.1) when m = 1). Roughly speaking, the Paneitz operator can
be seen as a higher-order Laplace-Beltrami operator and the Q-curvature is a sort of
higher-order counterpart of the Gaussian curvature, this is also pointed out by the fact
that in dimension 2 we have P 2

g = −∆g and Q2
g = Kg.

The study of the Paneitz operator and Q-curvature has gained a lot of attention in
conformal geometry due to their covariant properties. The Paneitz operator P 2m

g satisfies

P 2m
gu (φ) = e−2muP 2m

g (φ) for all φ ∈ C∞(M),

hence P 2m
g is conformally covariant. Moreover, the totalQ-curvature is a global conformal

invariant, namely if M is closed and gu = e2ug, we have
ˆ
M
Q2m
gu d volgu =

ˆ
M
Q2m
g d volg

and this integral gives information on the topology of the manifold, indeed using the
Gauss-Bonnet-Chern’s Theorem [66] on a locally conformally flat closed manifold, we
have ˆ

M
Q2m
g d volg = (2m− 1)!vol(S2m)

χ(M)

2

where χ(M) is the Euler-Poincaré characteristic of M . As above mentioned in the 2-
dimensional case, also in the higher dimensional case we can investigate the problem
of prescribing Q-curvature: given a smooth function K on (M, g), it corresponds to
find solutions to the following equation

P 2m
g u+Q2m

g = Ke2mu, in M (I.6)

where K = Q2m
gu is the prescribed Q-curvature of the conformal metric gu = e2ug.

When K is constant Chang and Yang [52] gave a partial affirmative answer to the ques-
tion, assuming that the total Q-curvature of the metric g is less than 16π2 namely´
M Q4

gdVolg < 16π2 and the Paneitz operator is a positive operator whose kernel only
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consists of the constant functions. In view of a result of Gursky [109], the latter hypothe-
sis is satisfied whenever

´
M Q4

gdVolg > 0 and provided (M, g) is of positive Yamabe-type
(this means that there is a conformal metric with positive constant scalar curvature).
The same result in higher dimensions was later derived by Brendle [29] via a flow ap-
proach, again in the “subcritical” case, which precisely rules out the case when (M, g) is
conformal to the standard sphere. The result of Chang-Yang has been extended recently
by Djadli and Malchiodi [82] to the case where the kernel of P 4

g only consists of the
constant functions and

´
M Q4

gdVolg ̸= 16kπ2 for i ∈ Z+. Finally, Malchiodi and Struwe
[140] studied a natural counterpart of the Nirenberg problem, namely to prescribe the
Q-curvature of a conformal metric on the standard S4 as a given function f . Their ap-
proach uses a geometric flow within the conformal class, which either leads to a solution
to our problem as, in particular, in the case when f ≡ const. or otherwise induces a
blow-up of the metric near some point of S4.

If we consider the Euclidean space R2m endowed with the standard Euclidean metric
|dx|2 (flat metric) we have P 2m

|dx|2 = (−∆)m and Q2m
|dx|2 ≡ 0, so equation (I.6) becomes

(−∆)mu = Ke2mu, in R2m. (I.7)

Due to its geometric meaning, the constant Q-curvature case for equation (I.7) has been
extensively studied (see e.g. [46, 53, 57, 133, 142, 181] and the references therein). More
in detail, if we consider the following equation

(−∆)mu = (2m− 1)!e2mu in R2m (I.8)

and we assume that the volume is finite, that is V :=
´
R2m e

2mudx <∞, it is well known
that the function

uλ,x0(x) := log

(
2λ

1 + λ2|x− x0|2

)
(I.9)

solves (I.8) with V = |S2m| for every λ > 0 and x0 ∈ R2m. Solutions of the form (I.9)
are called standard (or spherical) solutions in the literature. Notice that they originate
as pull-back under the stereographic projection of round metrics on S2m (by round we
mean that they are conformally diffeomorphic to the standard metric). There is no loss
of generality in the particular choice of the constant K, we fixed K ≡ (2m−1)! since it is
the Q-curvature of the round sphere (S2m, g). On this subject, we recall that Chang-Yang
[53] showed that the round metrics are the only metrics on the 2m-dimensional sphere
having Q-curvature equal to (2m− 1)!. As mentioned above, Chen and Li [57] classified
all solutions to (I.8) when m = 1, proving that every solution is spherical. On the other
hand, in higher-dimension non-spherical solutions do exist, Chang and Chen [46] proved
that for any m ≥ 2 and every V ∈ (0, vol(S2m)) there exists at least one non-spherical
solution to (I.8), moreover Lin [133] in the case m = 2 and Martinazzi [142] for m ≥ 2,
classified all solutions to (I.8). We finally mention that the analogous problem in odd
dimension has gained a lot of attention in recent years.

I.2 Our problem: sign-changing unbounded curvature.

The problem which we address in Chapter 1 deals with the following prescribed
Gaussian curvature equation in R2

−∆u = (1− |x|p)e2u, (I.10)

where p is a real positive value.



11

First, we prove that equation (I.10) has solutions with prescribed total curvature
equal to Λ :=

´
R2(1− |x|p)e2udx ∈ R, if and only if

p ∈ (0, 2) and (2 + p)π ≤ Λ < 4π.

More in detail, exploiting some estimates on the asymptotic behavior of solutions at
infinity and a Pohozaev-type identity, we get a nonexistence result when p > 0 and
Λ < (2 + p)π or Λ ≥ 4π and for every value of Λ when p ≥ 2 (refer to Theorem 1.1.1
below). Then, we use a variational approach due to Chang and Chen (see Theorem 2.1
in [46], where, under suitable assumptions on the curvature K, they show existence of at
least one solution to equation (−∆)

n
2 u = K(x)enu in Rn) to prove existence of a radial

solution uλ to the perturbed problem

−∆uλ = (λ− |x|p)e−|x|2e2uλ on R2,

such that
Λ =

ˆ
R2

(λ− |x|p)e−|x|2e2uλdx

(see Proposition 1.4.1 for further details). This result, together with a blow-up argument,
will allow us to prove the existence part (see Theorem 1.1.2).

Furthermore, we show that such solutions remain compact as Λ → Λ̄ ∈ [(2+p)π, 4π),
while they produce a spherical blow-up as Λ ↑ 4π (Theorem 1.1.3 and Theorem 1.1.4).
The proof of the first fact is based on a blow-up analysis, the Kelvin transform and on
quantization of the total curvature (using [144, Theorem 2]); while the second one relies
on the fact that if Λ ↑ Λsph, we could have only two cases: loss of curvature at infinity,
or loss of compactness; we get that the second case occurs.

In Chapter 2, we consider the following prescribed Q-curvature problem{
∆2u = (1− |x|p)e4u, on R4

Λ :=
´
R4(1− |x|p)e4udx <∞

(I.11)

where p > 0 is fixed. Taking advantage of the above-mentioned result by Chang and
Chen, suitably adapted to this case, we extend to the non-normal case the existence
results in [116]. More in detail, we show that for every polynomial P of degree 2 such
that lim

|x|→+∞
P = −∞, and for every Λ ∈ (0, 16π2), there exists at least one solution to

problem (I.11) which assume the form u = w + P , where w behaves logarithmically at
infinity (refer to Theorem 2.1.1).

Conversely, we prove that all solutions to (I.11) have the form v + P , where

v(x) =
1

8π2

ˆ

R4

log

(
|y|

|x− y|

)
(1− |y|p)e4udy

and P is a polynomial of degree at most 2 bounded from above. Moreover, if u is a
solution to (I.11), it has the following asymptotic behavior

u(x) = − Λ

8π2
log |x|+ P + o(log |x|), as |x| → +∞

(see Theorem 2.1.2). The proof of this result is based some suitable upper and lower
estimates for the function v, which allow us to obtain a Liouville-type theorem and then
prove that the polynomial P is upper-bounded.
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Chapter 1

Existence and compactness of
conformal metrics on the plane with
unbounded and sign-changing
Gaussian curvature

1.1 Introduction to the problem and main results

We study existence and compactness of entire solutions of the equation

−∆u = Ke2u, in R2 (1.1)

where K ∈ L∞
loc(R2) is a given function. Equation (1.1) is the prescribed Gaussian cur-

vature equation on R2. This means that if u satisfies (1.1), then the metric e2u|dx|2 has
Gaussian curvature equal to K. Equations of this kind also appear in physics, see for
example Bebernes and Ederly [14], Chanillo and Kiessling [54] and Kiessling [121].

In this chapter we will focus on a specific problem that arose recently from a work of
Borer, Galimberti and Struwe [23] in the context of prescribing Gaussian curvature on 2-
dimensional surfaces. More in detail, they studied the following sign-changing prescribed
Gaussian curvature problem on a closed, connected Riemann surface (M, g) of genus
greater than 1:

−∆gu+Kg = (f0 + λ)e2u on M, (1.2)

under the assumption that λ > 0 and f0 ≤ 0 is a smooth non-constant function, which has
only non-degenerate maxima ξ0 with f0(ξ0) = 0. In the case of sign-changing curvature,
the uniqueness of solutions may be lost (compare with [23, Theorem 1.1]), indeed, as
already proven by Ding and Liu [81] there exists a value λ∗ > 0 such that for 0 < λ < λ∗

the energy functional Eλ associated to (1.2) admits a local minimizer uλ and a further
critical point uλ of mountain-pass type. In particular, through a mountain-pass technique
and the monotonicity trick, Borer, Galimberti and Struwe [23] investigated the blow-up
behavior of “large” solutions uλ as λ ↓ 0, and, upon rescaling, they obtained solutions to
(1.1) with K either constant or K(x) = 1 + (Ax, x) where A = 1

2Hessf0(ξ
(i)
∞ ) (see [23,

Theorem 1.4]). More recently, Struwe [177] obtained a more precise characterization of
this “bubbling” behavior: considering a closed surface of genus zero, he proved that all
“bubbles” are spherical. This is achieved with the help of a Liouville-type result, in fact

13
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he proved that there are no solutions u ∈ C∞(R2) to equation

−∆u = (1 + (Ax, x))e2u in R2, (1.3)

(where A is a negative definite and symmetric 2× 2 matrix) with u ≤ C, such that the
induced metric e2u|dx|2 has finite volume e2u ∈ L1 and

´
R2(1 + (Ax, x))e2udx ∈ R. In

this way, he proved that all blow-ups must be spherical also in the higher genus case.
If we do not assume that the prescribed curvature f0 + λ in the problem (1.2) is

smooth, but we only require that f0 ∈ C0,α for some α ∈ (0, 1], then Hessf0 is no more
defined and, upon rescaling, instead of (1.3), one might expect to find solutions to

−∆u = (1− |x|p)e2u in R2, Λ :=

ˆ
R2

(1− |x|p)e2udx <∞, (1.4)

for some p > 0. More precisely, for p > 0 we define

Λsph := 4π and Λ∗,p := (2 + p)π.

(the constant Λsph is the total curvature of the sphere S2). Taking advantage of a
Pohozaev-type identity, we are able to prove the following non-existence result:

Theorem 1.1.1. Let p > 0 be fixed. For any Λ ∈ (−∞,Λ∗,p)∪ [Λsph,+∞) problem (1.4)
admits no solutions. In particular, for p ≥ 2, problem (1.4) admits no solutions.

Following an approach of Hyder and Martinazzi [116], and in sharp contrast with the
nonexistence result of Struwe [177], we will show that problem (1.4) has solutions for
every p ∈ (0, 2) and for suitable values of Λ.

Theorem 1.1.2. Let p ∈ (0, 2) be fixed. Then for every Λ ∈ (Λ∗,p,Λsph) there exists a
(radially symmetric) solution to problem (1.4). Such solutions have the following asymp-
totic behavior

u(x) = − Λ

2π
log |x|+ C +O(|x|−α), as |x| → ∞, (1.5)

for every α ∈ [0, 1] such that α < Λ−Λ∗,p
π , and

|∇u(x)| = O

(
1

|x|

)
, as |x| → ∞. (1.6)

Observe that Theorem 1.1.1 and Theorem 1.1.2 do not cover the case Λ = Λ∗,p. In
this case (see Proposition 1.3.4 and Lemma 1.3.6) relation (1.5) degenerates to

−Λ∗,p + o(1)

2π
log |x| ≤ u(x) ≤ −Λ∗,p

2π
log |x|+O(1), as |x| → +∞,

which is compatible with the integrability of (1−|x|p)e2u. We will study the case Λ = Λ∗,p
from the point of view of compactness, namely we will show that solutions to (1.4) are
compact for Λ away from Λsph, and blow up spherically at the origin as Λ ↑ Λsph.

Theorem 1.1.3. Fix p ∈ (0, 2), let {uk | k ∈ N} be a sequence of solutions to (1.4) with
Λ = Λk ∈ [Λ∗,p,Λsph) and Λk → Λ̄ ∈ [Λ∗,p,Λsph). Then, up to subsequences, uk → ū
locally uniformly, where ū is a solution to (1.4) with Λ = Λ̄.

Moreover, choosing Λk ↓ Λ∗,p and uk given by Theorem 1.1.2, we obtain that (1.4)
has a solution u also for Λ = Λ∗,p and we have

u(x) ≤ −Λ∗,p
2π

log |x| − (1 + o(1)) log log |x|, as |x| → +∞ (1.7)

and
|∇u(x)| = O

(
1

|x|

)
, as |x| → +∞. (1.8)
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The proof of Theorem 1.1.3 relies on uniform controls of the integral of the Gaussian
curvature at infinity. This is particularly subtle as Λk ↓ Λ∗,p since in this case Ke2uk
is a priori no better than uniformly L1 at infinity and we could have loss of negative
curvature at infinity. This possibility is ruled out with an argument based on the Kelvin
transform (see Lemma 1.5.4). Theorem 1.1.3 strongly uses the lack of scale invariance of
equation (1.4).

Notice that for the constant curvature case (I.4), solutions given in (I.5) can blow up
“spherically”, we will show that this is also the case when Λ ↑ Λsph.

Theorem 1.1.4. Fix p ∈ (0, 2), let {uk | k ∈ N} be a sequence of radial solutions to (1.4)
with Λ = Λk ↑ Λsph as k → +∞. Then

(1− |x|p)e2uk ⇀ Λsphδ0, as k → +∞,

weakly in the sense of measures. Moreover, setting

µk := 2e−uk(0)

and
ηk(x) := uk(µkx)− uk(0) + log 2,

we have
ηk(x) −−−→

k→∞
log

2

1 + |x|2
in C1

loc(R2).

Notice that all solutions to problem (1.4) are radially symmetric about the origin and
monotone decreasing, this follows by Corollary 1 in the work of Naito [157] (to prove
Corollary 1 Naito uses an approach based on the maximum principle in unbounded do-
mains together with the method of moving planes).

The outline of this chapter is the following. In Section 1.2 we prove some regularity
results for solution to (1.4). In Section 1.3, thanks to some estimates on the asymp-
totic behavior of solutions at infinity and to a Pohozaev-type identity, we prove Theorem
1.1.1. In Section 1.4, we use a variational approach due to Chang and Chen [46] to prove
Proposition 1.4.1, which, together with a blow-up argument will allow us to prove the
existence part of Theorem 1.1.2. Section 1.5 is devoted to the proof of Theorem 1.1.3,
which is based on a blow-up analysis, the Kelvin transform, and on quantization of the
total curvature (using [144, Theorem 2]). Finally, the proof of Theorem 1.1.4 in Section
1.6 is based on the fact that if Λ ↑ Λsph, from Theorem 1.1.1, we could have only two
cases: loss of curvature at infinity, or loss of compactness; from Lemma 1.6.1 we get that
the second case occurs.

After the completion of the work the author learned that a result of Cheng and Lin
(see [60, Theorem 1.1]) implies our Theorem 1.1.2. Their elegant proof is based on a
Moser-Trudinger inequality in weighted Sobolev spaces. Our approach to Theorem 1.1.2,
only based on ODE methods, is more elementary and will be the basis for the compactness
Theorem 1.1.3, therefore we left the statement of Theorem 1.1.2 for completeness.

1.2 Regularity of solutions

Let p > 0 be fixed. First of all, we prove some regularity results for solutions to
equation

−∆u = (1− |x|p)e2u in R2, (1.9)
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assuming that u ∈ L1
loc(R2) and (1− |x|p)e2u ∈ L1(R2).

In the following, if Ω ⊆ R2 is an open set and s ∈ R s ≥ 0, we will denote

Cs(Ω) :=
{
u ∈ C⌊s⌋(Ω)

∣∣ D⌊s⌋u ∈ C0,s−⌊s⌋(Ω)
}
,

and
Csloc(R2) :=

{
u ∈ C0(R2)

∣∣ u|Ω ∈ Cs(Ω) for every Ω ⊂⊂ R2
}
.

Proposition 1.2.1. Let u be a solution to (1.9). Then u ∈W 2,r
loc (R

2) for 1 < r <∞.

Proof. Following the proof of [115, Theorem 2.1], first we prove that e2u ∈ Lqloc(R
2) for

any q ≥ 1. Let q ≥ 1 be fixed, take ε = ε(q) such that q < π
2ε , we can find two functions

f1 and f2 such that (1− |x|p)e2u = f1 + f2 and

f1 ∈ L1(R2) ∩ L∞(R2), ∥f2∥L1(R2) < ε.

We define the following

ui(x) :=
1

2π

ˆ
R2

log

(
|y|

|x− y|

)
fi(y)dy, i = 1, 2,

and
u3 := u− u1 − u2.

In this way, u3 is harmonic and hence u3 ∈ C∞(R2). Differentiating u1 we obtain

∇u1(x) = − 1

2π

ˆ
R2

x− y

|x− y|2
f1(y)dy

using the relation |x||y|
∣∣∣ x
|x|2 − y

|y|2

∣∣∣ = |x − y| it’s easy to prove that ∇u1 is continuous,
hence u1 ∈ C1(R2). Concerning u2 we have

ˆ
BR

e8qu2dx =

ˆ
BR

exp

(ˆ
R2

8q∥f2∥
2π

log

(
|y|

|x− y|

)
f2(y)

∥f2∥
dy

)
dx

≤
ˆ
BR

ˆ
R2

exp

(
8q∥f2∥
2π

log

(
|y|

|x− y|

))
f2(y)

∥f2∥
dy dx

=
1

∥f2∥

ˆ
R2

f2(y)

ˆ
BR

(
|y|

|x− y|

) 4q∥f2∥
π

dx dy ≤ C,

by Holder’s inequality, we can conclude that e2u ∈ Lqloc(R
2) for any q ≥ 1.

By assumption p > 0, so (1 − |x|p) ∈ Lrloc(R2) for every 1 ≤ r ≤ ∞; it follows that
−∆u = (1− |x|p)e2u ∈ Lrloc(R2) for each 1 ≤ r ≤ ∞. By elliptic estimates (refer to [93,
Theorem 9.11]), we have

u ∈W 2,r
loc (R

2), for every r ∈ (1,∞),

and by the Morrey-Sobolev embedding we get

u ∈ C1,α
loc (R

2), for α ∈ (0, 1].
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Proposition 1.2.2. Let p > 0 be fixed and u be a solution of equation (1.9). If p ̸∈ N
then u ∈ C∞(R2 \ {0})∩Cp+2

loc (R2), if p− 1 ∈ 2N then u ∈ C∞(R2 \ {0})∩Cs+2
loc (R2) for

s < p and if p ∈ 2N then u ∈ C∞(R2).

Proof. From Proposition 1.2.1 we have that u ∈ W 2,r
loc (R

2) ↪→ C1,α
loc (R

2) for 1 < r < ∞
and α ∈ (0, 1]. Since 1−|x|p ∈ C∞(R2 \{0}) if p ̸∈ 2N, and belongs to C∞(R2) if p ∈ 2N,
by bootstrapping regularity we get that u ∈ C∞(R2 \ {0}) if p ̸∈ 2N and u ∈ C∞(R2) if
p ∈ 2N. Moreover, we can verify that for p > 0

1− |x|p ∈


Cp(R2) if p ̸∈ N
Csloc(R2) for s < p, if p− 1 ∈ 2N
C∞(R2) if p ∈ 2N

.

Using Schauder estimates and bootstrapping regularity, we get that if p ̸∈ N then u ∈
Cp+2
loc (R2) and if p− 1 ∈ 2N then u ∈ Cs+2

loc (R2) for s < p. Hence we can conclude that if
p ̸∈ N then u ∈ C∞(R2\{0})∩Cp+2

loc (R2), if p−1 ∈ 2N then u ∈ C∞(R2\{0})∩Cs+2
loc (R2)

for s < p and if p ∈ 2N then u ∈ C∞(R2).

All solutions to (1.9) are in fact normal solutions, namely if u is a solution to (1.9)
then u solves the integral equation

u(x) =
1

2π

ˆ
R2

log

(
|y|

|x− y|

)
(1− |y|p)e2u(y)dy + c, (1.10)

where c ∈ R (for a detailed proof of this fact see the proof of [59, Theorem 2.1]). Moreover,
if we have more integrability (namely log(| · |)(1− |y|p)e2u ∈ L1(R2)), equation (1.10) is
equivalent to

u(x) =
1

2π

ˆ
R2

log

(
1

|x− y|

)
(1− |y|p)e2u(y)dy + c′, (1.11)

where c′ ∈ R.

1.3 Nonexistence result

First of all, we can observe that the case Λ < 0 is not possible (this follows similar
to the proof of [141, Theorem 1]).

Proposition 1.3.1. Let p > 0 be fixed, if u is a solution to (1.4) then Λ ≥ 0.

Proof. Assume by contradiction that Λ < 0, then there exists r0 > 0 such thatˆ
Br

∆u dx ≥ 0, ∀r ≥ r0,

hence ˆ
∂Br

∂u

∂ν
dσ(x) ≥ 0, ∀r ≥ r0.

It follows that
ffl
∂Br

u dσ is an increasing function for r ≥ r0, and consequently also

exp
(ffl

∂Br
u dσ

)
is increasing for r ≥ r0. By Jensen inequality we get

exp

(
2

 
∂Br

u dσ

)
≤
 
∂Br

e2udσ.

It follows that
ffl
∂Br

e2udσ must be increasing for r ≥ r0, hence integrating
´
R2 e

2u = +∞.
This leads to a contradiction since in this way Λ cannot be finite.
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In order to prove Theorem 1.1.1 we need the following Pohozaev-type identity and
some asymptotic estimates at infinity.

Proposition 1.3.2. Let K(x) = 1− |x|p and u be a solution to the integral equation

u(x) =
1

2π

ˆ
R2

log

(
|y|

|x− y|

)
K(y)e2u(y)dy + c, (1.12)

for some c ∈ R, with Ke2u ∈ L1(R2) and | · |pe2u ∈ L1(R2). If

lim
R→∞

R2+p max
|x|=R

e2u(x) = 0 (1.13)

then denoting by Λ =
´
R2 K(x)e2u(x)dx, we have

Λ

Λsph
(Λ− Λsph) = −p

2

ˆ

R2

|x|pe2u(x)dx. (1.14)

Proof. In the spirit of the proof of [184, Theorem 2.1], differentiating equation (1.12) (by
Proposition 1.2.2 u is sufficiently regular) and multiplying by x, we obtain

⟨x,∇u(x)⟩ = − 1

2π

ˆ
R2

⟨x, x− y⟩
|x− y|2

K(y)e2u(y)dy.

Multiplying both sides of the previous one by K(x)e2u(x) and integrating over the ball
BR(0) for R > 0, we have

ˆ
BR

K(x)e2u(x)⟨x,∇u(x)⟩dx =

=

ˆ
BR

K(x)e2u(x)
[
− 1

2π

ˆ
R2

⟨x, x− y⟩
|x− y|2

K(y)e2u(y)dy

]
dx.

Integrating by parts the left-hand side:
ˆ
BR

K(x)e2u(x)⟨x,∇u(x)⟩dx =
1

2

ˆ
BR

K(x)⟨x,∇e2u(x)⟩dx =

= −
ˆ
BR

(
K(x) +

1

2
⟨x,∇K(x)⟩

)
e2u(x)dx+

R

2

ˆ
∂BR

K(x)e2u(x)dσ =

= −
ˆ
BR

(
K(x)− p

2
|x|p
)
e2u(x)dx+

R

2

ˆ
∂BR

(1− |x|p)e2u(x)dσ.

It’s easy to see that

−
ˆ
BR

(
K(x)− p

2
|x|p
)
e2u(x)dx −−−−→

R→∞
−Λ +

p

2

ˆ
R2

|x|pe2u(x)dx

and concerning the boundary term, we have

R

2

ˆ
∂BR

(1− |x|p)e2u(x)dσ ≤ R

2
max
|x|=R

e2u(x)
ˆ
∂BR

(1− |x|p)dσ =

= πR2(1−Rp) max
|x|=R

e2u(x) = πRp+2

(
1

Rp
− 1

)
max
|x|=R

e2u(x)
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using (1.13) it goes to 0 if R→ +∞. Regarding the right-hand side, we have
ˆ
BR

K(x)e2u(x)
[
− 1

2π

ˆ
R2

⟨x, x− y⟩
|x− y|2

K(y)e2u(y)dy

]
dx =

=
1

2

ˆ
BR

K(x)e2u(x)
[
− 1

2π

ˆ
R2

K(y)e2u(y)dy

]
dx

+
1

2

ˆ
BR

K(x)e2u(x)
[
− 1

2π

ˆ
R2

⟨x+ y, x− y⟩
|x− y|2

K(y)e2u(y)dy

]
dx.

It follows immediately that

1

2

ˆ
BR

K(x)e2u(x)
[
− 1

2π

ˆ
R2

K(y)e2u(y)dy

]
dx −−−−−→

R→+∞
− 1

4π
Λ2

while, by dominated convergence, the second term goes to

− 1

4π

ˆ
R2

ˆ
R2

⟨x+ y, x− y⟩
|x− y|2

K(x)e2u(x)K(y)e2u(y)dy dx

which, changing variables, it’s equal to 0. Finally combining we obtain (1.14).

In order to study the asymptotic behavior of solution to (1.1), a useful trick is the
Kelvin transform. We have the following result.

Proposition 1.3.3. Let u be a solution to (1.4) and assume that (1−|x|p)e2u ∈ L1(R2).
Then, the Kelvin transform of u, namely the function

ũ(x) = u

(
x

|x|2

)
− α log |x|, for x ̸= 0, (1.15)

where α := Λ
2π , satisfies

ũ(x) =
1

2π

ˆ
R2

log

(
1

|x− y|

)
K

(
y

|y|2

)
e2ũ(y)

|y|4−2α
dy + c,

where K(x) := 1− |x|p, hence ũ is a solution to

−∆ũ(x) = K

(
x

|x|2

)
e2ũ

|x|4−2α
.

Proof. Following the proof of [116, Proposition 2.2], using (1.10) and then changing
variables, we have

ũ(x) =
1

2π

ˆ
R2

log

(
|y|∣∣ x

|x|2 − y
∣∣
)
K(y)e2u(y)dy − 1

2π
log |x|

ˆ
R2

K(y)e2u(y)dy + c

=
1

2π

ˆ
R2

log

 |y|

|x|
∣∣∣ x
|x|2 − y

∣∣∣
K(y)e2u(y)dy + c

=
1

2π

ˆ
R2

log

 1

|x||y|
∣∣∣ x
|x|2 − y

|y|2

∣∣∣
K

(
y

|y|2

)
e2ũ(y)

|y|4−2α
dy + c =

=
1

2π

ˆ
R2

log

(
1

|x− y|

)
K

(
y

|y|2

)
e2ũ(y)

|y|4−2α
dy + c

where in the last equality we have used that |x||y|
∣∣∣ x
|x|2 − y

|y|2

∣∣∣ = |x− y|.
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1.3.1 Asymptotic behavior of solutions

Proposition 1.3.4. Let u be a solution to the integral equation

u(x) =
1

2π

ˆ
R2

log

(
|y|

|x− y|

)
K(y)e2u(y)dy + c,

where c ∈ R, assume K(y) ≤ 0 for |y| ≥ R0 > 0 and Ke2u ∈ L1. Then we have

u(x) ≤ − Λ

2π
log |x|+O(1), as |x| → ∞ (1.16)

where Λ =
´
R2 Ke

2u.

Proof. Following the proof of [116, Lemma 2.3] and adapting it to the two-dimensional
case, we choose x such that |x| ≥ 2R0 (assuming R0 ≥ 2) and consider R2 = A1∪A2∪A3

where
A1 = B |x|

2

(x), A2 = BR0(0), A3 = R2 \ (A1 ∪A2).

It’s easy to see that ˆ
A1

log

(
|y|

|x− y|

)
K(y)e2u(y)dy ≤ 0

because if y ∈ A1 we have K(y) ≤ 0 and log
(

|y|
|x−y|

)
≥ 0. For y ∈ A2 we have

log
(

|y|
|x−y|

)
= − log |x|+O(1) as |x| → +∞, hence

ˆ
A2

log

(
|y|

|x− y|

)
K(y)e2u(y)dy = − log |x|

ˆ
A2

Ke2udy +O(1), as |x| → +∞.

If y ∈ A3 we have |x − y| ≤ |x| + |y| ≤ |x||y|, hence K(y) log
(

|y|
|x−y|

)
≤ K(y) log

(
1
|x|

)
,

so we obtain
ˆ
A3

log

(
|y|

|x− y|

)
K(y)e2u(y)dy ≤ − log |x|

ˆ
A3

Ke2udy.

Finally we have

u(x) ≤ 1

2π

(
− log |x|

ˆ
A2∪A3

Ke2udy

)
+O(1) ≤ − Λ

2π
log |x|+O(1),

using the fact that
´
A2∪A3

Ke2u ≥
´
R2 Ke

2u = Λ since K ≤ 0 in A1.

Corollary 1.3.5. If p ∈ (0, 2), there exist no solutions to (1.4) for Λ ≥ 4π.

Proof. Assume that u solves (1.4) for some Λ ≥ 4π. By Proposition 1.3.4 u satisfies
(1.16), so hypothesis (1.13) in Proposition 1.3.2 is verified and therefore from (1.14) we
must have Λ < 4π, a contradiction.

Lemma 1.3.6. Fix p > 0 and let u be a solution to (1.4). Then, we have

Λ ≥ Λ∗,p

and
u(x) = −Λ + o(1)

2π
log |x|, as |x| → +∞ (1.17)
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Proof. We first prove the asymptotic estimate (1.17). Writing u = u1 + u2, where

u2(x) = − 1

2π

ˆ
B1(x)

log

(
1

|x− y|

)
|y|pe2u(y)dy,

we obtain

u1(x) = −Λ + o(1)

2π
log |x|, as |x| → +∞, (1.18)

(see the Appendix for a detailed proof of the estimate (1.18)). Let’s consider R≫ 1 and
|x| ≥ R+ 1, define

h(R) :=
1

2π

ˆ
Bc

R

|y|pe2udy,

it’s easy to see that h(R) → 0 as R→ +∞, so we can write h(R) = oR(1). We have

−u2(x) =
ˆ
Bc

R

h(R) log

(
1

|x− y|

)
χ|x−y|≤1dµ(y), dµ(y) =

|y|pe2u´
Bc

R
|y|pe2udy

dy.

By Jensen’s inequality and Fubini’s theorem we get

ˆ
R+1<|x|<2R

e−2u2dx ≤
ˆ
Bc

R

ˆ
R+1<|x|<2R

(
1 +

1

|x− y|2h(R)

)
dx dµ(y) ≤ CR2.

Hence using Holder’s inequality and the previous one

R2 ≈
ˆ
R+1<|x|<2R

eu2e−u2dx ≤ CR

(ˆ
R+1<|x|<2R

e2u2dx

)1/2

. (1.19)

If we assume by contradiction that Λ
π ≤ p, then |y|pe2u1 ≥ 1

|y| for |y| sufficiently large,
therefore

oR(1) =

ˆ
R+1<|x|<2R

|x|pe2u1e2u2dx ≳
1

R

ˆ
R+1<|x|<2R

e2u2dx

which contradicts (1.19). Therefore we must have Λ
π > p, from this it follows that

|y|pe2u1 ≤ C on R2, using the fact that u2 ≤ 0 we have |y|pe2u1e2u2 < C, and then

|u2(x)| ≤ C

ˆ
B1(x)

log
1

|x− y|
dy ≤ C

this prove (1.17). Finally, if Λ < Λ∗,p then (1 − |x|p)e2u ̸∈ L1(R2), hence it must be
Λ ≥ Λ∗,p.

Lemma 1.3.7. Let u be a solution to (1.4) with Λ = Λ∗,p = (2 + p)π and ũ its Kelvin
transform (as defined in (1.15)). Then

lim
x→0

ũ(x) = −∞. (1.20)

and
lim
x→0

∆ũ(x) = +∞. (1.21)
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Proof. In this case, we have

ũ(x) = u

(
x

|x|2

)
−
(
1 +

p

2

)
log |x|, for x ̸= 0, (1.22)

and ũ satisfies

ũ(x) =
1

2π

ˆ
R2

log

(
1

|x− y|

)(
1− 1

|y|p

)
e2ũ(y)

|y|2−p
dy + c, for x ̸= 0.

We follow the proof of [116, Lemma 2.7]. Using Proposition 1.3.4, which gives us a bound
from above, we have supB1

ũ < +∞. Since u is continuous, using (1.22), we get(
1− 1

|y|p

)
e2ũ(y)

|y|2−p
≤ C

|y|4
on Bc

1. (1.23)

For x ̸= 0 we have

ũ(x) =− 1

2π

ˆ

B1

log

(
1

|x− y|

)
e2ũ(y)

|y|2
dy +

1

2π

ˆ

B1

log

(
1

|x− y|

)
e2ũ(y)

|y|2−p
dy+

+
1

2π

ˆ

Bc
1

log

(
1

|x− y|

)(
1− 1

|y|p

)
e2ũ(y)

|y|2−p
dy + c.

If 0 < |x| < 1, using the fact that ũ ≤ C on B1 and (1.23), the second and the third
term of above are O(1), therefore

ũ(x) = − 1

2π

ˆ

B1

log

(
1

|x− y|

)
e2ũ(y)

|y|2
dy +O(1), for 0 < |x| < 1. (1.24)

Assume by contradiction that ũ(xk) = O(1) for a sequence xk → 0, applying [116, Lemma
2.6] to (1.24) we have ˆ

B1

log

(
1

|y|

)
e2ũ(y)

|y|2
dy < +∞

and changing variables ˆ
Bc

1

log(|y|)|y|pe2u(y)dy < +∞. (1.25)

Since Λ = Λ∗,p, as |x| → ∞ we have
ˆ
|y|≤

√
|x|
(1− |y|p)e2u(y)dy = Λ∗,p −

ˆ
|y|>

√
|x|
(1− |y|p)e2u(y)dy =

= Λ∗,p +O

(
1

log |x|

ˆ
|y|>

√
|x|

log(|y|)(1− |y|p)e2u(y)dy

)
=

= Λ∗,p +O

(
1

log |x|

)
as |x| → +∞

where in the last equality we used (1.25). Using equation (1.11) for |x| ≫ 1

u(x) =
1

2π

(ˆ
|y|≤

√
|x|

+

ˆ
√

|x|≤|y|≤2|x|
+

ˆ
|y|≥2|x|

)
log

(
1

|x− y|

)
(1− |y|p)e2u(y)dy + c.



1.3 Nonexistence result 23

From the previous estimate, as |x| → ∞,
ˆ
|y|≤

√
|x|

log

(
1

|x− y|

)
(1− |y|p)e2u(y)dy =

= (− log |x|+O(1))

(
Λ∗,p +O

(
1

log |x|

))
= −Λ∗,p log |x|+O(1).

Concerning the second integral, as |x| → ∞ we get
ˆ
√

|x|≤|y|≤2|x|
log

(
1

|x− y|

)
(1− |y|p)e2u(y)dy ≥

ˆ
B1(x)

log

(
1

|x− y|

)
(1− |y|p)e2u(y)dy

= −
ˆ
B1(x)

log

(
1

|x− y|

) ∣∣1− |y|p
∣∣e2udy ≥ − 1

|x|2

ˆ
B1(x)

log

(
1

|x− y|

)
dy = O

(
1

|x|2

)
,

and for the third integral, using (1.25), we have

1

2π

ˆ
|y|≥2|x|

(
1

|x− y|

)
(1− |y|p)e2u(y)dy = O(1).

Therefore, for |x| → ∞

u(x) ≥ −Λ∗,p
2π

log |x|+O(1)

but this means that | · |pe2u ̸∈ L1(R2), which is a contradiction. Hence (1.20) is proven.
In this case, ũ is a solution to

−∆ũ(x) =

(
1− 1

|x|p

)
e2ũ(x)

|x|2−p
,

using (1.22) and (1.17) we obtain that lim
x→0

(−∆ũ(x)) = −∞, which proves (1.21).

Proposition 1.3.8. If p ≥ 2, there exists no solution to (1.4).

Proof. Assume by contradiction that for some p ≥ 2 there exists a solution u of (1.4),
then by Lemma 1.3.6 we must have Λ ≥ Λ∗,p ≥ 4π since p ≥ 2. If Λ > Λ∗,p, using
Lemma 1.3.4 we have u(x) ≤ − Λ

2π log |x|+ c for |x| → +∞. In this way u satisfies (1.13)
and hence by Proposition 1.3.2 follows that

Λsph ≤ Λ∗,p < Λ < Λsph,

which is a contradiction. If Λ = Λ∗,p, using (1.22) and (1.20) we observe that (1.13) is
satisfied, and we proceed as in the previous case.

Proof of Theorem 1.1.1. Theorem 1.1.1 is proven, we have just to combine Corollary
1.3.5, Lemma 1.3.6 and Proposition 1.3.8.

If Λ = Λ∗,p we obtain a sharper version of (1.20).

Lemma 1.3.9. Fix p ∈ (0, 2), let u be a solution to (1.4) with Λ = Λ∗,p. Then we have

lim sup
|x|→+∞

u(x) +
(
1 + p

2

)
log |x|

log log |x|
= −1.
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Proof. Let ũ be defined as in (1.22), u is a radial solution (this follows from [157, Corollary
1]) therefore also ũ is radially symmetric. By Lemma 1.3.7 we have

lim
r→0

ũ(r) = −∞, lim
r→0

∆ũ(r) = +∞,

so there exists δ > 0 such that ũ is monotone increasing in Bδ(0). Using this and (1.24),
we estimate for |x| → 0 and get

−ũ(x) ≥ 1

2π

ˆ
2|x|≤|y|<1

log

(
1

|x− y|

)
e2ũ(y)

|y|2
dy +O(1)

=
1

2π

ˆ
2|x|≤|y|≤δ

log

(
1

|y|

)
e2ũ(y)

|y|2
dy +

1

2π

ˆ
δ≤|y|<1

log

(
1

|y|

)
e2ũ(y)

|y|2
dy +O(1)

≥ e2ũ(x)

2π

ˆ
2|x|≤|y|≤δ

log

(
1

|y|

)
dy

|y|2
+O(1)

= e2ũ(x)
ˆ δ

2|x|

log 1
ρ

ρ
dρ+O(1), as |x| → 0.

Hence we have

−ũ(x) +O(1) ≥ e2ũ(x)

2

(
log

(
1

2|x|

))2

, as |x| → 0.

Now taking the logarithm and rearranging, we get

lim sup
x→0

ũ(x)

log log
(

1
|x|

) ≤ −1.

We prove now that the lim sup is equal to −1. Assume by contradiction, that the previous
lim sup is less than −1, it must exist ε > 0 such that

ũ(x) ≤ −
(
1 +

ε

2

)
log log

1

|x|

for |x| small. Therefore, recalling (1.24), for |x| small we have

−ũ(x) ≤ C

ˆ

B1

log

(
1

|x− y|

)
dy

|y|2| log |y||2+ε
+O(1).

We can split
´
B1

log
(

1
|x−y|

)
dy

|y|2| log |y||2+ε into I1 + I2 + I3 definig

Ii :=

ˆ

Ai

log

(
1

|x− y|

)
dy

|y|2| log |y||2+ε

where
A1 = B |x|

2

, A2 = B2|x| \B |x|
2

and A3 = B1 \B2|x|.

Concerning I1, we observe that if y ∈ B |x|
2

we have log
(

1
|x−y|

)
∼ log

(
1
|x|

)
as |x| → 0

and
´
B|x|/2

1
|y|2| log |y||2+εdy =

∣∣ log |x|
2

∣∣−1−ε, hence

I1 ≤
C

| log |x||ε
.
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Regarding I2 we have

I2 ≤
C

|x|2
∣∣ log |x|∣∣2+ε

ˆ
B2|x|

log

(
1

|y|

)
dy =

C∣∣ log |x|∣∣1+ε .
Finally it’s easy to prove that I3 ≤ C. We have obtained a contradiction to the fact that
−ũ(x) → +∞ as |x| → 0.

1.4 Existence result

The proof of the existence part of Theorem 1.1.2 will be based on a blow-up argument
as done in [116], but first we need the following result, which we will prove using a
variational approach due to Chang and Chen [46].

Proposition 1.4.1. Let p ∈ (0, 2) be fixed. For every Λ ∈ (0,Λsph) and λ > 0, there
exists a radial solution uλ to

−∆uλ = (λ− |x|p)e−|x|2e2uλ on R2, (1.26)

such that
Λ =

ˆ
R2

(λ− |x|p)e−|x|2e2uλdx.

Moreover, such solution uλ solves the integral equation

uλ(x) =
1

2π

ˆ
R2

log

(
1

|x− y|

)
(λ− |y|p)e−|y|2e2uλdy + cλ (1.27)

for some constant cλ ∈ R.

Proof. Let’s denote by Kλ(x) = (λ − |x|p)e−|x|2 . Following the proof of [46, Theorem
2.1], we identify each point in R2 with a point on S2 through the stereographic projection
Π : S2 → R2, we take K(x) = Kλ(x) and µ = 1− Λ

Λsph
. A solution to

−∆u = Kλ(x)e
2u on R2 (1.28)

has the form
uλ = w ◦Π−1 + (1− µ)η0,

where η0(x) = log
(

2
1+|x|2

)
, w = u+ c such that u minimizes a certain functional defined

on the set of functions {
v ∈ H1

rad(S
2)

∣∣∣∣ ˆ Kλ(x)e
2vdV > 0

}
and c is a suitable constant such that

´
Kλ(x)e

2wdV = (1− µ)Λsph. By construction it
holds ˆ

Kλ(x)e
2uλdx =

ˆ
Kλ(x)e

2wdV = (1− µ)Λsph = Λ.

So there exists at least one radial solution to (1.26). In order to prove (1.27), consider

−∆g0w + (1− µ) = (Kλ ◦Π)e−2µ(η0◦Π)e2w.
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Since (Kλ ◦ Π)e−2µ(η0◦Π) ∈ L∞(S2) and e2w ∈ Lq(S2) for every q ∈ [1,∞), by elliptic
estimates we get w ∈ C1,α(S2) for α ∈ (0, 1). Therefore w is continuous in S = (0, 0,−1)
and hence

uλ(x) = (1− µ)η0(x) + w(S) + o(1) =
Λ

2π
log |x|+ C + o(1), as |x| → +∞.

Defining

vλ :=
1

2π

ˆ
R2

log

(
1

|x− y|

)
Kλ(y)e

2uλ(y)dy

and hλ := uλ − vλ, we observe that

∆hλ = 0, hλ(x) = O(log |x|) as |x| → +∞

by Liouville’s theorem hλ must be constant.

If w is a radial function belonging to C2(R2) and 0 ≤ r < R, using the divergence
theorem, we have the following identity

w(r)− w(R) =

ˆ R

r

1

2πt

ˆ
Bt

−∆w dxdt. (1.29)

In what follows, let uλ be a radial solution to (1.26) given by Proposition 1.4.1.

Lemma 1.4.2. For every λ > 0 we have uλ(x) ↓ −∞ as |x| → +∞.

Proof. Let us consider the function

r 7−→
ˆ
Br

−∆uλ(x)dx =

ˆ
Br

(λ− |x|p)e−|x|2e2uλ(x)dx

we observe that it is increasing on [0, λ1/p] and decreasing to Λ > 0 on [λ1/p,+∞), so it
follows that it is positive for every r > 0. Hence by (1.29) uλ is a decreasing function of
|x| and using Proposition 1.3.4 we conclude that uλ → −∞ as |x| → +∞.

Lemma 1.4.3. It holds that λe2uλ(0) → +∞ as λ ↓ 0.

Proof. Assume that λe2uλ(0) ≤ C as λ ↓ 0, then

Λ =

ˆ
R2

(λ− |x|p)e−|x|2e2uλdx ≤
ˆ
B

λ1/p

(λ− |x|p)e−|x|2e2uλdx

≤
ˆ
B

λ1/p

λe−|x|2e2uλ(0)dx −−−→
λ→0

0,

which gives a contradiction.

Now we define
ηλ(x) := uλ(rλx)− uλ(0)

where the values rλ are non-negative and defined in such a way that

λ r2λ e
2uλ(0) = 1,
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by Lemma 1.4.3 we have rλ → 0 as λ ↓ 0, moreover ηλ(0) = 0 and ηλ ≤ 0 (since uλ is a
radial decreasing function). A basic calculation shows that ηλ satisfies

−∆ηλ =

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλ

and

Λ =

ˆ
R2

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλdx. (1.30)

Observing that
(
1− rpλ|x|

p

λ

)
< 0 in Bc

r1 where r1 := λ1/p

rλ
, we have

0 < Λ <

ˆ
Br1

e−r
2
λ|x|

2
e2ηλdx ≤

∣∣Br1∣∣
where in the last inequality we employ the fact that since ηλ ≤ 0 then e−r

2
λ|x|

2
e2ηλ ≤ 1.

It follows that

lim sup
λ→0

rpλ
λ
< +∞.

Since ηλ(0) = 0, using ODE theory, we have that, up to a subsequence,

ηλ −−−→
λ→0

η in C2
loc(R2) (1.31)

and the function η satisfies

−∆η = (1− µ|x|p)e2η, in R2

where µ := lim
λ→0

rpλ
λ ∈ [0,+∞). Notice that at this stage we do not know if µ > 0 and if´

R2(1− |x|p)e2η = Λ.

Lemma 1.4.4. If µ = 0, then e2η ∈ L1(R2).

Proof. From Lemma 1.4.2 and (1.31), we have that η is decreasing. Since η satisfies
−∆η = e2η, then ∆η ≤ 0 must be increasing. We have limr→∞∆η(r) =: c0 ∈ [−∞, 0],
if c0 = 0 then limr→∞ e2η(r) = 0 and so e2η ∈ L1(R2); if c0 < 0 then η(r) ≲ −r2, and
hence e2η ∈ L1(R2).

Lemma 1.4.5. For every Λ ∈ (Λ∗,p,Λsph) we have µ > 0.

Proof. Assume by contradiction that µ = 0, then η is a solution to

−∆η = e2η in R2,

where e2η ∈ L1(R2) from Lemma 1.4.4. Chen and Li in [57] proved that every solution
to the previous equation with finite total Gaussian curvature, is a standard one, namely
assumes the form

η(x) = log

(
2λ

1 + λ2|x− x0|2

)
,

for some λ > 0 and x0 ∈ R2. Hence all solutions are radially symmetric with respect to
some point x0 ∈ R2. Since η is spherical, we have

ˆ
R2

e2ηdx = |S2| = Λsph.
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Moreover, by assumption Λ < Λsph, so we can fix R0 > 0 such that

Λ <

ˆ

BR0

e2ηdx .

Recalling that rλ → 0 and rpλ
λ → 0 as λ ↓ 0, one can find λ0 (which depends on R0) such

that ˆ

BR0

(
1−

rpλ
λ
|x|p
)
e−r

2
λ|x|

2
e2ηλdx ≥ Λ, for λ ∈ (0, λ0). (1.32)

Let us now define the function

Γλ(t) :=

ˆ

Bt

(
1−

rpλ
λ
|x|p
)
e−r

2
λ|x|

2
e2ηλdx,

we can observe that Γλ(0) = 0, Γλ is monotone increasing on the interval
[
0, λ

1/p

rλ

]
and

it decreases to Λ on
[
λ1/p

rλ
,+∞

)
. From (1.32) we have

Γλ(t) ≥ Λ, for t ≥ R0 and λ ∈ (0, λ0). (1.33)

Integrating from R0 to r ≥ R0 we have

−
ˆ r

R0

Γλ(t)

2πt
dt ≤ −

ˆ r

R0

Λ

2πt
dt = − Λ

2π
log

r

R0
= −

(
1 +

p

2
+ δ
)
log

r

R0

where δ > 0 is such that Λ∗,p + 2δπ = Λ, hence by (1.29) we have

ηλ(r) ≤ ηλ(R0)−
(
1 +

p

2
+ δ
)
log

r

R0
=

= C(R0)−
(
1 +

p

2
+ δ
)
log r, ∀r ≥ R0.

This implies that

lim
R→∞

lim
λ→0

ˆ
Bc

R

(1 + |x|p)e2ηλdx = 0. (1.34)

We can split

Λ =

ˆ
BR

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλdx+

ˆ
Bc

R

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλdx

by uniform convergence the first term goes to
´
BR

e2ηdx as λ→ 0, regarding the second
term we have ∣∣∣∣ ˆ

Bc
R

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλdx

∣∣∣∣ ≤ ˆ
Bc

R

(1 + |x|p)e2ηλdx,

so taking the limit as λ→ 0 and using (1.34), we obtain

Λ =

ˆ
BR

e2ηdx+ oR(1), as R→ +∞.

It follows that

Λ =

ˆ
R2

(
1−

rpλ|x|
p

λ

)
e−r

2
λ|x|

2
e2ηλdx −−→

λ↓0

ˆ
R2

e2ηdx = Λsph

which is absurd, hence we must have µ > 0.
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Proof of Theorem 1.1.2. Existence part. Since rpλ
λ −−−→

λ→0
µ > 0 by Lemma 1.4.5, choosing

R =
(

4
µ

)1/p
we have that for λ sufficiently small it holds

1−
rpλ
λ
|x|p ≤ 1− µ

2
|x|p ≤ −µ

4
|x|p for |x| ≥ R.

Therefore, by (1.30) we obtain
ˆ
Bc

R

µ

4
|x|pe−r2λ|x|2e2ηλdx ≤ −

ˆ
Bc

R

(
1−

rpλ
λ
|x|p
)
e−r

2
λ|x|

2
e2ηλdx =

=

ˆ
BR

(
1−

rpλ
λ
|x|p
)
e−r

2
λ|x|

2
e2ηλdx− Λ ≤ C

(1.35)

where we used that ηλ ≤ 0. So, from the fact that the integrand in BR is uniformly
bounded, it follows that

ˆ
R2

(1 + |x|p)e−r2λ|x|2e2ηλdx ≤ C.

From (1.35) we also have
ˆ
Bc

R

e−r
2
λ|x|

2
e2ηλdx ≤ C

Rp
−−−−−→
R→+∞

0

uniformly in λ, and hence

lim
λ→0

ˆ
R2

e−r
2
λ|x|

2
e2ηλdx =

ˆ
R2

e2ηdx. (1.36)

Using Fatou’s lemma
ˆ
R2

|x|pe2ηdx ≤ lim
λ→0

ˆ
R2

|x|pe−r2λ|x|2e2ηλdx. (1.37)

From (1.36) and (1.37) we obtain
ˆ
R2

(1− µ|x|p)e2ηdx ≥ Λ.

Now we are going to prove that the previous inequality is actually an equality. Since
rpλ
λ → µ > 0 then

λ
1
p

rλ
→ 1

µ
1
p

> 0,

proceeding as in the proof of Lemma 1.4.5, for R0 = 2µ
− 1

p and λ0 sufficiently small,
relation (1.33) holds and from it (1.34) follows. Finally, (1.34) implies that

ˆ
R2

(1− µ|x|p)e2ηdx = Λ.

Defining
u(x) := η(ρx) + log ρ, ρ := µ

− 1
p

we get the desired solution to (1.4).
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Asymptotic behavior. Proof of estimate (1.5). Let u be a solution to (1.4) and ũ its
Kelvin transform as defined in (1.15). We have

−∆ũ(x) =

(
1− 1

|x|p

)
e2ũ(x)

|x|4−
Λ
π

= O

(
1

|x|4+p−Λ/π

)
, as |x| → 0.

Since for Λ > Λ∗,p

4 + p− Λ

π
= 2− Λ− Λ∗,p

π
< 2

we obtain
−∆ũ ∈ Lqloc(R

2) for 1 ≤ q <
1

1− Λ−Λ∗,p
2π

,

hence by elliptic estimates we have

ũ ∈ W2,q
loc(R

2) for 1 ≤ q <
1

1− Λ−Λ∗,p
2π

.

Now, by the Morrey-Sobolev embedding we obtain that

ũ ∈ C0,α
loc (R

2)

for α ∈ [0, 1] such that α < Λ−Λ∗,p
π . From this (1.5) follows.

Proof of estimate (1.6). If u is a solution to (1.4), then u satisfies the integral equation
(1.10) and differentiating under the integral sign, we obtain

|∇u(x)| = O

(ˆ
R2

1

|x− y|
(1 + |y|p)e2u(y)dy

)
since Λ > Λ∗,p, using (1.5) as |x| → ∞ we get

(1 + |x|p)e2u(x) ≤ C

1 + |x|2+δ

for δ > 0. Hence, for |x| large, we have

|∇u(x)| ≤ C

(ˆ
B|x|/2

+

ˆ
B2|x|\B|x|/2

+

ˆ
Bc

2|x|

)
1

|x− y|
1

1 + |y|2+δ
dy

≤ C

|x|
+

C

|x|2+δ

ˆ
B2|x|\B|x|/2

1

|x− y|
dy ≤ C

|x|
.

1.5 Compactness result

Let p ∈ (0, 2) be fixed and {uk | k ∈ N} be a sequence of solutions to (1.4) with
Λ = Λk ∈ [Λ∗,p,Λsph), hence every solution uk solves the integral equation

uk(x) =
1

2π

ˆ
R2

log

(
|y|

|x− y|

)
(1− |y|p)e2uk(y)dy + ck. (1.38)

Assuming that

Λk :=

ˆ
R2

(1− |x|p)e2uk(x)dx→ Λ̄ ∈ [Λ∗,p,Λsph), (1.39)
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we want to prove that uk → ū (up to a subsequence) uniformly locally in R2, where ū is
a radial solution to (1.4) with Λ = Λ̄.

With the same procedure used in the proof of Lemma 1.4.2, we can prove that uk is
radially decreasing.

Lemma 1.5.1. We have uk(0) ≥ C where C depends only on inf
k
Λk.

Proof. Using the fact that uk is radially decreasing, we have

Λk =

ˆ
R2

(1− |x|p)e2uk(x)dx ≤
ˆ
B1

(1− |x|p)e2uk(x)dx

≤
ˆ
B1

e2uk(x)dx ≤ πe2uk(0),

therefore
uk(0) ≥

1

2
log

Λk
π

≥ log
√
p+ 2 > 0

since Λk
π ∈ [2 + p, 4).

Since Λk ∈ [Λ∗,p,Λsph), using Proposition 1.3.2 (which can be applied thanks to
Proposition 1.3.4 if Λk ∈ (Λ∗,p,Λsph) and thanks to Lemma 1.3.9 if Λk = Λ∗,p) we have
the following Pohozaev identity:

Λk
Λsph

(Λk − Λsph) = −p
2

ˆ
R2

|x|pe2uk(x)dx. (1.40)

Hence we have ˆ
R2

e2ukdx = Λk −
2Λk
pΛsph

(Λk − Λsph) (1.41)

and taking the limit for k → +∞

lim
k→+∞

ˆ
R2

e2ukdx = Λ̄− 2Λ̄

pΛsph
(Λ̄− Λsph). (1.42)

Lemma 1.5.2.
lim sup
k→+∞

uk(0) <∞

Proof. From (1.39), (1.40) and (1.41) we have

lim sup
k→+∞

ˆ
R2

(1 + |x|p)e2ukdx < +∞. (1.43)

Differentiating (1.38), integrating over B1(0) and using Fubini’s theorem, we get

ˆ
B1(0)

|∇uk|dx ≤ C

ˆ
R2

(ˆ
B1(0)

1

|x− y|
dx

)
(1 + |y|p)e2uk(y)dy ≤ C

where in the last inequality we used (1.43). Assume by contradiction that (up to a
subsequence) uk(0) → +∞ as k → +∞, by [144, Theorem 2] (the two-dimensional case
was first studied by Brezis and Merle in [32] and by Li and Shafrir in [129]) we have that
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uk → −∞ locally uniformly in B1(0) \ {0}. Moreover, we have quantization of the total
curvature, namely

lim
k→+∞

ˆ
Br(0)

(1− |x|p)e2ukdx = 4π,

where r ∈ (0, 1) is fixed. The blow-up at the origin is spherical, namely there exists a
sequence of positive numbers

µk := 2e−uk(0) → 0, as k → +∞,

such that, setting
ηk(x) := uk(µkx)− uk(0) + log 2,

we have
ηk(x) −−−→

k→∞
log

2

1 + |x|2
in C1

loc(R2).

Since uk is monotone decreasing, we have that uk → −∞ locally uniformly in R2 \ {0}
and using (1.43) we get

lim
k→+∞

ˆ
R2

e2ukdx = Λsph.

Comparing the previous one and (1.42), we have

1 =
2Λ̄

pΛsph
≥ 2Λ∗,p
pΛsph

=
2 + p

2p
> 1 for p ∈ (0, 2),

which is absurd.

Lemma 1.5.3. uk → ū locally uniformly, where ū is a solution to (1.4) with Λ = Λ̃ ≥ Λ̄.

Proof. Using Lemma 1.5.1 and Lemma 1.5.2 and the fact that uk is radial decreasing,
we have

uk ≤ uk(0) = O(1),

therefore
−∆uk = OR(1) on BR.

Integrating (1.38) over BR and using Fubini’s theorem and (1.43), we obtain that
ˆ
BR

|uk(x)|dx ≤ CR

therefore, by elliptic estimates we have

∥uk∥C1,α(BR/2)
≤ CR/2

and hence, up to a subsequence uk → ū in C1
loc(R2). Finally by Fatou’s lemma, we have

that
Λ̃ :=

ˆ
R2

(1− |x|p)e2ūdx ≥ lim sup
k→+∞

ˆ
R2

(1− |x|p)e2ukdx = Λ̄.

Lemma 1.5.4. We have Λ̃ = Λ̄.
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Proof. Assume by contradiction that Λ̃ > Λ̄. Using the fact that uk → ū in C0
loc(R2), we

get

Λ̃− Λ̄ = −
ˆ
Bc

R

(1− |x|p)e2ukdx+ ok(1) + oR(1), as k → +∞, R→ +∞

hence

0 < Λ̃− Λ̄ = lim
R→+∞

lim
k→+∞

ˆ

Bc
R

(|x|p − 1)e2ukdx = lim
R→+∞

lim
k→+∞

ˆ

Bc
R

|x|pe2ukdx =: ρ. (1.44)

We consider the Kelvin transform of uk as defined in (1.15) for x ̸= 0

ũk(x) = uk

(
x

|x|2

)
− Λk

2π
log |x|.

From Proposition 1.3.3 we have

ũk(x) =
1

2π

ˆ
R2

log

(
1

|x− y|

) (
1− 1

|y|p

)
e2ũk(y)

|y|2−p−δk
dy + ck, δk =

Λk − Λ∗,p
π

,

and with the same procedure for proving (1.24) we obtain

ũk(x) = − 1

2π

ˆ

B1

log

(
1

|x− y|

)
e2ũk(y)

|y|2−δk
dy +O(1), if 0 < |x| < 1. (1.45)

If δk ̸→ 0, from (1.45) we have that ũk = O(1) in B1, but this contradicts the fact that
ρ > 0, hence we must have δk → 0, namely Λk → Λ∗,p. Let us define εk > 0 in such a
way that ˆ

Bεk

e2ũk(y)

|y|2−δk
dy =

ρ

2
, (1.46)

and we have that εk → 0 as k → ∞. We can observe that for y ∈ Bεk and x ∈ Bc
2εk

log
(

1
|x−y|

)
= log

(
1
|x|

)
+O(1), hence for 2εk ≤ |x| ≤ 1 we get

ũk(x) = − log(1/|x|)
2π

ˆ

Bεk

e2ũk(y)

|y|2−δk
dy − 1

2π

ˆ

B1\Bεk

log

(
1

|x− y|

)
e2ũk(y)

|y|2−δk
dy +O(1)

≤ − ρ

4π
log

(
1

|x|

)
+ C.

(1.47)

where in the last inequality, we used the fact that log
(

1
|x−y|

)
is lower bounded for y ∈ B1

and x→ 0. From (1.47) we have that

lim
r→0

lim
k→∞

sup
Br

ũk = −∞ (1.48)

and moreover

lim
r→0

lim
k→∞

ˆ
Br\B2εk

e2ũk(y)

|y|2−δk
dy = 0,

which, using (1.44), implies

lim
k→∞

ˆ
B2εk

e2ũk(y)

|y|2−δk
dy = ρ. (1.49)
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Hence from (1.46), (1.48) and (1.49) we obtain

ρ

2
= lim

k→∞

ˆ
B2εk

\Bεk

e2ũk(y)

|y|2−δk
dy = o(1)

ˆ
B2εk

\Bεk

1

|y|2
dy = o(1), as k → ∞,

which is absurd, because we assumed ρ > 0.

Proof of Theorem 1.1.3. Lemma 1.5.3 and Lemma 1.5.4 prove that, up to a subsequence,
uk converges to ū locally uniformly in R2, where ū is a solution to (1.4) with Λ = Λ̄.
Estimate (1.7) follows from Lemma 1.3.9, while for (1.8) we proceed in the same way as
for proving (1.6).

1.6 Spherical blow-up as Λk ↑ Λsph

Lemma 1.6.1. Let {uk | k ∈ N} be a sequence of solutions to (1.4) with Λk ↑ Λsph. Then

uk(0) → +∞, as k → +∞.

Proof. By Lemma 1.5.1 we have that uk(0) ≥ C. Assume by contradiction that, up to a
subsequence, uk(0) → s ∈ R as k → +∞. Proceeding as in the proof of Lemma 1.5.3, we
get that uk → ū, where ū is a solution to (1.4) for Λ ≥ 4π, which contradicts Theorem
1.1.1

Proof of Theorem 1.1.4. By Lemma 1.6.1 the sequence {uk | k ∈ N} blows-up at the
origin. Moreover, we have

ˆ
B1(0)

|∇uk|dx ≤ C

ˆ
R2

(ˆ
B1(0)

1

|x− y|
dx

)
(1 + |y|p)e2uk(y)dy ≤ C.

We can conclude using [144, Theorem 2].

1.7 Appendix

Proof of the estimate (1.18). Since u1 = u− u2 one has

u1(x) =
1

2π

ˆ

R2\B1(x)

log

(
|y|

|x− y|

)
(1− |y|p)e2u(y)dy+

+
1

2π

ˆ

B1(x)

log

(
1

|x− y|

)
e2u(y)dy +

1

2π

ˆ

B1(x)

log |y|(1− |y|p)e2u(y)dy + c =

=
1

2π
(I1 + I2 + I3) + c.

First of all we estimate I1 using the split of R2 introduced in the proof of Proposition
1.3.4

I1 =

ˆ
BR0

(0)
(·)dy +

ˆ
B |x|

2

\B1(x)
(·)dy +

ˆ
R2\(B|x|/2∪BR0

)
(·)dy.

If y ∈ BR0 we have log
(

|y|
|x−y|

)
= − log |x|+O(1) as |x| → ∞, hence

ˆ

BR0

log

(
|y|

|x− y|

)
(1− |y|p)e2u(y)dy = (− log |x|+O(1))(Λ + oR0(1)).
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For y ∈ B|x|/2(x) \B1(x) we have log
(

|y|
|x−y|

)
= O(log |x|) as |x| → ∞, hence

ˆ

B|x|/2(x)\B1(x)

log

(
|y|

|x− y|

)
(1− |y|p)e2u(y)dy = oR0(1)O(log |x|).

For y ∈ R2 \ (B|x|/2(x) ∪BR0) we can observe that log
(

|y|
|x−y|

)
= O(1) as |x| → ∞, so

ˆ

R2\(B|x|/2(x)∪BR0
)

log

(
|y|

|x− y|

)
(1− |y|p)e2u(y)dy = O(1) oR0(1).

Concerning I2, using (1.16) as |x| → ∞ we have

I2 =

ˆ
B1(x)

log

(
1

|x− y|

)
e2u(y)dy ≤ C

ˆ
B1(x)

log

(
1

|x− y|

)
|y|−

Λ
π dy

from Proposition 1.3.1 Λ ≥ 0, hence if Λ = 0 we have I2 ≤ O(1) and if Λ > 0 we obtain
I2 = o(1) as |x| → ∞. Let’s consider I3, as |x| → ∞ we get

I3 = O

(
log |x|

ˆ
B1(x)

(1− |y|p)e2u(y)dy

)
= o(log |x|)

where, since (1−|y|p)e2u(y)χB1(x) → 0 a.e. as |x| → ∞, using dominated convergence we
have

´
B1(x)

(1 − |y|p)e2u(y)dy =
´
R2(1 − |y|p)e2u(y)χB1(x)dy → 0 as |x| → ∞. Summing

up, we can conclude that

u1(x) = −Λ + o(1)

2π
log |x|, as |x| → +∞.
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Chapter 2

Existence and asymptotic behavior
of non-normal conformal metrics on
R4 with sign-changing Q-curvature

2.1 Introduction to the problem and main results

Let p > 0 be fixed, we consider the prescribed Q-curvature equation

∆2u = (1− |x|p)e4u in R4, (2.1)

under the assumption

Λ :=

ˆ
R4

(1− |x|p)e4udx <∞. (2.2)

Geometrically, this means that if u is a solution to (2.1)-(2.2), then the metric gu :=
e2u|dx|2, which is conformal to the Euclidean metric on R4, has Q-curvature equal to
1 − |x|p and finite total Q-curvature Λ. In what follows, we will always assume that
(1− |x|p)e4u ∈ L1(R4). Let u be a solution to (2.1)-(2.2), we define v as

v(x) :=
1

8π2

ˆ

R4

log

(
|y|

|x− y|

)
(1− |y|p)e4udy. (2.3)

Definition 2.1.1 (Normal and non-normal solutions). We call a solution u to (2.1)-(2.2)
normal if there exists a constant c ∈ R such that u solves the following integral equation

u(x) =
1

8π2

ˆ

R4

log

(
|y|

|x− y|

)
(1− |y|p)e4udy + c.

All other solutions to problem (2.1)-(2.2) are called non-normal.

For what concerns normal solutions to (2.1)-(2.2), recently, A. Hyder and L. Marti-
nazzi [116] proved some existence and non-existence results. In particular, among other
things, they showed that problem (2.1)-(2.2) admits normal solutions if and only if
p ∈ (0, 4) and Λ∗,p ≤ Λ < Λsph where Λ∗,p :=

(
1 + p

4

)
8π2 and Λsph := 16π2. More-

over, every normal solution has the following asymptotic behavior

u(x) = − Λ

8π2
log |x|+ C +O(|x|−α), as |x| → ∞

37
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for every α ∈ [0, 1] such that α < Λ−Λ∗,p
2π2 .

Motivated by the above results, we study the properties of more general solutions
(not necessarily normal) to problem (2.1)-(2.2). Although for p ≥ 4, problem (2.1)-(2.2)
admits no normal solutions, we prove that non-normal solutions do exist. To this end,
we consider all polynomials P of degree 2 such that

lim
|x|→∞

P (x) = −∞

and define the set

P2 := {P polynomial in R4 | degP = 2 and lim
|x|→∞

P (x) = −∞}.

By means of a result of S.-Y. A. Chang and W. Chen (see Theorem 2.1 in [46] where,
under suitable assumptions on the curvature K, using a variational approach, they prove
existence of at least one solution to equation (−∆)

n
2 u = K(x)enu in Rn) we prove the

following theorem, which extends to the non-normal case the existence results in [116].

Theorem 2.1.1. Let p > 0 be fixed. Then for any P ∈ P2 and for every Λ ∈ (0,Λsph),
there exists at least one solution to problem (2.1)-(2.2) of the form

u = w + P

where

w(x) = − Λ

8π2
log |x|+ C + o(1), as |x| → +∞.

We shall prove the following classification result.

Theorem 2.1.2. Let u be a solution to (2.1)-(2.2) such that (1− |y|p)e4u ∈ L1(R4) and
v as defined in (2.3). Then there exists an upper-bounded polynomial P of degree at most
2 such that

u = v + P.

Moreover, u has the following asymptotic behavior

u(x) = − Λ

8π2
log |x|+ P (x) + o(log |x|), as |x| → ∞.

Note that P being upper bounded means that P has even degree, and since P has
degree at most 2, this implies that P could only have degree 2 or be constant. For this
reason, we can rephrase Theorem 2.1.2 by saying that all solutions to problem (2.1)-(2.2)
have the form v + P , where v behaves logarithmically at infinity and P is an upper
bounded polynomial of degree 2 if the solution is non-normal, whereas P is constant if
the solution is normal.

Remark 1. We can observe that the function w of Theorem 2.1.1 and the function v of
Theorem 2.1.2 differ by a constant.

In order to prove Theorem 2.1.2, we obtain some suitable upper and lower estimates
for the function v (see Lemma 2.3.1 and Proposition 2.5.3 below). First, we prove the
lower estimate (2.6). To this end, we need to overcome some difficulties compared to
previous works, due to the fact that the Q-curvature is not constant and it changes sign
(compare e.g. to the proof of Lemma 2.4 in [133]). The lower estimate (2.6) will be
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crucial to obtain a Liouville-type theorem (see Theorem 2.4.2), also in this case the proof
is quite delicate because the estimate for −v contains the singular integral

A(x) :=
1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy.

Then we show that the polynomial P is upper-bounded (see Proposition 2.5.2). To do
this, we take advantage of a useful result of Gorin and the fact that |A(x)| ≤ C. In
order to estimate the singular integral A(x) and prove Proposition 2.5.3, we take some
ideas from the proof of Lemma 13 in [142] and the one of Lemma 2.4 in [133], but our
case is more challenging. This is due to the fact that the singular integral A(x) is over
B1(x) and we need a radius τ ∈ (0, 1) which can be fixed later. In addition, we lack a
good estimate for

´
R4\BR

v+ dx, which indeed is necessary in [142], and we do not know
a priori the sign of ∆u, which is fundamental to apply a Harnack inequality as in [133].

Open problem. Can we find non-normal solutions to (2.1)-(2.2) with arbitrarily
large but finite total Q-curvature Λ? In the constant Q-curvature case C.-S. Lin [133]
(see also [46]) proved that this is not the case, indeed he showed that all solutions to{

∆2u = 6e4u in R4

e4u ∈ L1(R4)

satisfy V ∈ (0, vol(S4)]. Unfortunately, his approach is no longer applicable to our case,
in fact when u = v + P with P polynomial of degree 2, we need Q(x) = (1 − |x|p)e4P
to be radially decreasing, which is not true in general. Since x · ∇Q(x) does not have a
fixed sign, using methods from [145], it would be interesting to see whether there exist
solutions to (2.1)-(2.2) with total Q-curvature Λ ≥ Λsph.

2.2 Existence of solutions

In this section, we take advantage of a result of A. Chang and W. Chen (see [46,
Theorem 2.1]). Using a variational approach in a Sobolev space defined on a conical
singular manifold, they prove existence of at least one solution to equation

(−∆)
n
2w = K(x)enw in Rn,

in even dimensions, assuming that K is positive somewhere and for some s > 0, K(x) =

O
(

1
|x|s

)
near infinity.

Proof of Theorem 2.1.1. Let us fix P ∈ P2 and Λ ∈ (0,Λsph). By [46, Theorem 2.1]
and its proof (refer also to Section 7 in [116]) setting K(x) := (1 − |x|p)e4P and µ :=
1− Λ

Λsph
∈ (0, 1), one can find at least one solution w to equation

∆2w = K(x) e4w, in R4

such that ˆ

R4

K(x) e4w dx = (1− µ)Λsph = Λ.

It follows immediately that
u := w + P
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is the desired solution to problem (2.1)-(2.2). More precisely, w is of the form

w = w̃ ◦Π−1 + (1− µ)w0

where w0 = log
(

2
1+|x|2

)
, Π : S4 → R4 denotes the stereographic projection, w̃ = w̄ + C,

where w̄ minimize a certain functional which takes values in a Sobolev space defined on
a conical singular manifold, and C is a suitable constant such that

ˆ
K(x)e4w̃ dV = (1− µ)Λsph

where the corresponding volume element is dV = e4(1−µ)w0dx. We have

P 4
g0w̃ + 6(1− µ) = (K ◦Π)e−4µ(w0◦Π)e4w̃,

from this identity, with the same argument as in Section 7 of [116], we obtain w̃ ∈ C3,α(S4)
for α ∈ (0, 1). In particular, w̃ in continuous at the South pole S = (0, 0, 0, 0,−1), which
implies

w(x) = (1− µ)w0(x) + w̃(S) + o(1) = − Λ

8π2
log |x|+ C + o(1), as |x| → ∞.

Remark 2. If P ∈ P2 is a radially symmetric polynomial, there exists at least one non-
normal radial solution to problem (2.1)-(2.2) of the form u = w + P . This follows from
the fact that we can minimize the previous functional over radial functions and obtain
w̄ radially symmetric.

2.3 Asymptotic behavior

In all this section, let u be a solution to problem (2.1)-(2.2), we define

v(x) =
1

8π2

ˆ

R4

log

(
|y|

|x− y|

)
(1− |y|p)e4udy. (2.4)

Obviously, we have ∆2v(x) = (1− |x|p)e4u in R4.

Lemma 2.3.1. For |x| ≥ 4, there exists a constant C such that

v(x) ≤ − Λ

8π2
log |x|+ C. (2.5)

Proof. For |x| ≥ 4, we decompose R4 = B1(0) ∪ A1 ∪ A2 ∪ A3 where A1 = {y | |y − x| ≤
|x|/2}, A2 = {y | 1 ≤ |y| ≤ 2} and A3 = R4 \ (A1 ∪A2 ∪B1). For y ∈ B1 we have

log

(
|y|

|x− y|

)
≤ − log |x|+ C

hence
ˆ
B1

log

(
|y|

|x− y|

)
(1− |y|p)e4udy ≤ (− log |x|+ C)

ˆ
B1

(1− |y|p)e4udy.
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For y ∈ A1 we have log
(

|y|
|x−y|

)
≥ 0 hence the integral over A1 is negative. For what

concern A2 we have
ˆ
A2

log

(
|y|

|x− y|

)
(1− |y|p)e4udy

=

ˆ
A2

log(|y|) (1− |y|p)e4udy −
ˆ
A2

log(|x− y|)(1− |y|p)e4udy

using the fact that the first integral is non positive, we get

≤ −
ˆ
A2

log(|x− y|)(1− |y|p)e4udy ≤ − log |x|
ˆ
A2

(1− |y|p)e4udy + C

where in the last inequality we used that for y ∈ A2 log |x− y| ≤ log |x|+C. For y ∈ A3

since |x− y| ≤ |x|+ |y| ≤ |x| |y| we have

log

(
|y|

|x− y|

)
≥ − log |x|

and since in this case 1− |y|p < 0 we get

log

(
|y|

|x− y|

)
(1− |y|p) ≤ − log(|x|) (1− |y|p)

and hence
ˆ
A3

log

(
|y|

|x− y|

)
(1− |y|p)e4udy ≤ − log(|x|)

ˆ
A3

(1− |y|p)e4udy.

Summing up, we finally obtain

v(x) ≤ − 1

8π2
log(|x|)

ˆ
AC

1

(1− |y|p)e4udy + C,

since
´
AC

1
(1− |y|p)e4udy ≥ Λ we have

v(x) ≤ − Λ

8π2
log |x|+ C.

Lemma 2.3.2. For any ε > 0, there exists R = R(ε) > 0 such that for |x| ≥ R

v(x) ≥ − 1

8π2
(Λ + 5ε) log |x| − 1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy. (2.6)

Proof. We can choose R0 = R0(ε) > 1 such that
ˆ
BR0

(1− |y|p)e4udy ≤ Λ + ε.

Let us take R > 2R0 and assume that |x| ≥ R, we can decompose

R4 = BR0(0) ∪A1 ∪A2
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where
A1 := {y ∈ R4 : |y − x| ≤ |x|/2}

A2 := {y ∈ R4 : |y − x| > |x|/2, |y| ≥ R0}.

For |x| ≥ R and |y| ≤ R0 we have

log

(
|y|

|x− y|

)
≤ − log |x|+ C < 0

hence, we get
ˆ
BR0

\B1

log

(
|y|

|x− y|

)
(1− |y|p)e4udy

≥ (− log |x|+ C)

ˆ
BR0

\B1

(1− |y|p)e4udy

≥ (− log |x|+ C)

ˆ
BR0

(1− |y|p)e4udy

≥ (− log |x|+ C)(Λ + ε) ≥ −(Λ + ε) log |x|

where we used the fact that
´
BR0

\B1
(1 − |y|p)e4udy ≤

´
BR0

(1 − |y|p)e4udy. Concerning
the integral over B1 we have

ˆ
B1

log

(
|x− y|
|y|

)
(1− |y|p)e4udy ≤

ˆ
B1

log

(
|x− y|
|y|

)
e4udy

=

ˆ
B1

log

(
1

|y|

)
e4udy +

ˆ
B1

log(|x− y|)e4udy ≤ C

using Holder’s inequality. Therefore, we obtain
ˆ
BR0

log

(
|y|

|x− y|

)
(1− |y|p)e4udy ≥ −(Λ + ε) log |x| − C. (2.7)

We observe that log |x − y| ≥ 0 for y ̸∈ B1(x), log |y| ≤ log(2|x|) for y ∈ A1,
´
A1

(1 −
|y|p)e4udy ≥ −ε and log(2|x|) ≤ 2 log |x| for |x| ≥ R, hence we get
ˆ
A1

log

(
|y|

|x− y|

)
(1− |y|p)e4udy

=

ˆ
A1

log(|y|) (1− |y|p)e4udy −
ˆ
A1

log(|x− y|)(1− |y|p)e4udy

≥ log(2|x|)
ˆ
A1

(1− |y|p)e4udy −
ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy

≥ 2 log(|x|)
ˆ
A1

(1− |y|p)e4udy −
ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy

≥ −2ε log |x| −
ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy. (2.8)

For y ∈ A2, in the case |y| ≤ 2|x| we have |y|
|x−y| ≤ 4, while in the case |y| ≥ 2|x| we get

|y|
|x−y| ≤ 2, so when y ∈ A2 we have the estimate

log

(
|y|

|x− y|

)
≤ log 4,
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hence using that
´
A2

(1− |y|p)e4udy ≥ −ε, we obtain
ˆ
A2

log

(
|y|

|x− y|

)
(1− |y|p)e4udy ≥ log(4)

ˆ
A2

(1− |y|p)e4udy ≥ −ε log 4. (2.9)

Putting together (2.7), (2.8) and (2.9), possibly taking R larger, we get

v(x) ≥ − 1

8π2
(Λ + 5ε) log |x|+ 1

8π2

ˆ
B1(x)

log

(
1

|x− y|

)
(1− |y|p)e4udy

From (2.6) changing signs, it follows that for any ε > 0 there is R > 0 such that for
|x| ≥ R

−v(x) ≤ 1

8π2
(Λ + 5ε) log |x|+ 1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy. (2.10)

2.4 A Liouville-type theorem

To prove a Liouville-type theorem (see Theorem 2.4.2 below) we will need the follow-
ing useful result.

Lemma 2.4.1. Let u be a measurable function such that (1 − |y|p)e4u ∈ L1(R4). Then
for any x ∈ R4 it holds  

Br(x)
u+dy → 0, as r → +∞.

Proof. Let x ∈ R4 be fixed, using the fact that 4u+ ≤ e4u we get

4

 
Br(x)

u+dy ≤
 
Br(x)

e4udy =
C

r4

ˆ
Br(x)

1

1− |y|p
(1− |y|p)e4udy. (2.11)

Observing that for y ∈ Br(x) we have |y| ≤ r + |x| and |y| ≥ −r + |x|, we obtain the
following inequalities

1

1− |y|p
≤ 1

1− (|x|+ r)p
,

and
1

1− |y|p
≥ 1

1− (|x| − r)p
,

by means of them we get

4

 
Br(x)

u+dy ≤ C

r4

[
1

1− (|x|+ r)p

ˆ

Br(x)∩B1

(1− |y|p)e4udy

+
1

1− (|x| − r)p

ˆ

Br(x)∩Bc
1

(1− |y|p)e4udy

]

since
´
Br(x)

(1− |y|p) e4udy < ∞, we can estimate (2.11) with O(r−p−4) as r → ∞. The
claim follows as r → +∞ since by assumption p > 0.

We are now in position to prove the following Liouville-type theorem, which will be
crucial to prove that u− v is a polynomial of degree at most 2.
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Theorem 2.4.2. Consider h : R4 → R such that

∆2h = 0 and h ≤ u− v.

Assume that (1− |y|p)e4u ∈ L1(R4), v ∈ L1
loc(R4) and further that (2.10) holds. Then, h

is a polynomial of degree at most 2.

Proof. We take some ideas from the proof of [142, Theorem 6], but this proof is more
delicate since our estimate for −v contains the singular integral

A(x) :=
1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy.

By elliptic estimates for biharmonic functions (see [142, Proposition 4]) for any x ∈ R4

we have

|D3h(x)| ≤ C

r3

 
Br(x)

|h(y)|dy = −C

r3

 
Br(x)

h(y)dy +
2C

r3

 
Br(x)

h+dy. (2.12)

From Pizzetti’s formula (refer e.g. to [142]) we have
 
Br(x)

h(y)dy = O(r2), as r → ∞. (2.13)

In order to estimate the term 2C
r3

ffl
Br(x)

h+dy, we observe that

 
Br(x)

h+dy ≤
 
Br(x)

u+dy + C

 
Br(x)

(−v)+dy,

thanks to Lemma 2.4.1 the term
ffl
Br(x)

u+dy → 0. Using Tonelli’s theorem, we can prove
that A ∈ L1(R4) as follows

ˆ
R4

|A(x)| dx =

ˆ
R4

∣∣∣ 1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy
∣∣∣dx

≤
ˆ
R4

1

8π2

ˆ
B1(x)

∣∣ log |x− y|
∣∣ ∣∣1− |y|p

∣∣e4udy dx
= C

ˆ
R4

ˆ
R4

χ|x−y|<1

∣∣ log |x− y|
∣∣ ∣∣1− |y|p

∣∣e4udy dx
= C

ˆ
R4

∣∣1− |y|p
∣∣e4u ˆ

B1(y)
log

(
1

|x− y|

)
dx dy

= C

ˆ
R4

∣∣1− |y|p
∣∣e4udy <∞.

Since 1
8π2 (Λ + 5ε) log |x|+A(x) ≥ 0 for |x| ≥ R > 2, we get

(−v)+ ≤ 1

8π2
(Λ + 5ε) log |x|+A(x)

for x ∈ R4 \BR. Taking into account that A(x) ∈ L1 we obtain
 
Br(x)

(−v)+dy ≤ C

 
Br(x)

log(|y|+ 1) dy +

 
Br(x)

A(y)dy ≤ C log r +
C

r4
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(if y ∈ BR(0) the previous estimate for (−v)+ does not hold, we can overcome this
problem since v ∈ L1

loc(R4)). Hence,
 
Br(x)

h+dy ≤
 
Br(x)

u+dy +
C

r4
+ C log r. (2.14)

From (2.13) and (2.14), we get that all terms in (2.12) go to 0 as r → ∞, hence we obtain
D3h ≡ 0.

2.5 Proof of the classification result

In order to prove that all solutions to problem (2.1)-(2.2) have the form v+P , where
v behaves logarithmically at infinity and P is an upper-bounded polynomial of degree at
most 2, we proceed by steps.

Theorem 2.5.1. Let u be a solution to problem (2.1)-(2.2) such that (1 − |y|p)e4u ∈
L1(R4) and v as in (2.4). Then

u = v + P

where P is a polynomial of degree at most 2. Moreover, ∆u(x) can be represented by

∆u(x) = − 1

4π2

ˆ
R4

1

|x− y|2
(1− |y|p)e4udy + C, (2.15)

where C is a constant.

Proof. Consider P = u − v, we have ∆2P = 0. From (2.10) using Theorem 2.4.2 we
can conclude that u = v + P where P is a polynomial of degree at most 2. Hence
∆u = ∆v + ∆P , it follows immediately that ∆P = C where C is a constant and from
(2.4) we have that ∆v = − 1

4π2

´
R4

1
|x−y|2 (1− |y|p)e4udy.

Let us prove that the polynomial P is upper-bounded.

Proposition 2.5.2. Let P be the polynomial of Theorem 2.5.1. Then

sup
x∈R4

P (x) < +∞.

Proof. Step 1. Estimate of the term |A(x)|. We take some ideas from the proof of
[142, Lemma 13] and the one of [133, Lemma 2.4], but our case is more challenging. In
what follows, C denotes a generic constant which may change from line to line and also
within the same line. We observe that

|A(x)| =
∣∣∣∣ 1

8π2

ˆ
B1(x)

log (|x− y|) (1− |y|p)e4udy
∣∣∣∣

≤ 1

8π2

ˆ
B1(x)

log

(
1

|x− y|

)
|1− |y|p| e4udy

=
1

8π2

(ˆ
B1(x)\Bτ (x)

+

ˆ
Bτ (x)

)
log

(
1

|x− y|

)
|1− |y|p| e4udy

where τ ∈ (0, 1) will be fixed later. Since log
(

1
|x−y|

)
∈ (0,− log τ) for y ∈ B1(x) \Bτ (x)

and by assumption (1− |y|p)e4u ∈ L1(R4), we have
ˆ
B1(x)\Bτ (x)

log

(
1

|x− y|

)
|1− |y|p| e4udy < C.
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In order to estimate the integral over Bτ (x) we proceed as follows. By Holder’s inequality
we get
ˆ
Bτ (x)

log

(
1

|x− y|

)
|1− |y|p| e4udy

≤

(ˆ
Bτ (x)

log

(
1

|x− y|

)2

dy

)1/2(ˆ
Bτ (x)

|1− |y|p|2 e8udy

)1/2

≤

(ˆ
Bτ (x)

log

(
1

|x− y|

)2

dy

)1/2(ˆ
Bτ (x)

|1− |y|p|4 dy

)1/4(ˆ
Bτ (x)

e16udy

)1/4

.

(2.16)

Fix 0 < ε0 < 1, we can choose R0 > 6 sufficiently large such that
ˆ
B4(x)

|1− |y|p| e4udy ≤ ε0 (2.17)

for |x| ≥ R0. Let h be the solution of{
∆2h = f on B4(x)

h = ∆h = 0 on ∂B4(x)

where f(y) = (1− |y|p)e4u(y), then by [142, Theorem 7] (refer also to [133, Lemma 2.3])

for any k ∈
(
0, 8π2

∥f∥L1(B4(x))

)
, we have e4k|h| ∈ L1(B4(x)), and

ˆ
B4(x)

e4k|h|dy ≤ C (2.18)

where C is a constant which depends on k but is independent from x. For y ∈ B4(x)
define q(y) := u(y)− h(y), then q satisfies{

∆2q = 0 on B4(x)

∆q = ∆u and q = u on ∂B4(x)
.

Integrating equation ∆2u = (1− |y|p)e4u on Bρ(x) we get
ˆ
∂Bρ(x)

∂

∂r
(∆u)dσ =

ˆ
Bρ(x)

(1− |y|p)e4udy.

Dividing by ω4ρ
3 and integrating with respect to ρ from 0 to R (we assume R < 5), using

Fubini’s theorem, we obtain

ˆ R

0

1

ω4ρ3

ˆ
∂Bρ(x)

∂

∂r
(∆u)dσ dρ =

 
∂BR(x)

∆u dσ −∆u(x)

and similarly

ˆ R

0

1

ω4ρ3

ˆ
Bρ(x)

(1− |y|p)e4udy dρ =
1

4π2

ˆ
BR(x)

(1− |y|p)e4u
[

1

|x− y|2
− 1

R2

]
dy.
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Hence  
∂BR(x)

∆u dσ = ∆u(x) +
1

4π2

ˆ
BR(x)

(1− |y|p)e4u
[

1

|x− y|2
− 1

R2

]
dy

by means of identity (2.15) we get

−
 
∂BR(x)

∆u dσ =
1

4π2

ˆ
|x−y|≥R

1− |y|p

|x− y|2
e4udy +

1

4π2R2

ˆ
BR(x)

(1− |y|p)e4udy − C1.

If we take R = 4 we have
−
 
∂B4(x)

∆u dσ ≤ C. (2.19)

Let G be the Green’s function for the operator ∆ on B4(x), namely

∆G = δx and G = 0 on ∂B4(x),

we have
−∆q(x) = −

ˆ
∂B4(x)

∂G

∂n
∆u dσ = −

ˆ
∂B4(x)

c0∆u dσ ≤ C

where by [142, Lemma 12] c0 > 0 and in the last inequality we used (2.19). Since c0
is a positive constant there exist some τ ∈ (0, 1) such that if ξ ∈ B4τ (x) and Gξ is the
Green’s function defined by

∆Gξ = δξ, Gξ = 0 on ∂B4(x),

then
0 ≤

∂Gξ(η)

∂r
≤ C, for η ∈ ∂B4(x), r :=

η − x

4

and as before we get
−∆q(y) ≤ C on B4τ (x). (2.20)

Define q̃(y) := −∆q(y), obviously q satisfies{
∆q(y) = −q̃(y) in B4(x)

q = u on ∂B4(x)

hence by elliptic estimates (refer to [93, Theorem 8.17]) for any ℓ > 1 and σ > 2

sup
Bτ (x)

q ≤ c(ℓ, σ)
(
∥q+∥Lℓ(B4τ (x)) + ∥q̃∥Lσ(B4τ (x))

)
.

From (2.20) we get ∥q̃∥Lσ(B4τ (x)) ≤ C. Since q = u− h, it follows that q+(y) ≤ u+(y) +
|h(y)| for y ∈ B4(x) and hence

ˆ
B4τ (x)

(q+)2 ≤ C

ˆ
B4τ (x)

e2q
+ ≤ C

(ˆ
B4τ (x)

e4u
+

)1/2(ˆ
B4τ (x)

e4|h|

)1/2

.

Note that
e4u

+ ≤ 1 + e4u ≤ 1 + |1− |y|p| e4u, for |y| ≥ 21/p.

Since B4τ (x) ⊂ Bc
21/p

(eventually choosing R0 greater) from (2.17) we get
ˆ
B4τ (x)

e4u
+
dy ≤ C
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finally, together with (2.18), we obtain

∥q+∥L2(B4τ (x)) < C.

In this way we have shown that
sup
Bτ (x)

q ≤ C,

hence for y ∈ Bτ (x) we have

u(y) = q(y) + h(y) ≤ C + |h(y)|,

from which we get ˆ
Bτ (x)

e16udy ≤ C

ˆ
Bτ (x)

e16|h|dy < C. (2.21)

where in the last inequality we used (2.18). From (2.16) using (2.21) we get that

ˆ
Bτ (x)

log

(
1

|x− y|

) ∣∣1− |y|p
∣∣e4udy ≤ C

hence |A(x)| ≤ C.
Step 2. Let us define

f(r) := sup
x∈∂Br

P (x)

and assume by contradiction that sup
R4

P = +∞. From [104, Theorem 3.1] it must exist

s > 0 such that

lim
r→+∞

f(r)

rs
= +∞.

Moreover, P is a polynomial of degree at most 2, hence |∇P (x)| ≤ c|x| for |x| large.
From Lemma 2.3.2 using the fact that |A(x)| ≤ C, we get that there is R (sufficiently
large) such that for every r ≥ R we can find xr with |xr| = r such that

u(y) = v(y) + P (y) ≥ rs, for |y − xr| ≤
1

r
.

We consider

−
ˆ
Bc

1

(1− |y|p)e4udy =

ˆ
Bc

1

(|y|p − 1)e4udy ≥
ˆ
Bc

R

(|y|p − 1)e4udy

≥
ˆ
Bc

R

e4udy ≥ C

ˆ +∞

R

ˆ
∂Br∩B1/r(xr)

e4udσ dr

≥ C

ˆ +∞

R

ˆ
∂Br∩B1/r(xr)

e4r
s
dσ dr ≥ C

ˆ +∞

R

e4r
s

r3
dr = +∞.

which is absurd since (1− |y|p)e4u ∈ L1(R4).

The fact that P is upper-bounded implies that P has even degree, hence or P has degree
2 or is constant. We are now in the position to prove a more precise estimate from below
for the function v.
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Proposition 2.5.3. Let u be a solution to (2.1)-(2.2) such that (1 − |y|p)e4u ∈ L1(R4)
and v as defined in (2.4). Then, given any ε > 0 there exists R = R(ε) such that for
|x| ≥ R it holds

v(x) ≥ − 1

8π2
(Λ + 6ε) log |x|. (2.22)

Moreover, we have
lim

|x|→+∞
∆v(x) = 0. (2.23)

Proof. First we prove (2.22). From Lemma 2.3.2 for any ε > 0 there exists R > 0 such
that for |x| ≥ R

v(x) ≥ − 1

8π2
(Λ + 5ε) log |x| − 1

8π2

ˆ
B1(x)

log(|x− y|)(1− |y|p)e4udy.

Notice that a priori the second term on the right-hand side may be very little, but in the
proof of Proposition 2.5.2 we have proven that |A(x)| ≤ C, so (2.22) follows at once.

Now we prove (2.23). Differentiating we have

∆v(x) = − 1

4π2

ˆ
R4

1

|x− y|2
(1− |y|p)e4udy.

For any σ > 0, by dominated convergence
ˆ

R4\Bσ(x)

(1− |y|p)e4u

|x− y|2
dy → 0, as |x| → +∞.

By Holder’s inequality we get

ˆ

Bσ(x)

(1− |y|p)e4u

|x− y|2
dy ≤

 ˆ

Bσ(x)

(1− |y|p)k

|x− y|2k
dy


1/k ˆ

Bσ(x)

e4k
′udy


1/k′

if σ is small enough, by (2.21) we can conclude.

Proof of Theorem 2.1.2. It follows from Lemma 2.3.1, Theorem 2.5.1, Proposition 2.5.2
and Proposition 2.5.3.

Corollary 2.5.4. Any solution u to (2.1)-(2.2) is bounded from above.

Proof. The solution u is continuous and u = v + P . Moreover from (2.5) we have that
v(x) ≤ C on Bc

4 and from Proposition 2.5.2 we have supR4 P (x) < +∞.
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Part II

Stationary Mean Field Games with
Riesz-type aggregation.
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Mean Field Games theory

The theory of Mean Field Games (MFG in short) has been introduced around 2006 in
a series of seminal papers by Lasry and Lions [123–125] in order to model Nash equilibria
of differential games with infinitely many interacting agents. Independently at about the
same time, Caines, Huang and Malhamé [112–114] developed the analogous concept of
“Nash centainly equivalence principle”. Since then, the study of MFG rapidly grew up,
also encouraged by its powerful applications in a wide range of disciplines: equations of
this kind arise in Economics, Finance, models of social systems and crowd motions. For
a complete presentation of the theory and its applications, we refer the reader to P.-L.
Lions series of lectures at Collège de France [137], the lectures by Gueant, Lasry and
Lions [108] and also [1, 34, 42, 43, 102] among many others.

In the Mean Field Games theory, players are assumed to be indistinguishable and
“rational”, that is each of them optimizes his/her behavior by taking into account the
behavior of the other players, in this sense each individual strategy is influenced by some
averages of quantities depending on the states of the other agents. In other words, each
agent chooses his/her optimal strategy in view of global information that are available to
him/her and that result from the action of all other players, which is described through
the distribution law of the dynamical states. Moreover, agents are infinitesimal, namely
they are small compared to the collection of all other controllers and hence individually
have a negligible influence on the game. In this setting, the key idea underlying the theory
comes from Statistical Mechanics, and consists in a mean-field approach to describe
equilibria in a system of many interacting identical particles (see for instance the notes
by Sznitman [178]). The other central concept is the notion of Nash equilibrium, which
describes how agents play in an optimal way by taking into account the others’ strategies.
In particular, there is a Nash equilibrium when no controller has interest to deviate
unilaterally from the planned control.

II.1 Mean Field Games: an overview

Let us briefly describe from a PDE viewpoint, the heuristic derivation of the MFG
system in the simplest case where the state space is RN and the time horizon is finite (we
mainly follow the approach of [1, Chapter 1]). We stress that, even if our problem deals
with the stationary case, we decided to introduce MFG system in the time-dependent
case to be as generic as possible. On the other hand, it is not our aim to provide all
details and proof, since a rigorous treatment on the topic can be found in the above
mentioned references.

Let us assume to have a differential game with infinitely many players, each agent
controls his/her own dynamics, which is described by the following stochastic differential
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equation (SDE) with values in RN

Xs = x+

ˆ s

t
b(Xr, vr,m(r))dr +

√
2εBs

where x ∈ RN , the control v belongs to the set A of admissible control processes, m ∈
P(RN ) is the distribution of all players, the drift b : RN×A×P(RN ) → RN is sufficiently
smooth, ε is a non-negative parameter and Bs is a N -dimensional standard Brownian
motion starting at 0. Notice that at this stage we assume that m is given, from the point
of view of the model we could think to it as the anticipation made by agents of the future
distribution of players. Each player controls the state X through the control v in order
to minimize a certain common cost. In a typical MFG model, the cost each agent wants
to minimize is

J(t, x, v) = E
[ˆ T

t
L(Xs, vs,m(s))ds+G(XT ,m(T ))

]
where T > 0 is the finite horizon of the problem and L and G are continuous maps. We
define the value function of this optimal control problem as the map u : [0, T ]×RN → R
such that

u(t, x) = inf
v∈A

J(t, x, v).

Taking advantage of some basic notions of optimal control, dynamic programming and
Itô’s formula, one can verify that at least formally, the value function u solves the
Hamilton-Jacobi equation{

−∂tu− ε∆u+H(x,Du,m) = 0 in (0, T )× RN

u(T, x) = G(x,m(T ))

where (slight abuse of notation)

H(x, p,m) := sup
v∈A

[
− L(x, v,m)− b(x, v,m) · p

]
is the Hamiltonian of our problem. Finally, if v∗(t, x) is defined as the maximum point
in the definition of H when p = Du(t, x), that is

H(x,Du,m) = −L(x, v∗,m)− b(x, v∗,m) · p,

by standard arguments in control theory, one can verify that v∗(t, x) is the optimal
feedback, i.e. the optimal strategy to implement at time t in the state x. Moreover,
under suitable assumptions, the drift is of the form

b(x, v∗,m) = −DpH(x,Du,m).

Using the control v∗ agents play in optimal way and the dynamic of each of them is
described by

dX∗
s = b(X∗

s , v
∗(s,X∗

s ),m(s)) +
√
2ε dBs.

Since we assume that all the agents behave in this way, and moreover that the initial
position and the noise in their dynamics are independent (there is no common noise),
studying the mean field limit, we obtain that at time s the distribution of all agents m̃(s)
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is described by the law of X∗
s with initial distribution m0 ∈ P(RN ). Hence, the function

m̃ satisfies in the sense of distributions the following Kolmogorov equation{
∂tm̃(t, x)− ε∆m̃(t, x) + div

(
m̃(t, x)b(x, v∗(t, x),m(t))

)
= 0 in (0, T )× RN

m̃(0) = m0 in RN
.

If all agents play optimally, in an equilibrium regime for the game, we expect that
the anticipation m is correct, namely m(t) = m̃(t). This leads to the MFG system

−∂tu− ε∆u+H(x,Du,m) = 0 in (0, T )× RN

∂tm− ε∆m− div
(
mDpH(x,Du,m)

)
= 0 in (0, T )× RN

m(0) = m0, u(x, T ) = G(x,m(T ))

. (II.1)

In particular if the cost of control is separate from the mean-field dependent one, the
MFG system assumes the following form:

−∂tu− ε∆u+H(x,Du) = F (x,m) in (0, T )× RN

∂tm− ε∆m− div
(
mDpH(x,Du)

)
= 0 in (0, T )× RN

m(0) = m0, u(T ) = G(x,m(T ))

. (II.2)

The above systems consist of a backward Hamilton-Jacobi equation coupled with a for-
ward Kolmogorov-Fokker-Planck equation. In particular, the Hamilton-Jacobi equation
is related to the optimal control problem of a typical small agent and it is solved by the
value function of each player; while the Kolmogorov equation is related to the distribu-
tion law of the individual states and provides the evolution of the population density.
The MFG system (II.1) describes, from a PDE viewpoint, Nash equilibria of differential
games with infinitely many players. Indeed, the deviation of a single agent does not
change the population dynamics, this is due to the fact that each agent is assumed to be
“small” compared to the whole population. It follows that in the individual optimization
the behavior of the other players, and hence their distribution m(t), can be taken as
given. In short, all agents play an optimal strategy while freezing the others’ choices.

Conditions under which the MFG system admits a solution, and also its uniqueness
and stability, can be found already in the first works by Lasry and Lions [123–125] in
the case when F and G are monotone smoothing operators on the space of probabil-
ity measures (i.e. the behavior of the couplings depends on the global behavior of m).
Uniqueness of the solution is in general not expected, if Lasry-Lions’ monotonicity con-
dition fails (see e.g. [10, 33, 42, 43]), while it is proved to hold for short time horizon. On
the other hand, existence of smooth solutions in the case of local couplings, namely when
the functions F and G depend on the (Lebesgue) density of the measure m, is much
more involved. We refer the reader to [100, 101, 103] for existence of smooth solutions
under either growth limitations on the Hamiltonian or growth limitations on the coupling
(see also [40]). In this context, starting from [125] where existence of weak solutions has
been proved, a complete theory was then developed in [169, 170] proving uniqueness and
stability of weak solutions in quite general setting (see also [35, 36]). We refer the reader
to [1, Chapter 1] and the references therein, for a complete overview on this topic.

We are now in the position to heuristically introduce second order stationary
MFG systems, this class of systems will be the main object of study of Part II. Similarly
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to before, we assume that the dynamics of a typical player is described by the following
controlled SDE

dXt = −vtdt+
√
2 dBt, X0 = x ∈ RN ,

where vt is the controlled velocity and Bt is a standard N -dimensional Brownian motion.
Each agent wants to minimize the following long-time average cost

J(x, v) := lim inf
T→+∞

1

T
E
[ˆ T

0
L(vt) + F (Xt,m(Xt)) dt

]
,

where the Lagrangian L represents the cost of moving with velocity vt, while the function
F (Xt,m(Xt)) represents the cost of being at position Xt, modeling the coupling between
the individual and the overall population. Following the same arguments as before (refer
also to [16, 111]), we can associate to this optimal control problem a stationary Hamilton-
Jacobi-Bellman equation

−∆u(x) +H
(
∇u(x)

)
+ λ = F

(
x,m(x)

)
in RN

where the HamiltonianH is the Legendre transform of L, that isH(p) := supa∈RN [−L(a)+
p · a]. It follows that the optimal velocity of a typical player is given in feedback form by
−∇H(∇u(·)). Since the drift is autonomous, if all agents play in an optimal way then,
the law of Xt becomes stable in the long-time regime, namely as t→ +∞ it converges to
the measure m̃ which solves a stationary Kolmogorov-Fokker-Planck equation with drift
b(x) = −∇H(∇u(x)). In an equilibrium regime, the invariant measure m̃ (independent
of the initial position) coincides with the population density m. Equilibria of the game
are encoded in the following stationary MFG system

−∆u+H(∇u) + λ = F (x,m) in RN

−∆m− div
(
m∇H(∇u)

)
= 0 in RN´

RN m = 1

(II.3)

where the unknowns are the function u and m, and the ergodic constant λ ∈ R. Notice
that λ can be interpreted as the value of the game, indeed if there exists an admissible
control v∗ such that v∗(x) ∈ argmaxa∈RN [a · ∇u− L(a)] then, λ = J(x, v∗).

As already pointed out in [123], system (II.3) can also be defined as the limit, when
the number of players tends to infinity, of Nash equilibria of ergodic differential games
(refer to [34] for the analogous result for time-dependent problems).

A natural problem that arises in the literature is the study of the long-time behavior
of the system (II.2) in connection with the corresponding ergodic control problem for
mean field games (see [137]). The convergence of the MFG system in (0, T ), as the time
horizon T tends to infinity, towards a stationary ergodic system of the form (II.3), has
been proved under some special assumptions but it remains still open in the general
case. More in detail, the long-time behavior is completely described for purely quadratic
Hamiltonians [39, 40], in the case of smoothing couplings and uniformly convex Hamil-
tonians [41] and for local couplings and globally Lipschitz Hamiltonian [171] (see also
[37, 146]). This is also related to the study of the long time stability of solutions, it
can be proved that solutions become nearly stationary for most of the time, showing a
so-called turnpike pattern (see [171]).

Finally, we point out that in order to study existence of solutions for MFG systems,
the main arguments in the literature are based on variational methods, convex opti-
mization, and elliptic regularity (refer e.g. to [15, 35, 38, 44, 97, 98, 102, 149] and to
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Chapter 4). We can also construct solutions to MFG systems by exploiting a fixed point
argument and an approximation procedure (see [9, 70, 102, 123] and also [69, 76] for
multi-population systems), we will use this strategy in Chapter 3. Notice that, introduc-
ing sequences of regular couplings that converge to the original ones and studying the
corresponding approximating problem, is a very common tool in such kind of problems
(refer to [44, 70, 137]), indeed using the stability of the equation and some a priori es-
timates, one can prove that approximate solutions converge to a solution of the initial
problem.

II.2 Our problem: a Riesz-type coupling

In Chapter 3 and Chapter 4, we study second-order ergodic Mean Field Games sys-
tems defined in the whole space RN , with attractive nonlocal coupling given in terms of
a Riesz interaction kernel. Our analysis takes into account both the model in presence
of an external coercive potential V and the potential-free case. More in detail, given
M > 0, we consider elliptic systems of the form


−∆u+ 1

γ |∇u|
γ + λ = V (x)−

´
RN

m(x)
|x−y|N−αdy

−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0´
RN m =M, m ≥ 0

in RN (II.4)

where γ > 1 and α ∈ (0, N) are fixed. Note that the unknowns in the previous system
are the functions u,m and the constant λ ∈ R, which can be interpreted as a Lagrange
multiplier related to the mass constraint

´
RN m =M , or as the value of the game.

In Chapter 3, we will assume that the potential V is a locally Hölder continuous coercive
function, that is there exist b and CV positive constants such that

C−1
V (max{|x| − CV , 0})b ≤ V (x) ≤ CV (1 + |x|)b, ∀x ∈ RN . (II.5)

Notice that the assumption on V to be non-negative is not restrictive, we can assume
more generally that V is bounded from below and shift appropriately λ. On the other
hand, in Chapter 4 we will study the corresponding potential-free MFG system, that is
we assume that V is identically 0.
The coupling in the system is given through the interaction term −Kα ∗m, where Kα :
RN → R is the Riesz potential of order α ∈ (0, N), defined for every x ∈ RN \ {0} as

Kα(x) =
1

|x|N−α .

Finally, we assume, for sake of simplicity, that the Hamiltonian H in the system (II.4)
has the form H(p) = 1

γ |p|
γ . Actually, the results we obtain in Chapter 3 and Chapter

4 also hold under more general assumptions on the Hamiltonian, namely assuming that
H : RN → R is strictly convex, H ∈ C2(RN \{0}) and there exist CH , K > 0 and γ > 1,
such that ∀p ∈ RN the following conditions hold

CH |p|γ −K ≤ H(p) ≤ CH |p|γ

∇H(p) · p−H(p) ≥ K−1|p|γ −K

|∇H(p)| ≤ K|p|γ−1.
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Our aim is to study existence and nonexistence of classical solutions to the MFG
system (II.4) in the two above-mentioned cases. We recall that by classical solution we
mean a triple (u,m, λ) ∈ C2(RN ) ×W 1,p(RN ) × R for every p ∈ (1,+∞) solving the
system.

Before discussing our results more in detail, let us take a look at some considerations
regarding our model and the current state-of-the-art.

In our setting, each agent wants to minimize the following long-time average cost

lim inf
T→∞

1

T
E

[ˆ T

0

|vt|γ
′

γ′
+ V (Xt)−Kα ∗m(Xt)dt

]

where γ′ = γ
γ−1 is the conjugate exponent of γ and m(x) is the density of population

at x ∈ RN . We observe that the potential cost has two components: the term V and
the term −Kα ∗m. The coercive potential V describes spatial preferences of agents and
hence (if present) discourages them from being far away from the origin. The Riesz-type
interaction potential −Kα ∗m, represents the coupling between the individual and the
overall population, due to it every player of the game is attracted towards regions where
the population is highly concentrated. In addition, the dynamics of each player is subject
to a Brownian noise which induces a dissipation effect. So, existence results for classical
solutions to the MFG system (II.4) will depend on balancing between dissipation and
aggregation. Indeed, if aggregating forces are too strong, the mass m tends to concen-
trate and hence to develop singularities, while if the diffusion dominates, we might have
loss of mass at infinity, in both cases we expect nonexistence of classical solutions.

In the particular case when γ = γ′ = 2, using the Hopf-Cole transformation v(x) :=
e−u(x)/2 (see [123, 125]), we can reduce our MFG system to a single PDE. More in detail,
exploiting the previous change of variable and setting m(x) = v2(x), the MFG system
(II.4) proves to be equivalent to the following normalized Choquard equation{

−2∆v + (V (x)− λ)v = (Kα ∗ v2)v´
RN v

2(x)dx =M, v > 0
in RN , (II.6)

with associated energy

E(v) =
ˆ
RN

2|∇v|2 + V (x)v2dx− 1

2

ˆ
RN

ˆ
RN

v2(x) v2(y)

|x− y|N−α dx dy.

Notice that the relation between MFG systems and normalized nonlinear elliptic equa-
tions has recently been exploited in [164] in the case of nonlinear Schrödinger systems.
Choquard-type equations have been intensively studied during last decades since they
appear in the context of various mean-field type physical models. The peculiarity of the
Choquard equation lies in the attractive interaction potential, which is given in terms
of a Riesz interaction kernel and therefore it is weaker and with longer range than the
usual power-type potential in the classical Nonlinear Schrödinger equation. Existence of
solutions to the normalized Choquard equation (II.6) in the case V ≡ 0, was first inves-
tigated using variational methods by Lieb [130]. In particular, he proved existence and
uniqueness (up to translations) of solutions when N = 3 and α = 2 by using symmetric
decreasing rearrangement inequalities. Then, P.-L Lions [134] proved that there exists a
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minimum of the energy associated to (II.6) (with V ≡ 0) when we restrict the infimum to
functions with spherical symmetry, while more recently Li and Ye [128] studied existence
of positive solutions by using a minimax procedure and the concentration-compactness
principle. We refer the reader to [135, 136, 152, 156] and references therein for a complete
overview of the topic. Finally, as we shall see later, the existence result in Chapter 4
(Theorem 4.1.1 below) provides a more general result for the range of values α such that
the normalized Choquard equation (II.6) with V ≡ 0 has a solution, but it leaves open
the problem of symmetry of solutions.

Our model is defined in the whole Euclidean space RN , while usually, Mean Field
Games systems are defined on bounded domains, with Neumann or periodic boundary
conditions, in order to avoid non-compactness issues (see e.g. [70, 169]). We recall some
works in the non-compact setting: in particular [11] in the linear-quadratic framework,
[170] in the time-dependent case, [99] for regularity results, and finally [44] where a system
analogous to (II.4) but with power-type coupling, has been considered. The unbounded
setting brings new difficulties. Indeed, in order to avoid loss of mass, the diffusion induced
by the Brownian motion has to be compensated by the optimal velocity, which is a priori
unknown and depends on the distribution m itself and on the confining potential V (if
present).

The second distinctive feature of our Mean Field Game is the nonlocal attractive cou-
pling, we will refer to such kind of models as focusing MFG systems, namely models with
coupling which encourages aggregation. Stationary focusing MFG systems with different
assumptions on the coupling have been studied e.g. in [44, 45, 70, 71, 97]. The problem
of existence of solutions to focusing MFG systems requires different approaches than
the ones that have been developed in the literature to study defocusing MFG systems,
namely models where individuals avoid areas with high density of population. Indeed,
an increasing coupling is essential if one seeks for uniqueness of equilibria, and it is in
general crucial in many existence and regularity arguments (see [102]).

Finally, a similar MFG system but with local decreasing coupling defined in terms of a
power-type function, has been studied in [44]. We point out that, unlike it, in our setting
the nonlocal attractive coupling models a long-range attractive force between players,
moreover, in order to deal with the Riesz-term we need different techniques compared to
the ones used in [44].

In Chapter 3, we show how the interplay between dissipation (induced by the diffu-
sive term in the system) and aggregating forces (resulting from the Riesz-type attractive
coupling and the action of the coercive potential V ), could affect existence of classical so-
lutions to the MFG system (II.4). In particular, we observe that the strength of the Riesz
potential is related to the parameter α, which has two critical thresholds: the Hardy-
Littlewood-Sobolev-critical value α = N − 2γ′ and the mass-critical value α = N − γ′. It
follows that the MFG system (II.4) exhibits three different regimes which correspond to
α ∈ (0, N − 2γ′, α ∈ (N − 2γ′, N − γ′] and α ∈ (N − γ′, N).

In the Hardy-Littlewood-Sobolev-supercritical regime 0 < α < N − 2γ′, assuming
V ≡ 0, we get that “regular” solutions, namely satisfying some integrability and boundary
conditions at infinity, do not exist. In order to prove this nonexistence result (refer to
Theorem 3.1.1) we take advantage of a suitable Pohozaev-type identity and we argue by
contradiction. Notice that, starting from the celebrated identity due to Pohozaev [168]
and the well-known extension by Pucci and Serrin [172], Pohozaev-type identities have
been used to prove nonexistence results for various kinds of nonlinear PDEs (see also
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Section 1.3 and Section 5.4).
On the other hand, in the Hardy-Littlewood-Sobolev-subcritical regime N −2γ′ < α <

N , taking advantage of the fixed-point structure naturally associated to the MFG sys-
tem, we obtain existence of classical solutions to (II.4) (refer to Theorem 3.1.2). More
in detail, we consider a regularized version of problem (II.4), obtained by convolving the
Riesz-interaction term with a sequence of standard symmetric mollifiers approximating
the unit. In our case, it is crucial to obtain a uniform L∞-estimate on the Riesz-coupling,
this bound can not be obtained without the above mentioned “approximating” procedure
(see Lemma 3.4.5). Then, exploiting an extension of the classical Schauder Fixed Point
Theorem, we show that solutions to the “regularised” version of our MFG system do
exist. Actually, in the case when N − 2γ′ ≤ α ≤ N − γ′ we obtain existence of so-
lutions assuming that the total mass M is smaller than a threshold value M0, while if
N − γ′ < α < N solutions exist for every total mass M > 0. Finally, we show some a
priori uniform (not depending on the mollifiers) estimates on the solutions of the regular-
ized problem, using them we can pass to the limit and obtain a classical solution of the
MFG system (II.4). We refer the reader to Chapter 3 and the work [20] for further details.

The previous results can also be interpreted from a variational point of view, this
perspective provides a better understanding of our model’s behavior and of the deep
analogy with normalized Choquard-type equations. As Lasry and Lions first pointed out
in [125], taking into account the variational nature of the MFG system, solutions to (II.4)
are related to critical points of the following energy functional (assuming ε = 1)

E(m,w) :=


´
RN

mL
(
−w
m

)
+ V (x)mdx− 1

2

´
RN

´
RN

m(x)m(y)
|x−y|N−α dx dy if (m,w) ∈ Kε,M

+∞ otherwise
(II.7)

where

L
(
−w

m

)
:=


1
γ′

∣∣w
m

∣∣γ′ if m > 0

0 if m = 0, w = 0

+∞ otherwise

and the constrained set is defined as

Kε,M :=
{
(m,w) ∈(L1(RN ) ∩ Lq(RN ))× L1(RN ) s.t.

ˆ
RN

mdx =M, m ≥ 0 a.e.

ε

ˆ
RN

m(−∆φ) dx =

ˆ
RN

w · ∇φdx ∀φ ∈ C∞
0 (RN )

}
(II.8)

with

q :=

{
N

N−γ′+1 if γ′ < N

γ′ if γ′ ≥ N
.

If N − γ′ < α < N , so in the mass-subcritical regime, the energy E is bounded from
below. More precisely, using elliptic regularity results for the Kolmogorov equation (see
Proposition 3.2.4 below), the Hardy-Littlewood-Sobolev inequality and the fact that
V ≥ 0, we get

E(m,w) ≥ C1∥m∥
2γ′

N−α

Lβ(RN )
− C2∥m∥2Lβ(RN )

where β = 2N
N+α , and in this regime we have 2γ′

N−α > 2. Hence, inf(m,w)∈K1,M
E(m,w) is

well-defined and by means of classical direct methods and compactness arguments, it is
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possible to construct global minimizers. Then, a linearization argument and a convex
duality theorem allow us to show that minimizers (m,w) of E correspond to solutions to
the MFG system (II.4) (for more details we refer to Chapter 4 and also [19, 20, 44, 45]).
In the mass-critical regime, namely, for α = N − γ′, the energy is bounded from below
just for sufficiently small masses M , and we may construct in this range global min-
imizers (refer to Section 4.6.1). Finally, in the mass-supercritical regime, namely for
0 < α < N − γ′, the energy is not bounded from below in general, so no global min-
imum can be found. Nonetheless, some compactness of sequences with finite energy is
still available in the Hardy-Littlewood-Sobolev-subcritical regime N − 2γ′ < α < N − γ′.
More in-depth, we consider a minimization problem adding a smallness constraint on the
L

2N
N+α -norm of m and we show that if the total mass is sufficiently small, then constrained

minimizers are actually local free minimizers of the problem (see Section 4.6.2). This
argument provides solutions to our Mean-Field Game, but at this stage, we do not know
if they coincide with solutions we obtained by using the Schauder fixed-point approach.
A similar procedure dealing with local minimizers has recently been developed in [72]
for MFG on bounded domains with Neumann boundary conditions and local attractive
interaction potential of polynomial type. Moreover, since the energy becomes more and
more negative as the L

2N
N+α -norm of m increases (as it can be observed by a simple rescal-

ing argument), then we expect that with a nontrivial adaptation of the mountain-pass
theorem, it should be possible to construct in the Hardy-Littlewood-Sobolev-subcritical
regime N − 2γ′ < α < N − γ′ also solutions to the MFG with a min-max procedure
(analogously to what is done in the case of normalized Choquard equation, see [128]).
We plan to investigate this issue in the future.

In Chapter 4 we investigate the problem of existence of classical solutions to the
MFG system (II.4) for α ∈ (N − γ′, N) when V ≡ 0. The strategy of the proof is the
following: we consider an auxiliary MFG system where the Brownian motion depends
on a parameter ε > 0 and there is an external confining potential V . Using the above-
mentioned variational approach (recall that in this regime the energy E is bounded from
below) we are able to find solutions to the auxiliary system. Then, we define a suitable
rescaling of solutions and we study their asymptotic behavior in the vanishing viscos-
ity limit, namely as ε → 0. Taking advantage of an appropriate adaptation of the
concentration-compactness Lions theorem, we prove that no loss of mass occurs in the
limit, this implies existence of solutions to the potential-free MFG in the mass subcrit-
ical regime α ∈ (N − γ′, N). Moreover, solutions are global minimizers of the energy
E with V ≡ 0, among competitors which satisfy an appropriate integrability condition
(see Theorem 4.1.1). Finally, we prove that in the vanishing viscosity setting, there is
concentration of mass around minima of the potential V . We left open the problem of
existence of solutions to the potential-free MFG system when α ∈ (N − 2γ′, N − γ′]. We
refer the reader to Chapter 4 and the research paper [19] for additional details.

Open Problems. An interesting open question concerns the analysis of the corre-
sponding time-dependent MFG system, that is a system of the form

−∂tu−∆u+ 1
γ |∇u|

γ = −
´
RN

m(x,t)
|x−y|N−αdx in RN × (0, T )

∂tm−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0 in RN × (0, T )

m(x, 0) = m0(x), u(x, T ) = uT (x) on RN

where where
´
RN m0 dx = M , m0 ≥ 0 a.e. and m0, uT ∈ C2(RN ). Finite-horizon MFG

systems in the case of local coupling as been investigated for instance in [36, 75, 102].
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We expect that a similar approach as the one exploited in our works for the case of
stationary equations, should work also in the parabolic setting. Hence, the next step
could be to study existence of solutions to the previous evolutionary MFG system, and
their long-time stability. On this point, we recall that convergence as T → +∞ is almost
completely open in the case of non-monotone coupling (see [74] in the periodic setting
for mildly non-monotone MFG).



Chapter 3

Ergodic Mean-Field Games with
aggregation of Choquard-type

3.1 Introduction to the problem and main results

In this chapter, we study ergodic Mean-Field Games systems defined in the whole
space RN with a coercive potential V and attractive nonlocal coupling, defined in terms
of a Riesz interaction kernel. More in details, given M > 0, we consider elliptic systems
of the form 

−∆u+ 1
γ |∇u|

γ + λ = V (x)−Kα ∗m(x)

−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0´
RN m =M, m ≥ 0

in RN (3.1)

where γ > 1 and α ∈ (0, N) are fixed. Note that the unknowns in the system (3.1)
are the functions u,m and the constant λ ∈ R. We will assume that the potential V
is a locally Hölder continuous coercive function, that is there exist b and CV positive
constants such that

C−1
V (max{|x| − CV , 0})b ≤ V (x) ≤ CV (1 + |x|)b, ∀x ∈ RN . (3.2)

The assumption on V to be non-negative is not restrictive, we can assume more generally
that V is bounded from below and shift appropriately λ.

We provide existence and nonexistence results of classical solutions solving the MFG
system (3.1), where by classical solution we will mean a triple (u,m, λ) ∈ C2(RN ) ×
W 1,p(RN ) × R for every p ∈ (1,+∞), solving the system. Our focus will be to obtain
classical solutions which satisfy some integrability conditions and boundary conditions
at ∞, which will be meaningful from the point of view of the game. In particular, we
will require some integrability properties of the optimal speed with respect to m and of
the confining potential V with respect to m, namely

m|∇u|γ ∈ L1(RN ) |∇m||∇u| ∈ L1(RN ) and V m ∈ L1(RN ). (3.3)

Indeed, if one looks at the Kolmogorov equation, such integrability properties are impor-
tant to ensure some minimal regularity of m and uniqueness of the invariant distribution
itself (see [110, 150]). Regularity and boundedness of m is quite crucial in our setting:
indeed, due to the aggregating forces, m has an intrinsic tendency to concentrate and
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hence to develop singularities. Moreover, the Lagrange multiplier λ will be uniquely de-
fined as the generalized principal eigenvalue (see for details [12, 68, 117]): if m ∈ L1(RN )
is fixed and such that Kα ∗m ∈ C0,θ(RN ) for some θ ∈ (0, 1), we define λ as

λ := sup

{
c ∈ R

∣∣∣∣∃v ∈ C2(RN ) solving ∆v +
1

γ
|∇v|γ + c = V −Kα ∗m

}
.

Once we know this value exists, it is possible to show that there exists u ∈ C2(RN )
solving the HJB equation with such value λ, and that such solution u is coercive i.e.

u(x) → +∞ as |x| → +∞ (3.4)

and moreover its gradient has polynomial growth (see Section 3.2 and the references
[12, 68, 117]). Note that (3.4) is a quite natural “boundary” condition for ergodic HJB
equations on the whole space, indeed the optimal speed would give rise to an ergodic
process, at least heuristically, if −∇u · x < 0 for |x| → +∞ (refer to [110] and ref-
erences therein, for more details about ergodic problems on the whole space and their
characterization in terms of Lyapunov functions).

Existence results for such classical solutions will depend on the interplay between the
dissipation (i.e. by the diffusive term in the system) and the aggregating forces (described
in terms of the Riesz potential Kα and the coercive potential V ). So, denoting by γ′ the
conjugates exponent of γ, that is γ′ = γ

γ−1 , we get that the MFG system (3.1) shows
three different regimes which correspond to α ∈ (0, N − 2γ′), α ∈ (N − 2γ′, N − γ′] and
α ∈ (N − γ′, N). We will refer to α = N − 2γ′ as the Hardy-Littlewood-Sobolev-critical
exponent and to α = N − γ′ as the mass-critical (or L2-critical) exponent, in analogy
with the regimes appearing in the study of the Choquard equation (II.6) when γ′ = 2.
Obviously if γ′ ≥ N , there exists just one regime, which will be the mass-subcritical
regime α ∈ [0, N), whereas if N

2 ≤ γ′ < N there will be just 2 regimes.

First of all, we observe that for classical solutions to (3.1) with V ≡ 0 and which
satisfy (3.3), a Pohozaev-type identity holds (see Proposition 3.3.2):

(2−N)

ˆ

RN

∇u ·∇mdx+

(
1− N

γ

) ˆ

RN

m|∇u|γdx = λNM +
α+N

2

ˆ

R2N

m(x)m(y)

|x− y|N−αdxdy.

Notice that, also in the case when the potential V does not vanish identically, assuming
the integrability condition m∇V · x ∈ L1(RN ), a similar identity holds. For MFG in the
periodic setting with polynomial interaction potential an analogous Pohozaev identity
has been proved in [70], while for the case of the Choquard equation we refer to [156]
and references therein.

In the Hardy-Littlewood-Sobolev-supercritical regime 0 < α < N − 2γ′, the Pohozaev
identity, together with the fact that λ ≤ 0 (see Lemma 3.2.12), implies that solutions to
the MFG system (3.1) do not exist. More precisely, we obtain the following nonexistence
result.

Theorem 3.1.1. Assume that α ∈ (0, N−2γ′) and V ≡ 0. Then, the MFG system (3.1)
has no solutions (u,m, λ) ∈ C2(RN )×W 1, 2N

N+α (RN )× R which satisfy (3.3) and (3.4).

In the case when N − 2γ′ < α < N we obtain existence of classical solutions to the
MFG system (3.1) by means of a Schauder fixed point argument (refer to [9] and see
also [70]). More in detail, we consider a regularized version of problem (3.1), obtained by
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convolving the Riesz-interaction term with a sequence of standard symmetric mollifiers
(see (3.42) below). Taking advantage of the fixed-point structure associated to the MFG
system and exploiting the Schauder Fixed Point Theorem, we show that solutions to the
“regularized” version of the MFG system do exist. Then, we provide a priori uniform
estimates on the solutions to the regularized problem, which allow us to pass to the limit
and obtain a classical solution of the MFG system (3.1).

Theorem 3.1.2. Assume that the potential V is locally Hölder continuous and satisfies
(3.2). We have the following results:

i. if N − γ′ < α < N then, for every M > 0 the MFG system (3.1) admits a classical
solution (u,m, λ);

ii. if N−2γ′ < α ≤ N−γ′ then, there exists a positive real value M0 =M0(N,α, γ, CV , b)
such that if M ∈ (0,M0) the MFG system (3.1) admits a classical solution (u,m, λ).

Moreover in both cases there exists a constant C > 0 such that

|∇u(x)| ≤ C(1 + |x|)
b
γ u(x) ≥ C|x|

b
γ
+1 − C−1,

where C = C(CV , b, γ,N, λ, α),
√
m ∈W 1,2(RN ) and it holds

m|∇u|γ ∈ L1(RN ), mV ∈ L1(RN ), |∇u| |∇m| ∈ L1(RN ).

The Hardy-Littlewood-Sobolev critical exponent is not covered by our analysis. In-
deed it is possible to prove existence of solutions to the regularized problem also in this
case, for sufficiently small masses (see Theorem 3.4.7). Nevertheless, in order to pass to
the limit in the regularization, we need to obtain a priori L∞ bounds on solutions mk to
the regularized problem, starting from uniform bounds in L

2N
N+α ∩ L1. This is not possi-

ble at the critical level α = N − 2γ′, due to critical rescaling properties of the Sobolev
critical exponent. A priori uniform L∞ bounds on mk only hold in the range where we
have a uniform bound in Lq for q > N

γ′+α (see Theorem 3.2.13) and 2N
N+α >

N
γ′+α only in

the Hardy-Littlewood-Sobolev-subcritical regime. One way to circumvent this difficulty
could be to obtain at the critical level α = N − 2γ′, by using regularity estimates on the
viscous Hamilton-Jacobi equation and on the Fokker-Planck equation and a smallness
condition on ∥m∥ N

N−γ′
, a priori uniform bounds on ∥m∥q for some q > N

N−γ′ , in order to
be able to apply Theorem 3.2.13. This kind of result has recently been obtained recently
in [72] for MFG on bounded domains with Neumann boundary conditions and nonlinear
Schrödinger-type potential. This problem is related to the maximal regularity of solu-
tions to viscous Hamilton-Jacobi equations −∆u+ |∇u|γ = f(x) (see [73, 77, 96]).

Note that in the mass-subcritical regime, solutions to the MFG exist for every to-
tal mass M > 0, while in the mass-supercritical and mass-critical regime (namely for
α ∈ (N − 2γ′, N − γ′]) we provide existence just for sufficiently small total masses,
below some threshold value M0. This different behavior is due to the fact that when
N − 2γ′ < α ≤ N − γ′ the interaction attractive potential is stronger than the diffusive
part, so if the total mass M is too large, the mass m tends to concentrate and hence to
develop singularities.

We recall that solutions to (3.1) correspond to critical points of the energy E over the
constrained set K1,M (as defined in (II.7) and (II.8) respectively). So, we can analogously
find solutions to (3.1) using a variational approach. We refer the reader to Chapter 4 for
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more details.

This chapter is organized as follows. Section 3.2 contains some preliminary results. In
particular, we recall regularizing properties of the Riesz interaction kernel, some a priori
elliptic estimates for solutions to the Kolmogorov equation, a priori gradient estimates
for solutions to the Hamilton-Jacobi-Bellman equation and finally uniform L∞ bounds
for m, solution to (3.1). In Section 3.3 we provide the Pohozaev identity and the proof
of the nonexistence result Theorem 3.1.1, while Section 3.4 contains the proof of the
existence result Theorem 3.1.2.

In what follows, C,C1, C2,K1, . . . denote generic positive constants which may change
from line to line and also within the same line.

3.2 Preliminaries

In this section we introduce some preliminary results which will be useful in this
chapter and in Chapter 4. We refer the reader to [20, §2], [19] and the references [32, 68,
117] for more details.

3.2.1 Regularity results for the Kolmogorov equation

Lemma 3.2.1. Let u ∈ C2,θ(RN ) and m ∈W 1,2(RN ) be a solution (in the distributional
sense) to

−∆m(x)− div
(
m(x)∇u(x) |∇u|γ−2

)
= 0 in RN , (3.5)

where γ > 1 is fixed. Then, m ∈ C2,θ(RN ). Moreover, if m ≥ 0 and m ̸≡ 0, then
m(x) > 0 for any x ∈ RN .

Proof. If γ ≥ 2, then m solves

−∆m− b(x) · ∇m(x)−m(x) div b(x) = 0

where b(x) := |∇u|γ−2∇u(x) ∈ C1,θ(RN ) and div b(x) ∈ C0,θ(RN ). By elliptic regularity
(see e.g. [93, Theorem 8.24]) we get that m ∈ C0,α for a certain α ∈ (0, 1]. Denoting by
f := m∇u|∇u|γ−2 we have −∆m = divf where f ∈ C0,α, then by [93, Theorem 4.15]
we get that m ∈ C1,α and hence

−∆m = div
(
m∇u|∇u|γ−2

)
∈ C0,min{α,θ}

so m ∈ C2,min{α,θ}. Iterating we finally obtain that m ∈ C2,θ. If 1 < γ < 2, b(x) is just
an Hölder continuous function, hence m is a weak solution of equation (3.5). In this case,
we can replace b(x) with bε(x) := ∇u(x)(ε+ |∇u|2)

γ
2
−1 and mε is a-posteriori a classical

solution to the approximate equation

−∆m− div (m(x) bε(x)) = 0.

We can conclude letting ε→ 0. If m ≥ 0 on RN , we also have that m satisfy

−∆m− b(x) · ∇m(x)−
(
div b(x)

)+
m(x) ≤ 0,

since
´
RN mdx =M > 0, the Strong Minimum Principle (refer e.g to [93, Theorem 8.19])

implies that m > 0 in RN (indeed m can not be equal to 0, unless it is constant, which
is impossible).
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We will use the following result (proved in [44, Proposition 2.4]) which takes advantage
of some classical elliptic regularity results of Agmon [3].

Proposition 3.2.2. Let m ∈ Lp(RN ) for p > 1 and assume that for some K > 0∣∣∣∣ˆ
RN

m∆φdx

∣∣∣∣ ≤ K∥∇φ∥Lp′ (RN ), ∀φ ∈ C∞
0 (RN ).

Then, m ∈W 1,p(RN ) and there exists a constant C > 0 depending only on p such that

∥∇m∥Lp(RN ) ≤ C K.

We prove now some a priori estimates for solutions to the Kolmogorov equation. Let
us fix p ∈ (1,+∞) and M > 0.

Proposition 3.2.3. Let us consider a couple (m,w) ∈ (L1(RN ) ∩ Lp(RN )) × L1(RN )
such that ˆ

RN

m(−∆φ)dx =

ˆ
RN

w · ∇φdx, ∀φ ∈ C∞
0 (RN ).

Assume also that
´
RN m(x) dx =M , m ≥ 0 a.e. and

E :=

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx < +∞.

Then, we have that
m ∈W 1,r(RN )

for r such that 1
r =

(
1− 1

γ′

)
1
p + 1

γ′ (i.e. r = pγ′

γ′+p−1) and there exists a constant C,
depending on r, such that

∥m∥W 1,r(RN ) ≤ C(E +M)
1
γ′ ∥m∥

1
γ

Lp(RN )
. (3.6)

Proof. Using Hölder inequality (since 1
r =

(
1− 1

γ′

)
1
p +

1
γ′ , it holds 1

pγ + 1
γ′ +

1
r′ = 1) we

obtain ∣∣∣∣ˆ
RN

m∆φdx

∣∣∣∣ ≤ ˆ
RN

|w| |∇φ|dx =

ˆ
RN

(∣∣∣w
m

∣∣∣γ′ m) 1
γ′

m
1
γ |∇φ| dx

≤
(ˆ

RN

∣∣∣w
m

∣∣∣γ′ mdx

) 1
γ′

∥m∥
1
γ

Lp(RN )
∥∇φ∥Lr′ (RN )

and hence ∣∣∣∣ˆ
RN

m∆φdx

∣∣∣∣ ≤ E
1
γ′ ∥m∥

1
γ

Lp(RN )
∥∇φ∥Lr′ (RN ).

Since ∥m∥L1(RN ) =M and m ∈ Lp(RN ), by interpolation we get

∥m∥Lr(RN ) ≤ ∥m∥
1
γ

Lp(RN )
M

1
γ′ (3.7)

therefore m ∈ Lr(RN ). From Proposition 3.2.2 with K = E
1
γ′ ∥m∥

1
γ

Lp(RN )
, we obtain that

m ∈W 1,r(RN ) and there exists a constant C > 0, depending on r, such that

∥∇m∥Lr(RN ) ≤ C E
1
γ′ ∥m∥

1
γ

Lp(RN )
. (3.8)
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By (3.7) and (3.8), we can conclude that

∥m∥W 1,r(RN ) ≤
(
M

1
γ′ + CE

1
γ′
)
∥m∥

1
γ

Lp ≤ C(E +M)
1
γ′ ∥m∥

1
γ

Lp(RN )
.

Proposition 3.2.4. Under the assumption of Proposition 3.2.3, we have the following
results:

i) if 1 < p < 1 + γ′

N then, there exists δ1 = 1
p−1

(
γ′

N + 1− p
)

such that

∥m∥(1+δ1)p
Lp(RN )

≤ CM (1+δ1)p−1E (3.9)

where C is a constant depending on N , γ and p;

ii) if γ′ < N and 1 < p ≤ N
N−γ′ then, there exists δ2 = 1

p−1
γ′

N and a constant C
depending on N , γ and p such that

∥m∥pδ2
Lp(RN )

≤ C(E +M)Mpδ2−1. (3.10)

Proof. i) The proof of (3.9) follows from [44, Lemma 2.8]. ii) As before let 1
r =

1
p

(
1− 1

γ′

)
+ 1

γ′ , if γ′ < N then r < γ′ < N , so by Gagliardo-Niremberg inequality
and (3.6) we get

∥m∥Lr∗ (RN ) ≤ C∥m∥
1
γ

Lp(RN )
(E +M)

1
γ′ (3.11)

where 1
r∗ = 1

r −
1
N and C is a constant depending on N , p and γ′. One can observe that

1
r∗ − 1

p = pN−N−pγ′
pγ′N ≤ 0, that is r∗ ≥ p, so by interpolation there exists θ ∈ (0, 1] such

that
∥m∥

1
θ

Lp(RN )
≤M

1−θ
θ ∥m∥Lr∗ (RN )

and from (3.11) we get that

∥m∥
(

1
θ
− 1

γ

)
γ′

Lp(RN )
≤ C(E +M)M

1−θ
θ
γ′ .

By simple computations we have that(
1

θ
− 1

γ

)
γ′ =

γ′

N

p

p− 1

and (
1

θ
− 1

)
γ′ =

γ′

N

p

p− 1
− 1

denoting by δ2 the quantity 1
p−1

γ′

N , we finally obtain (3.10).

Remark 3. In the following we will use (3.9) and (3.10) in the case when p = 2N
N+α . It

will be useful to observe that if γ′ ≥ N then 1 < 2N
N+α < 2 ≤ 1+ γ′

N , hence estimate (3.9)
holds. In the case when γ′ < N , if N − γ′ ≤ α < N then, 1 < 2N

N+α < 1 + γ′

N and hence
from (3.9) we get that

∥m∥
2γ′

N−α

L
2N

N+α (RN )
≤ CM

2γ′
N−α

−1E; (3.12)

whereas if N − 2γ′ ≤ α < N − γ′, we may use estimate (3.10), which gives us

∥m∥
2γ′

N−α

L
2N

N+α (RN )
≤ C(E +M)M

2γ′
N−α

−1. (3.13)
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Finally, we recall the following a priori elliptic regularity result (see [44, Proposition
2.8, Corollary 2.9]).

Proposition 3.2.5. Let

q :=

{
N

N−γ′+1 if γ′ < N

γ′ if γ′ ≥ N
,

the couple (m,w) ∈ (Lq(RN ) ∩ L1(RN ))× L1(RN ) be such that
ˆ
RN

m(−∆φ)dx =

ˆ
RN

w · ∇φdx, ∀φ ∈ C∞
0 (RN )

with
´
RN m(x) dx =M , m ≥ 0 a.e. and

E :=

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx < +∞.

Then, it holds:

i)

m ∈ Lβ(RN ), ∀β ∈
[
1,

N

N − γ′

)
(∀β ∈ [1,+∞), if γ′ ≥ N)

and there exists a constant C depending on N , β and γ′ such that

∥m∥Lβ(RN ) ≤ C(E +M);

ii)
m ∈W 1,ℓ(RN ), ∀ℓ < q

and there exists a constant C depending on N , ℓ and γ′ such that

∥m∥W 1,ℓ(RN ) ≤ C(E +M);

iii) if γ′ > N , we have also

m ∈ C0,θ(RN ), ∀θ ∈
(
0, 1− N

γ′

)
and there exists a constant C depending on N , θ and γ′ such that

∥m∥C0,θ(RN ) ≤ C(E +M).

Proof. From Proposition 3.2.3 we have

m ∈W 1,r0(RN ) for
1

r0
=

(
1− 1

γ′

)
1

q
+

1

γ′
.

Case γ′ < N . Since 1 < r0 < γ′ < N , by Sobolev embedding theorem and interpola-
tion, we get that

m ∈ Lβ(RN ) ∀β ≤ q1 (3.14)

where q1 is the Sobolev critical exponent, i.e.

q1 :=
Nr0
N − r0

=
qNγ′

Nγ′ −N + q(N − γ′)
,



70 3. Ergodic Mean-Field Games with aggregation of Choquard-type

(notice that q1 > q since q < N
N−γ′ ). From (3.14), using Proposition 3.2.3 again, we have

m ∈W 1,ℓ(RN ) ∀ℓ ≤ r1 =
q1γ

′

γ′ − 1 + q1
.

As before, by Sobolev embedding theorem and interpolation, we have that

m ∈ Lβ(RN ) ∀β ≤ q2 =
q1Nγ

′

Nγ′ −N + q1(N − γ′)
.

Iterating the previous argument, we observe that qj+1 = f(qj) where f(s) := sNγ′

Nγ′−N+s(N−γ′) .
Since f is an increasing function if s < N

N−γ′ and it has a fixed point for s̄ = N
N−γ′ , we

obtain that
m ∈ Lβ(RN ), ∀β < N

N − γ′

and
m ∈W 1,ℓ(RN ), ∀ℓ < N

N − γ′ + 1
.

Moreover, for any fixed β < N
N−γ′ , taking r = r(β) such that 1

r =
(
1− 1

γ′

)
1
β + 1

γ′ , from
estimate (3.6) and the Sobolev embedding theorem (notice that r∗ > β) we get that
there exists a constant C depending on N and r such that

∥m∥Lβ(RN ) ≤ C(E +M)
1
γ′ ∥m∥

1
γ

Lβ(RN )
.

and hence
∥m∥Lβ(RN ) ≤ C1(E +M).

Finally, from (3.6) we obtain

∥m∥W 1,ℓ(RN ) ≤ C2(E +M).

Case γ′ = N . Since r0 < γ′ = N , we can apply the Sobolev embedding theorem and
with the same argument as before we obtain

qj+1 =
N

N − 1
qj .

Obviously qj+1 > qj , by iteration we get that

m ∈ Lβ(RN ), ∀β < +∞

and
m ∈W 1,ℓ(RN ), ∀ℓ < γ′.

The estimates on the norms follow in the same way as the previous case.
Case γ′ > N . Since m ∈ Lγ

′
(RN ), by interpolation m ∈ LN (RN ) and we can go back

to the previous case. In particular, we have that m ∈ W 1,ℓ(RN ) for N < ℓ < γ′, hence
by Morrey’s embedding

m ∈ C0,θ(RN ), for 0 < θ < 1− N

γ′

and there exists a constant C, depending on θ, N and γ′, such that

∥m∥C0,θ(RN ) ≤ C(E +M).
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3.2.2 Some properties of the Riesz potential

We recall here some properties of the Riesz potential, which will be useful in the
following in order to deal with the Riesz-type interaction term.

Definition 3.2.1. Given α ∈ (0, N) and f ∈ L1
loc(RN ), we define the Riesz potential of

order α of the function f as

Kα ∗ f(x) :=
ˆ
RN

f(y)

|x− y|N−αdy, x ∈ RN .

The Riesz potential Kα is well-defined as an operator on the whole space Lr(RN ) if
and only if r ∈

[
1, Nα

)
. We state now the following well-known theorems (for which refer

e.g. to [132, Theorem 4.3] and [182, Theorem 14.37]).

Theorem 3.2.6 (Hardy-Littlewood-Sobolev inequality). Let 0 < α < N and 1 < r < N
α .

Then, for any f ∈ Lr(RN )

∥Kα ∗ f∥
L

Nr
N−αr (RN )

≤ C∥f∥Lr(RN )

where C is a constant depending only on N , α and r.

Theorem 3.2.7. Let 0 < λ < N and p, r > 1 with 1
p + λ

N + 1
r = 2. Let f ∈ Lp(RN )

and g ∈ Lr(RN ). Then, there exists a sharp constant C(N,λ, p) (independent of f and
g) such that ∣∣∣∣ˆ

RN

ˆ
RN

f(x) g(y)

|x− y|λ
dx dy

∣∣∣∣ ≤ C∥f∥Lp(RN )∥g∥Lr(RN ). (3.15)

Remark 4. If 0 < α < N and f ∈ L
2N

N+α (RN ), then there exists a sharp constant C,
depending only on N and α, such that∣∣∣∣ˆ

RN

ˆ
RN

f(x) f(y)

|x− y|N−αdx dy

∣∣∣∣ ≤ C∥f∥2
L

2N
N+α (RN )

. (3.16)

As shown in [131], in this case the constant C can be computed explicitly and there exist
explicit optimizers for (3.16) (while neither the constant nor the optimizers are known
for p ̸= r, although do exist).

Regarding the L∞-norm and the Hölder continuity of the Riesz potential, we recall
here the following results.

Theorem 3.2.8. Let 0 < α < N , 1 < r ≤ +∞ be such that r > N
α and s ∈ [1, Nα ).

Then, for every f ∈ Ls(RN ) ∩ Lr(RN ) we have that

∥Kα ∗ f∥L∞(RN ) ≤ C1∥f∥Lr(RN ) + C2∥f∥Ls(RN ) (3.17)

where C1 = C1(N,α, r) and C2 = C2(N,α, s).

Proof. We observe that

1

|x|N−α ∈ Lp(B1), ∀p ∈
[
1,

N

N − α

)
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and it is well-known that
´
B1(0)

1
|x|(N−α)pdx = ωN

N−(N−α)p . By Hölder inequality we get

ˆ
B1

|f(x− y)|
|y|N−α dy ≤

( ˆ
B1

|f(x− y)|r dy
) 1

r
(ˆ

B1

1

|y|(N−α)r′ dy

) 1
r′

≤ ∥f∥Lr(RN )

(
ωN

N − (N − α)r′

) 1
r′

≤ C1∥f∥Lr(RN )

using the fact that r′ < N
N−α , since by assumption r > N

α . On the other hand

1

|x|N−α ∈ Lp(Bc
1), ∀p ∈

(
N

N − α
,+∞

]
hence

ˆ
RN\B1

|f(x− y)|
|y|N−α dy ≤

(ˆ
RN\B1

|f(x− y)|sdy

) 1
s
∥∥∥∥ 1

|y|N−αdy

∥∥∥∥
Ls′ (Bc

1)

≤ C∥f∥Ls(RN ),

since (N − α)s′ > N . We can conclude that

|Kα ∗ f(x)| ≤
ˆ
B1

|f(x− y)|
|y|N−α dy +

ˆ
RN\B1

|f(x− y)|
|y|N−α dy ≤ C1∥f∥Lr(RN ) + C2∥f∥Ls(RN ),

where C1 = C1(N,α, r) and C2 = C2(N,α, s).

Remark 5. It follows immediately that if we take r = +∞ and s = 1 we have
ˆ
B1

|f(x− y)|
|y|N−α dy ≤ ωN

α
∥f∥L∞(B1)

and hence
∥Kα ∗ f∥L∞(RN ) ≤ Cα,N∥f∥L∞(RN ) + ∥f∥L1(RN ).

Theorem 3.2.9. Let 1 < r < +∞ and 0 < α < N be such that 0 < α − N
r < 1. Then,

for every f ∈ L1(RN ) ∩ Lr(RN ) we have that

Kα ∗ f ∈ C0,α−N
r (RN )

and there exists a constant C, depending on r, α and N , such that∣∣Kα ∗ f(x)−Kα ∗ f(y)
∣∣

∥x− y∥α−
N
r

≤ C∥f∥Lr(RN ).

Proof. Concerning Hölder regularity results for the Riesz potential, one may refer to [151,
Theorem 2.2, p.155] and [84, Theorem 2].

3.2.3 Some results on the Hamilton-Jacobi-Bellman equation

By a straightforward adaptation of [44, Theorem 2.5 and Theorem 2.6], we obtain
a priori regularity estimates for solutions to some Hamilton-Jacobi-Bellman equations
defined on the whole euclidean space RN . The following propositions are stated under
slightly more general assumptions than ones of our problem.
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Proposition 3.2.10. Assume that Kα ∗ m ∈ L∞(RN ) and that V satisfies (3.2) with
b ≥ 0. Let (u, c) ∈ C2(RN )× R be a classical solution to the HJB equation

−∆u+
1

γ
|∇u(x)|γ + c = V (x)−Kα ∗m(x) in RN , (3.18)

for γ > 1 fixed. Then

i. there exists a constant C1 > 0, depending on CV , b, γ,N, c, ∥Kα ∗m∥∞, such that

|∇u(x)| ≤ C1(1 + |x|)
b
γ ;

ii. if u is bounded from below and b ̸= 0, then there exist a constant C2 > 0 such that

u(x) ≥ C2|x|
b
γ
+1 − C−1

2 , ∀x ∈ RN .

The same result holds also in the case when b = 0, but we have to require in addition
that there exists δ > 0 such that V (x)−Kα ∗m(x)− c > δ > 0 for |x| sufficiently
large.

Proof. The thesis follows applying [44, Theorem 2.5 and Theorem 2.6].

Let us define

λ := sup{c ∈ R | (3.18) has a solution u ∈ C2(RN )} (3.19)

Proposition 3.2.11. Besides the hypothesis of Proposition 3.2.10, let us assume also
that V −Kα ∗m is locally Hölder continuous. Then

i) λ < +∞ and there exists u ∈ C2(RN ) such that the pair (u, λ) solves (3.18).

ii) if b ̸= 0 in (3.2), u is unique up to additive constants (namely if (v, λ) ∈ C2(RN )×R
solves (3.18) then there exists k ∈ R such that u = v+k) and there exists a constant
K > 0 such that

u(x) ≥ K|x|
b
γ
+1 −K−1, ∀x ∈ RN .

Proof. It follows by [44, Theorem 2.7]. We may observe also that

λ = sup{c ∈ R | (3.18) has a subsolution u ∈ C2(RN )}.

Finally, we conclude with an estimate on the Lagrange multiplier λ defined in (3.19).

Lemma 3.2.12. Let (u, λ) ∈ C2(RN )× R be a solution to the HJB equation (3.18).

i If V ≡ 0, then λ ≤ 0;

ii if V satisfies (3.2) then λ ≤ C for some constant depending on b, CV , γ,N .

Proof. The proof is based on the same argument of [70, Lemma 3.3]. Let us consider the

function µδ(x) :=
(
δ
2π

)N/2
e

−δ|x|2
2 for x ∈ RN and δ > 0. Obviously

´
RN µδ(x) dx = 1.

From the definition of Legendre transform we get that

1

γ
|∇u|γ = sup

α∈RN

(
∇u · α− |α|γ′

γ′

)
≥ ∇u · (δx)− |δx|γ′

γ′
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hence
−∆u(x) +∇u · (δx)− 1

γ′
|δx|γ′ + λ ≤ V (x)−m ∗Kα(x).

Multiplying the previous inequality by µδ and integrating over BR we obtain

−
ˆ
BR

∆u(x)µδ +

ˆ
BR

∇u · (δx)µδ −
ˆ
BR

1

γ′
|δx|γ′µδ +λ

ˆ
BR

µδ ≤
ˆ
BR

(V (x)−m ∗Kα)µδ.

Integrating by parts (notice that
´
BR

∇u · ∇µδ = −
´
BR

∇u · (δx)µδ) we get

−
ˆ
∂BR

µδ∇u · ν dσ − 1

γ′

ˆ
BR

|δx|γ′µδ dx+ λ

ˆ
BR

µδ dx ≤
ˆ
BR

(V (x)−m ∗Kα)µδ dx

and since
´
BR

m ∗Kα(x)µδ(x) dx ≥ 0, we have

λ

ˆ
BR

µδ dx ≤
ˆ
∂BR

µδ∇u · ν dσ +
1

γ′

ˆ
BR

|δx|γ′µδ dx+

ˆ
BR

V (x)µδ dx. (3.20)

For δ > 0 fixed, the first integral in the RHS of (3.20) can be estimated as follows∣∣∣∣ˆ
∂BR

µδ∇u · ν dσ
∣∣∣∣ ≤ Cδ

N
2 e−

δR2

2 ∥∇u∥L∞(∂BR)|∂BR| → 0, as R→ +∞

taking advantage of the gradient estimates on ∇u proved in Proposition 3.2.10. So,
sending R→ +∞ in (3.20) and using (3.2) we get

λ ≤ 1

(2π)
N
2

δ
γ′
2

γ′

ˆ
RN

|y|γ′e−
|y|2
2 dy +

1

(2π)
N
2

ˆ
RN

V

(
y√
δ

)
e−

|y|2
2 dy.

If V ≡ 0, then sending δ → 0 in the previous inequality, we conclude immediately λ ≤ 0.
If V ̸≡ 0, we may choose δ = 1 in the previous inequality and conclude recalling (3.2).

3.2.4 Uniform a priori L∞-bounds on m

We state now the following result, which provides uniform a priori L∞ bounds on m.

Theorem 3.2.13. We consider a sequence of classical solutions (uk,mk, λk) to the fol-
lowing MFG system

−∆u+ 1
γ |∇u|

γ + λ =Wk(x)−Gk,α[m](x)

−∆m− div
(
m∇u|∇u|γ−2

)
= 0´

RN m =M, m ≥ 0

in RN

where Wk : RN → R satisfies assumption (3.2) with constant CV , b independent of k and
Gk,α : L1(RN ) → L1(RN ) is such that Gk,α[m] ≥ 0 for all m ∈ L1 with m ≥ 0. We
assume also that there exists α ∈ (0, N) such that for all s ∈

[
1, Nα

)
and r ∈

(
N
α ,+∞

]
taking m ∈ Ls(RN ) ∩ Lr(RN ) there holds

∥Gk,α[m]∥L∞(RN ) ≤ C1∥m∥Lr(RN ) + C2∥m∥Ls(RN ) (3.21)

where C1 = C1(N,α, r) and C2 = C2(N,α, s).
If uk are bounded from below and satisfy (3.4), and mk ∈ L1(RN ) ∩ L∞(RN ) with
∥mk∥Lq ≤ Cq for some q > N

α+γ′ then, there exists a positive constant C not depend-
ing on k such that

∥mk∥L∞(RN ) ≤ C, ∀k ∈ N.
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Proof. We follow the argument of the proof of [44, Theorem 4.1] (refer also to [70] for
the analogous result on TN ) but we have to define a different rescaling in this case.

Up to addition of constants we may assume inf uk(x) = 0. We assume by contradic-
tion that

sup
RN

mk = Lk → +∞

and we define

δk :=

L
−β
k , if γ′ ≤ N and q ≤ N

γ′

L
− 1

γ′
k , if either γ′ > N or γ′ ≤ N, q > N

γ′

where β > 0 (so δk → 0) has to be chosen in the following way. We fix

r ∈
(
N

α
,

Nq

N − qγ′

)
(3.22)

(note that since q > N
γ′+α the interval is not empty) and if q = N

γ′ we fix r ∈
(
N
α ,+∞

)
.

Then we choose β such that
1

γ′

(
1− q

r

)
≤ β <

q

N
.

We rescale (uk,mk, λk) as follows:

vk(x) := δ
2−γ
γ−1

k uk(δkx) + 1, nk(x) := L−1
k mk(δkx), λ̃k := δγ

′

k λk.

Observe that 0 ≤ nk(x) ≤ 1 and supnk = 1 and moreover that vk(x) ≥ 1 for all x. So
we obtain that (vk, nk, λ̃k) is a solution to{

−∆vk +
1
γ |∇vk|

γ + λ̃k = Vk(x)− g̃k(x)

−∆nk − div(nk∇vk|∇vk|γ−2) = 0

where
Vk(x) := δγ

′

k Wk(δkx) and g̃k(x) := δγ
′

k Gk,α[mk](δkx).

Observe that by assumption (3.2) there holds

C−1
V δγ

′

k (max{|δkx| − CV , 0})b ≤ Vk(x) ≤ CV (1 + δγ
′+b
k |x|)b, ∀x ∈ RN .

Computing the equation in a minimum point of uk we obtain λk ≥ −∥Gk,α[mk]∥∞ and
reasoning as in Lemma 3.2.12, we get that λk ≤ C, for some C just depending on γ,CV , b,
so we get

−∥g̃k∥∞ = −δγ
′

k ∥Gk,α[mk]∥∞ ≤ λ̃k ≤ δγ
′

k C.

If γ′ > N or γ′ ≤ N and q > N
γ′ we apply (3.21) with r = +∞ and s = 1 and we get

∥g̃k∥∞ ≤ δγ
′

k (C1Lk + C2M) = L−1
k (C1Lk + C2M) ≤ C

which in turns gives also that |λ̃k| ≤ C. If γ′ > N there holds

∥nk∥L1 =

ˆ
RN

nk(x)dx = δγ
′−N
k ∥mk∥L1 = δγ

′−N
k M → 0 and 0 ≤ nk ≤ 1 = supnk,
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while if γ′ ≤ N and q > N
γ′ we have that

∥nk∥Lq = L−1
k δ

−N
q

k ∥mk∥Lq ≤ L
N
qγ′−1

k Cq → 0 and 0 ≤ nk ≤ 1 = supnk.

If γ′ ≤ N and q ≤ N
γ′ first of all we observe that, since β < q

N ,

∥nk∥Lq = L−1
k δ

−N
q

k ∥mk∥Lq ≤ L
βN

q
−1

k Cq → 0 and 0 ≤ nk ≤ 1 = supnk.

We apply (3.21) with r as in (3.22) and s = 1 and we get, using interpolation between
Lq and L∞ to estimate the norm ∥mk∥Lr , that there holds

∥g̃k∥∞ ≤ δγ
′

k (C1∥mk∥
L

N
N−2γ′

+ C2Cq) ≤ L−βγ′
k (CL

1− q
r

k + C2Cq) ≤ CL
1−βγ′− q

r
k ≤ C

since βγ′ > 1− q
r . This in turns implies that |λ̃k| ≤ C. The remaining part of the proof

follows exactly the same lines of the proof of [44, Theorem 4.1], since we have uniform
bounds on λ̃k and on ∥g̃k∥∞, either the L1 or the Lq norm of nk vanishing as k → +∞,
whereas ∥nk∥∞ = 1. In particular one shows that if xk is an approximated maximum
point of nk (that is nk(xk) = 1 − δ), then necessarily δγ

′+b
k |xk|b → +∞. If it is not the

case, using a priori gradient estimates on vk as in Proposition 3.2.10, we get that nk is
uniformly (in k) Hölder continuous in the ball B1(xk), contradicting the fact that nk ≥ 0

and either ∥nk∥Lq → 0 or ∥nk∥L1 → 0. On the other hand, if δγ
′+b
k |xk|b → +∞, we may

construct a Lyapunov function for the system, which allows for some integral estimates
on nk showing again a uniform (in k) Hölder bound for nk in B1/2(xk) and again getting
a contradiction. Therefore one concludes that Lk → +∞ is not possible.

3.3 Pohozaev identity and nonexistence of solutions

In this section, we study the MFG system (3.1) in the case V ≡ 0, i.e.
−∆u+ 1

γ |∇u(x)|
γ + λ = −Kα ∗m(x)

−∆m− div
(
m(x)∇u(x) |∇u(x)|γ−2

)
= 0´

RN m =M, m ≥ 0

in RN . (3.23)

The following Lemma (see Lemma 3.2 in [70]) will be useful in order to control the
behavior of m, ∇u,∇m at infinity.

Lemma 3.3.1. Let h ∈ L1(RN ). Then, there exists a sequence Rn → ∞ such that

Rn

ˆ
∂BRn

|h(x)|dx→ 0, as n→ ∞.

In order to prove nonexistence of solutions to the MFG system (3.23) in the super-
critical regime 0 < α < N − 2γ′, we need a Pohozaev-type identity.

Proposition 3.3.2 (Pohozaev identity). Let (u,m, λ) ∈ C2(RN )×W 1, 2N
N+α (RN )×R

be a solution to (3.23) such that

m|∇u|γ ∈ L1(RN ) and |∇m||∇u| ∈ L1(RN ).

Then, the following equality holds

(2−N)

ˆ

RN

∇u ·∇mdx+

(
1− N

γ

) ˆ

RN

m|∇u|γdx = λNM+
α+N

2

ˆ

RN

m(x)Kα∗m(x) dx.

(3.24)
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Proof. From Lemma 3.2.1, we get that m is twice differentiable, so the following com-
putations are justified. Consider the first equation in (3.23), multiplying each term by
∇m · x and integrating over BR(0) for R > 0, we get

−
ˆ

BR

∆u∇m ·x dx+ 1

γ

ˆ

BR

|∇u(x)|γ∇m ·x dx+λ
ˆ

BR

∇m ·x dx = −
ˆ

BR

Kα∗m(x)∇m ·x dx.

(3.25)
We take into account each term of (3.25) separately. Integrating by parts the first term,
we have

−
ˆ

BR

∆u∇m · x dx =

ˆ

BR

∇u · ∇(∇m · x)dx−
ˆ

∂BR

(∇u · ν)(∇m · x) dσ, (3.26)

we observe that

ˆ

BR

∇u · ∇(∇m · x)dx =

ˆ

BR

N∑
i=1

uxi(∇m · x)xi =
ˆ

BR

∇u · ∇m+

ˆ

BR

∑
i,j

uximxi xjxj

and integrating by parts the last term of the previous one we get
ˆ

BR

∑
i,j

(uxixj)mxixj =

ˆ

∂BR

∑
i,j

uximxixj ·
xj
R

−
ˆ

BR

∑
i,j

mxiuxi xjxj −N

ˆ

BR

∑
i

uximxi

=

ˆ

∂BR

(∇u · ∇m)x · νdσ −
ˆ

BR

∇m · ∇(∇u · x) + (1−N)

ˆ

BR

∇u · ∇m.

Note that x · ν = R on ∂BR. Coming back to (3.26) we obtain

−
ˆ

BR

∆u∇m · x dx =−
ˆ

BR

∇m · ∇(∇u · x)dx+ (2−N)

ˆ

BR

∇u · ∇mdx

+

ˆ

∂BR

(∇u · ∇m)(x · ν)dσ −
ˆ

∂BR

(∇u · ν)(∇m · x) dσ. (3.27)

Concerning the second and the third term in (3.25), we get that

1

γ

ˆ

BR

|∇u(x)|γ∇m · x dx =
1

γ

ˆ

∂BR

|∇u|γmx · ν dσ − 1

γ

ˆ

BR

mdiv(|∇u|γx)dx

=
1

γ

ˆ

∂BR

|∇u|γmx · ν dσ − 1

γ

ˆ

BR

m∇(|∇u|γ) · x dx− N

γ

ˆ

BR

m|∇u(x)|γdx

(3.28)

and

λ

ˆ
BR

∇m · x dx = λ

ˆ
∂BR

mx · νdσ − λN

ˆ
BR

mdx. (3.29)

Similarly, multiplying the second equation in (3.23) by ∇u ·x and integrating over BR(0)
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we getˆ
BR

∆m∇u · x dx = −
ˆ
BR

div(m|∇u|γ−2∇u)∇u · x dx

=

ˆ
BR

∇(∇u · x) · (m |∇u|γ−2∇u) dx−
ˆ
∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ

=

ˆ
BR

1

γ
m∇(|∇u|γ) · x dx+

ˆ
BR

m|∇u|γdx−
ˆ
∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ

(3.30)

where we have integrated by parts and then used the following identity

1

γ
∇(|∇u|γ) · x = |∇u|γ−2∇u · ∇(∇u · x)− |∇u|γ .

Integrating by parts the LHS of (3.30) we getˆ
∂BR

(∇m · ν)(∇u · x)dσ −
ˆ
BR

∇m · ∇(∇u · x)dx

=

ˆ
BR

m

γ
∇(|∇u|γ) · x dx+

ˆ
BR

m|∇u|γdx−
ˆ
∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ

and then isolating the first term in the second line

−1

γ

ˆ
BR

m∇(|∇u|γ) · x dx =

ˆ
BR

∇m · ∇(∇u · x)dx−
ˆ
∂BR

(∇m · ν)(∇u · x) dσ

+

ˆ
BR

m|∇u|γdx−
ˆ
∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ

(3.31)

plugging (3.31) in (3.28) we obtain

1

γ

ˆ
BR

|∇u(x)|γ∇m · x dx =
1

γ

ˆ
∂BR

m|∇u|γx · ν dσ

+

ˆ
BR

∇m · ∇(∇u · x) dx−
ˆ
∂BR

(∇m · ν)(∇u · x) dσ

+

(
1− N

γ

) ˆ
BR

m|∇u|γdx−
ˆ
∂BR

(∇u · x)m|∇u|γ−2∇u · ν dσ. (3.32)

For what concern the Riesz’s potential term, since m ∈ L
2N

N+α (RN ) from Theorem 3.2.6
it follows that Kα ∗m ∈ L

2N
N−α (RN ), hence by Hölder inequality∣∣∣∣∣

ˆ

BR

Kα∗m(x)∇m·x dx

∣∣∣∣∣ ≤ R

ˆ

BR

|Kα∗m| |∇m| dx ≤ R ∥Kα∗m∥
L

2N
N−α (RN )

∥∇m∥
L

2N
N+α (RN )

,

this proves that the term −
´
BR

Kα ∗m(x)∇m · x dx is finite. We get
ˆ

BR

Kα ∗m(x)∇m · x dx =

ˆ

BR

ˆ

RN

m(y)∇m(x) · x
|x− y|N−α dy dx =

ˆ

RN

ˆ

BR

m(y)∇m(x) · x
|x− y|N−α dx dy

=

ˆ

RN

ˆ

∂BR

m(x)m(y)

|x− y|N−α (x · ν) dσ(x) dy −
ˆ

RN

ˆ

BR

m(x)divx

(
m(y)

|x− y|N−αx

)
dx dy (3.33)
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and furthermoreˆ

RN

ˆ

BR

m(x) divx

(
m(y)

|x− y|N−αx

)
dx dy =

= (α−N)

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−α
(x− y) · x
|x− y|2

dx dy +N

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−αdx dy =

=
α+N

2

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−αdx dy +
α−N

2

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−α
(x+ y) · (x− y)

|x− y|2
dx dy

(3.34)

where we used that x·(x−y)
|x−y|2 = 1

2 + (x+y)·(x−y)
2|x−y|2 . Summing up (3.27), (3.29), (3.32), (3.33)

and (3.34) we get the following identity

(2−N)

ˆ

BR

∇u · ∇mdx+

(
1− N

γ

) ˆ

BR

m|∇u|γdx− α+N

2

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−αdx dy

− λN

ˆ

BR

m(x) dx− α−N

2

ˆ

RN

ˆ

BR

m(x)m(y)

|x− y|N−α
(x+ y) · (x− y)

|x− y|2
dx dy = I∂BR

(3.35)

where

I∂BR
=

ˆ

∂BR

[
−∇u · ∇m− m

γ
|∇u|γ − λm

]
(x · ν)dσ −

ˆ

RN

ˆ

∂BR

m(x)m(y)

|x− y|N−α (x · ν) dσ(x) dy

+

ˆ

∂BR

(∇u · ν)(∇m · x) + (∇m · ν)(∇u · x) +m|∇u|γ−2(∇u · x)(∇u · ν) dσ.

Now, we let R go to infinity in (3.35). We observe that (changing variables x and y)ˆ

RN

ˆ

RN

m(x)m(y)

|x− y|N−α
(x+ y) · (x− y)

|x− y|2
dx dy = 0.

Moreover

|I∂BR
| ≤ R

ˆ

∂BR

(3|∇u| |∇m|+ 2m |∇u|γ + |λ|m) dσ +

ˆ

RN

R

ˆ

∂BR

m(x)m(y)

|x− y|N−αdσ(x) dy

since by assumption |∇u| |∇m|, m|∇u|γ and m ∈ L1(RN ), by Lemma 3.3.1, we get that
for some sequence Rn → +∞

Rn

ˆ

∂BRn

(
3|∇u| |∇m|+ 2m |∇u|γ + |λ|m

)
dσ → 0, as n→ +∞.

By means of the same argument, since m ∈ L
2N

N+α (RN ) implies that

G(x) :=

ˆ
RN

m(x)m(y)

|x− y|N−αdy ∈ L1(RN )

(by Theorem 3.2.7), we get that there exists a sequence Rn → +∞ such that

Rn

ˆ
∂BRn

G(x)dx→ 0, as n→ +∞,

which conclude the proof.
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We are now in position to prove nonexistence of classical solutions with prescribed
integrability and boundary conditions at ∞.

Proof of Theorem 3.1.1. We argue by contradiction. Assume to have a triple (u,m, λ) ∈
C2(RN ) ×W 1, 2N

N+α (RN ) × R solution to (3.23) such that u → +∞ as |x| → +∞ and it
holds

m|∇u|γ , |∇m||∇u| ∈ L1(RN ).

From Proposition 3.3.2 we have the following Pohozaev-type identity

(2−N)

ˆ

RN

∇u · ∇mdx+

(
1− N

γ

) ˆ

RN

m|∇u|γdx = λNM +
α+N

2

ˆ

RN

m(Kα ∗m) dx.

(3.36)
Moreover, we obtain the following identities

ˆ

RN

∇u · ∇mdx = −1

γ

ˆ

RN

m|∇u|γdx− λM −
ˆ

RN

ˆ

RN

m(x)m(y)

|x− y|N−αdx dy (3.37)

and ˆ

RN

∇u · ∇mdx = −
ˆ

RN

m|∇u|γ dx. (3.38)

Proof of (3.37). Multiplying the first equation in (3.23) by m and integrating over BR
we obtain
ˆ

BR

∇u·∇mdx−
ˆ

∂BR

m∇u·ν dσ+1

γ

ˆ

BR

m|∇u|γdx+λ
ˆ

BR

mdx = −
ˆ

BR

ˆ

RN

m(x)m(y)

|x− y|N−αdy dx.

(3.39)
By Holder’s inequality and using the fact that m|∇u|γ ∈ L1(RN ), we have

ˆ
RN

|∇u|mdx ≤
(ˆ

RN

|∇u|γmdx

) 1
γ

M
1
γ′ < +∞,

hence |∇u|m ∈ L1(RN ) and by Lemma 3.3.1, we get that for some sequence Rn → +∞
ˆ
∂BRn

m∇u · ν dσ → 0, as n→ +∞.

Equality (3.37) follows letting R→ ∞ in (3.39).
Proof of (3.38). For any s > 0 let us define the set

Xs := {x ∈ RN |u(x) ≤ s}

and the function
vs(x) := u(x)− s, ∀x ∈ RN .

After a translation we may assume u(0) = 0. In this way, ∪s>0Xs = RN , every Xs

is non-empty and bounded since u(x) → +∞ as |x| → +∞. Multiplying the second
equation in (3.23) by vs and integrating by parts, we get

ˆ

Xs

∇vs · ∇mdx = −
ˆ

Xs

m |∇u|γ−2∇u · ∇vs dx,
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since ∇vs = ∇u, we obtain (3.38) letting s→ +∞.
Plugging (3.38) in (3.37) we get(

1− 1

γ

) ˆ

RN

m|∇u|γdx = λM +

ˆ

RN

ˆ

RN

m(x)m(y)

|x− y|N−αdx dy

and hence ˆ

RN

m|∇u|γdx = λγ′M + γ′
ˆ

RN

ˆ

RN

m(x)m(y)

|x− y|N−αdx dy. (3.40)

Using (3.38) in (3.36), we have(
N

γ′
− 1

) ˆ

RN

m|∇u|γdx = λN M +
α+N

2

ˆ

RN

m(Kα ∗m)dx

and finally from (3.40) we obtain(
N − 2γ′ − α

2

) ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy = γ′λM.

Recall that by Lemma 3.2.12, we have that λ ≤ 0 and by assumption N − 2γ′ − α > 0,
so we get a contradiction.

Remark 6. One could observe that the the previous proof (with slight changes) holds
also in the case when u→ −∞ as |x| → +∞, hence one may ask why we do not consider
this possibility. This is due to the fact that the property of ergodicity for the process is
strictly related to the existence of a Lyapunov function (refer to [110]). More in detail,
a sufficient condition to have an ergodic process is

∇u · x > 0, for x large

(see also [68] and references therein). As a consequence, the case u→ −∞ as |x| → +∞
is not relevant.
Remark 7. A Pohozaev identity similar to (3.24) can be obtained also in the case where
V does not vanishes identically (requiring in addition that m∇V · x ∈ L1(RN ) and
mV ∈ L1(RN )). Nevertheless, the nonexistence result of Theorem 3.1.1 can not be
extended to the MFG system (3.1) when V satisfies (3.2). This is due to the fact that
in this case we could not have that λ ≤ 0 (refer to Lemma 3.2.12).

3.4 Existence of classical solutions to the MFG system

First of all we consider a regularised version of problem (3.1), namely
−∆u+ 1

γ |∇u|
γ + λ = V (x)−Kα ∗m ∗ φk(x)

−∆m− div
(
m(x)∇u(x) |∇u(x)|γ−2

)
= 0´

RN m =M, m ≥ 0

in RN (3.41)

where (φk)k is a sequence of standard symmetric mollifiers approximating the unit as
k → +∞ (i.e. a sequence of symmetric functions on RN such that φk ∈ C∞

0 (RN ),
suppφk ⊂ B1/k(0),

´
φk = 1 and φk ≥ 0). For every k fixed, using the Schauder Fixed

Point Theorem, we will prove existence of (uk,mk, λk) solution to (3.41), and then,
exploiting a priori uniform estimates on these solutions, we will show that we may pass
to the limit as k → +∞ and get a solution of the MFG system (3.1).
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3.4.1 Solution of the regularized problem

We consider (3.41) with k fixed:
−∆u+ 1

γ |∇u|
γ + λ = V (x)−Kα ∗m ∗ φ(x)

−∆m− div
(
m(x)∇u(x) |∇u(x)|γ−2

)
= 0´

RN m =M, m ≥ 0

in RN . (3.42)

We are going to construct solution to (3.42) by using the following version of the well-
known Schauder Fixed Point Theorem. Construction of solutions to MFG systems by
exploiting fixed point arguments is quite classical in the literature, see [9, 70, 102, 123].

Theorem 3.4.1 (Corollary 11.2 in [93]). Let A be a closed and convex set in a Banach
space X and let F be a continuous map from A into itself such that the image F(A) is
precompact. Then, F has a fixed point.

Let ξ, C > 0 (which will be chosen later), M > 0 and p̄ > N
α , we define the set

Aξ,M,C :=
{
µ ∈ Lp̄(RN ) ∩ L1(RN )

∣∣∣∣ ∥µ∥L 2N
N+α (RN )

≤ ξ,

ˆ
RN

µdx =M,

µ ≥ 0,

ˆ
RN

µV (x) dx ≤ C
}
.

(3.43)

Lemma 3.4.2. For any choice of ξ,M,C > 0, the set Aξ,M,C ⊂ Lp̄(RN ) is closed and
convex.

Proof. The set Aξ,M,C is convex since it is intersection of convex sets.
Let now (µn)n be a sequence in Aξ,M,C which converges in Lp̄ to µ̄. Obviously µ̄ ≥ 0

and since µn ⇀ µ̄ in L
2N

N+α (RN ) by weak lower semicontinuity of the norm we have that

∥µ̄∥
L

2N
N+α (RN )

≤ lim inf ∥µn∥
L

2N
N+α (RN )

≤ ξ.

From Fatou’s Lemma we get also that
´
RN µ̄V (x) ≤ lim inf

´
RN µnV (x) ≤ C. Note that

due to the fact that 0 ≤
´
RN µnV (x) ≤ C, and that V is coercive, see (3.2), µn are

uniformly integrable, since for every R >> 1, 0 ≤
´
|x|≥R µndx ≤ CV

Rb

´
RN V (x)µndx ≤

CCV

Rb . Due to the fact that µn → µ̄ in Lp̄, we have also that they have uniformly absolutely
continuous integrals, so we may apply the Vitali convergence theorem and obtain that
µn → µ̄ in L1(RN ) and hence

´
RN µ̄ dx = M . This proves that µ̄ ∈ Aξ,M,C , and hence

that Aξ,M,C is closed.

We define the map F : Aξ,M,C → C2(RN ) × R which to every element µ ∈ Aξ,M,C

associates a solution (u, λ̄) ∈ C2(RN )× R to the HJB equation

−∆u+
1

γ
|∇u|γ + λ = V (x)−Kα ∗ µ ∗ φ(x), in RN (3.44)

where λ̄ is defined as in (3.19) (refer to [12]); and the map G which to the couple (u, λ̄)
associates the function m which solves (weakly){

−∆m− div
(
m(x)∇u(x) |∇u(x)|γ−2

)
= 0´

RN m =M, m ≥ 0
. (3.45)
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We look for a fixed point of the map F : µ 7→ m defined as the composition of F and G,
namely F(µ) := G(F (µ)).

We are going to show that, once we have fixed M (in an appropriate range), it is
possible to choose appropriately ξ and C in such a way that the map F defined on Aξ,M,C

satisfies the assumptions of the Schauder Fixed Point Theorem 3.4.1. As we will see, the
regularization with φ in the system (3.42) is necessary in order to get precompactness of
the image of F . We start with some preliminary results.

Proposition 3.4.3. Let us consider µ ∈ Aξ,M,C , (u, λ̄) = F (µ) and m = G(u, λ̄) =
F(µ). Then,

i) there exists a positive constant C depending on CV , b, γ,N, λ̄, ∥Kα ∗ µ ∗ φ∥∞ such
that

|∇u(x)| ≤ C(1 + |x|)
b
γ . (3.46)

ii) the function u is unique up to addition of constants and there exists C > 0 such
that

u(x) ≥ C|x|
b
γ
+1 − C−1. (3.47)

iii) it holds
−K1 ≤ λ̄ ≤ K2 (3.48)

where K1 and K2 are positive constants depending respectively on ∥Kα ∗ µ ∗ φ∥∞
and on CV , b, γ,N .

iv) the function m is unique, m ∈ (W 1,1∩L∞)(RN ),
√
m ∈W 1,2(RN ), m ∈W 1,p(RN )

∀p > 1 and it holds

∥∇m∥Lp(RN ) ≤ C∥m
1
p |∇u|γ−1∥Lp(RN )∥m

1− 1
p ∥L∞(RN ). (3.49)

Moreover, the following integrability properties are verified

m|∇u|γ ∈ L1(RN ), mV ∈ L1(RN ), |∇u| |∇m| ∈ L1(RN ). (3.50)

Proof. i) Since µ ∗ φ ∈ L1(RN ) ∩ Lp̄(RN ) with p̄ > N
α , by Theorem 3.2.8 and Theorem

3.2.9 we obtain Kα ∗ (µ ∗ φ) ∈ C0,θ(RN ) for some θ ∈ (0, 1) and ∥Kα ∗ µ ∗ φ∥∞ ≤
CN,α,p̄∥µ ∗ φ∥Lp̄ + ∥µ ∗ φ∥L1 ≤ CN,α,p̄∥µ∥Lp̄ +M . Therefore we can apply Proposition
3.2.10, which gives us the following estimate

|∇u(x)| ≤ C(1 + |x|)
b
γ

where C is a constant depending on CV , b, γ,N, λ̄, ∥Kα ∗ (µ ∗ φ)∥∞. This proves (3.46).
ii) Since, by construction, u is a solution to (3.44) with λ = λ̄ then by Proposition

3.2.11 ii) it follows uniqueness up to additive constants and (3.47).
iii) The fact that λ̄ ≤ K2 is a direct consequence of Lemma 3.2.12. Furthermore, if

x̄ is a minimum point of u, evaluating (3.44) at x̄ we have that

λ̄ ≥ V (x̄)−Kα ∗ µ ∗ φ(x̄) ≥ −∥Kα ∗ µ ∗ φ∥∞ ≥ −K1
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since V (x) ≥ 0 in RN .
iv) For r > 1, let us consider the function h(x) := u(x)r, one can observe that

−∆h+ |∇u|γ−2∇u · ∇h = rur−1

(
−(r − 1)

|∇u|2

u
−∆u+ |∇u|γ

)
= rur−1

(
−∆u+

1

γ
|∇u|γ − (r − 1)

|∇u|2

u
+

1

γ′
|∇u|γ

)
= rur−1

(
−λ̄+ V −Kα ∗ µ ∗ φ− (r − 1)

|∇u|2

u
+

1

γ′
|∇u|γ

)
,

where in the last equality we used the fact that u solves (3.44). Denoting by

H(x) := −λ̄+ V (x)−Kα ∗ µ ∗ φ(x)− (r − 1)
|∇u|2

u
+

1

γ′
|∇u|γ ,

from (3.48), (3.2) and the fact that Kα ∗ µ ∗ φ ∈ L∞, we get

H(x) ≥ (r − 1)|∇u|γ
(

1

γ′(r − 1)
− |∇u|2−γ

u

)
+ C−1

V |x|b − C ≥ 1, for |x| > R

taking R sufficiently large. Hence, for |x| > R

−∆h+ |∇u|γ−2∇u · ∇h ≥ C|x|(
b
γ
+1)(r−1)

> 0

this means that h is a Lyapunov function for the stochastic process with drift |∇u|γ−2∇u,
and since m solves (3.45), it is the density of the invariant measure associated to this
process. So, from [150, Proposition 2.3] we get that

m|x|(
b
γ
+1)(r−1) ∈ L1(RN )

and more in general, since the value of r > 1 can be chosen arbitrarily, we have that for
any q > 0

m|x|q ∈ L1(RN ).

In particular m|x|b ∈ L1(RN ), so taking into account estimates (3.46) and (3.2) we obtain
that

m|∇u|γ ∈ L1(RN ) and mV ∈ L1(RN ).

With the same argument (since |∇u|p(γ−1) has polynomial growth) it follows that

m|∇u|p(γ−1) ∈ Lp(RN ), ∀p > 1

hence from [150, Corollary 3.2 and Theorem 3.5] we get that

m ∈W 1,1(RN ) ∩ L∞(RN ).

Moreover, using the fact that m is a weak solution to the Kolmogorov equation and
Hölder inequality, we obtain that for any ϕ ∈ C∞

0 (RN ) we have∣∣∣∣ ˆ
RN

m∆ϕdx

∣∣∣∣ ≤ ˆ
RN

m|∇u|γ−1| |∇ϕ| dx ≤ ∥m
1
p |∇u|γ−1∥p∥m1− 1

p ∥∞∥∇ϕ∥p′ .

Since m
1
p |∇u|γ−1 ∈ Lp(RN ) and m1− 1

p ∈ L∞(RN ), by Proposition 3.2.2 we get that

m ∈W 1,p(RN ), ∀p > 1
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and estimate (3.49) holds. Finally, from [150, Theorem 3.1] we have that
√
m ∈W 1,2(RN )

and
´
RN

|∇m|2
m < +∞, so using Hölder inequality we obtain

ˆ
RN

|∇u| |∇m| ≤
∥∥ |∇u|√m∥∥

2

∥∥∥∥ |∇m|√
m

∥∥∥∥
2

< +∞.

Since the function u is unique up to additive constants, ∇u is fixed and hence, by
existence of a Lyapunov function, it follows immediately uniqueness of m solution to the
Kolmogorov equation.

We show now that once we fix the mass M (in (0,+∞) in the mass-subcritical case,
or below a certain threshold in the mass-supercritical and mass-critical regime), then we
may choose the constants ξ and C in the definition (3.43) of the set Aξ,M,C such that
the map F maps Aξ,M,C into itself.

Lemma 3.4.4. We have the following results:

i) if N − γ′ < α < N , then for any M > 0, there exist ξ, C > 0 such that F maps
Aξ,M,C into itself;

ii) if N−2γ′ ≤ α ≤ N−γ′, then there exists a positive real value M0 =M0(N,α, γ, CV , b)
such that if M ∈ (0,M0) there exist ξ, C > 0 such that F maps the set Aξ,M,C into
itself.

Proof. Let µ ∈ Aξ,M,C , m = F(µ) and (u, λ̄) = F (µ) as above. Since by Proposition
3.4.3 iv) m ∈ L∞(RN ), by interpolation it follows that m ∈ Lp̄(RN ). Multiplying (3.44)
by m and integrating over BR, we obtain

−
ˆ
BR

m∆u dx+
1

γ

ˆ
BR

m|∇u|γdx+ λ̄
ˆ
BR

mdx =

ˆ
BR

V (x)mdx−
ˆ
BR

m(Kα ∗µ∗φ) dx

and integrating by parts the first termˆ
BR

∇m · ∇u dx−
ˆ
∂BR

m∇u · ν dσ +
1

γ

ˆ
BR

m|∇u|γdx+ λ̄

ˆ
BR

mdx

=

ˆ
BR

V (x)mdx−
ˆ
BR

m(Kα ∗ µ ∗ φ) dx.
(3.51)

From the fact that
´
RN m =M and m|∇u|γ ∈ L1(RN ), by Hölder inequality we get that

m|∇u| ∈ L1(RN ), hence by Lemma 3.3.1 for some sequence Rn → +∞ we have that´
∂BRn

m∇u · ν dσ → 0. Since m(Kα ∗ µ ∗ φ) ∈ L1(RN ) and (3.50) holds, letting R go to
+∞ in (3.51) we obtain that
ˆ

RN

∇u · ∇mdx = −1

γ

ˆ

RN

m|∇u|γdx− λ̄M +

ˆ

RN

V (x)mdx−
ˆ

RN

m(Kα ∗µ ∗φ) dx. (3.52)

Moreover, from the fact that m solves (weakly) the Kolmogorov equation in (3.45),
following the proof of identity (3.38), we have that

ˆ
RN

∇u · ∇mdx = −
ˆ
RN

m|∇u|γdx. (3.53)

Putting together (3.52) and (3.53) we get that

1

γ′

ˆ
RN

m|∇u|γdx+

ˆ
RN

mV dx = λ̄M +

ˆ
RN

m(Kα ∗ µ ∗ φ) dx. (3.54)
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From (3.54), using the fact that λ̄ ≤ K2 (from (3.48)) and (3.15), we have
ˆ
RN

m|∇u|γdx ≤ C1M + C2 ∥m∥
L

2N
N+α (RN )

∥µ ∗ φ∥
L

2N
N+α (RN )

≤ C1M + C2 ∥m∥
L

2N
N+α (RN )

∥µ∥
L

2N
N+α (RN )

≤ C1M + C2 ξ ∥m∥
L

2N
N+α (RN )

(3.55)

where C1 = C1(γ,CV , b,N) and C2 = C2(α,N, γ).
Choice of ξ. First of all we show that we may choose ξ in such a way that if µ ∈ Aξ,M,C

then ∥m∥
L

2N
N+α (RN )

= ∥F(µ)∥
L

2N
N+α (RN )

≤ ξ.

Let us fix a := 2γ′

N−α . Notice that a > 2 if α > N − γ′, a = 2 if α = N − γ′, a ∈ (1, 2) if
N − 2γ′ < α < N − γ′ and a = 1 when α = N − 2γ′.
In the case when N − γ′ ≤ α < N , using estimate (3.12), we get

∥m∥a
L

2N
N+α (RN )

≤ CMa−1

ˆ
RN

m|∇u|γdx (3.56)

where C is a constant depending on N , α and γ; whereas if N − 2γ′ ≤ α < N − γ′ using
estimate (3.13), we get

∥m∥a
L

2N
N+α (RN )

≤ CMa−1

(ˆ
RN

m|∇u|γdx+M

)
(3.57)

where C is a constant depending on N , α and γ. From (3.55) and either (3.56) or (3.57)
we obtain that

∥m∥a
L

2N
N+α (RN )

≤ C1M
a + C2M

a−1ξ ∥m∥
L

2N
N+α (RN )

. (3.58)

We define the function
f(t) := ta − C2M

a−1ξt− C1M
a

and observe that (3.58) is equivalent to

f

(
∥m∥

L
2N

N+α (RN )

)
≤ 0.

When a > 1, f(∥m∥
L

2N
N+α (RN )

) ≤ 0 is equivalent to ∥m∥
L

2N
N+α (RN )

≤ t0, where t0 is the

unique zero of f . So, in order to conclude that ∥m∥
L

2N
N+α (RN )

≤ ξ it is sufficient to choose

ξ such that f(ξ) ≥ 0.
Case N − γ′ < α < N . In this case since a > 2 and f(ξ) = ξa − C2M

a−1ξ2 − C1M
a

then for every fixed M > 0, there exists ξM such that f(ξ) ≥ 0 for every ξ ≥ ξM and we
have done.

Case α = N − γ′. In this case a = 2, so arguing as before, and recalling that
f(ξ) = ξ2 −C2Mξ2 −C1M

2, we get that whenever M < 1
C2

:=M0 there exists ξM such
that f(ξ) ≥ 0 for every ξ ≥ ξM .

Case N − 2γ′ < α < N − γ′. In this case a ∈ (1, 2). Denote g(t) := ta−C2M
a−1t2 −

C1M
a. We aim to find ξ such that g(ξ) ≥ 0. This is possible if and only if g(tmax) ≥ 0,

where tmax =
(

a
2C2Ma−1

) 1
2−a is the maximum point of g. Evaluating g in this point we

get

g(tmax) =

(
2− a

2

)
C

− a
2−a

2

(a
2

) a
2−a

M
a(1−a)
2−a − C1M

a.
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Since a ∈ (1, 2) we have that 2−a
2 > 0 and a(1−a)

2−a < 0, hence

g(tmax) ≥ 0

provided that M is sufficiently small. We may choose ξ = tmax (or more generally ξ in
the range of values t such that g(t) ≥ 0).

Case α = N − 2γ′. Since a = 1, the function f reads f(t) = t − C2ξt − C1M and
since f(∥m∥

L
2N

N+α (RN )
) ≤ 0 we have, if ξ < 1

C2
,

∥m∥
L

2N
N+α (RN )

≤ C1M

1− C2ξ
.

We look for some condition on M under which we may choose ξ such that C1M
1−C2ξ

≤ ξ.
Observe that this is equivalent to C2ξ

2−ξ+C1M ≤ 0. If M ≤ 1
4C1C2

, then it is sufficient

to choose ξ in the range
[
1−

√
1−4C1C2M
2C2

, 1+
√
1−4C1C2M
2C2

]
∩
(
0, 1

C2

)
.

Choice of C. Notice that in each of the previous cases, from (3.54), using (3.48), (3.15)
and the fact that ∥m∥

L
2N

N+α (RN )
≤ ξ, we get

ˆ
RN

mV dx ≤ C1M + C2ξ
2.

So it is sufficient to choose C greater or equal to C1M + C2ξ
2.

We can conclude that F maps the set Aξ,M,C into itself.

We show now that the image of F is precompact, that is relatively compact. Here is
the main point in which the regularization with the mollifier φ comes into play.

Lemma 3.4.5. Let M and ξ, C as given by Lemma 3.4.4. Then the image F(Aξ,M,C)
is precompact.

Proof. Let us consider a sequence (mn)n ⊂ F(Aξ,M,C), in order to prove that F(Aξ,M,C)
is precompact in Aξ,M,C , we have to show that that (mn)n admits a subsequence converg-
ing in Lp̄-norm to a point belonging to Aξ,M,C . There exists a sequence (µn)n ⊂ Aξ,M,C

such that F(µn) = mn for every n ∈ N, considering also (un, λ̄n) = F (µn), we have that
for every n ∈ N the triple (un,mn, λ̄n) is such that

−∆un +
1
γ |∇un|

γ + λ̄n = V (x)−Kα ∗ µn ∗ φ(x)
−∆mn − div(mn∇un|∇un|γ−2) = 0´
RN mn =M mn ≥ 0.

.

Note that by Young’s convolution inequality ∥µn ∗ φ∥Lq(RN ) ≤ ∥µn∥L1(RN )∥φ∥Lq(RN ) =
M∥φ∥Lq(RN ) for every q. Therefore by Theorem 3.2.8 and Theorem 3.2.9 we get that
Kα ∗ µn ∗ φ ∈ L∞ ∩ C0,θ for some θ ∈ (0, 1) uniformly in n, and in particular ∥Kα ∗
µn ∗φ∥L∞(RN ) ≤ C, for some C independent of n. By Proposition 3.4.3 we have that un
are bounded from below, that mn ∈ L∞ and that λ̄n are equibounded in n, so applying
Theorem 3.2.13 (actually a simpler version, with Wn(x) = V (x) − Kα ∗ µn ∗ φ and
Gk,α ≡ 0) we obtain that there exists a positive constant C not depending on n such
that

∥mn∥L∞(RN ) ≤ C, ∀n ∈ N. (3.59)
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Now we use Proposition 3.2.5 ii), sincemn ∈ Lq(RN ) (where q is defined as in Proposition
3.2.5) and En ≤ C1M + C2ξ

2 we get that

∥mn∥W 1,ℓ(RN ) ≤ C, ∀ℓ < q

where the constant C does not depend on n. Hence, by Sobolev compact embeddings,
mn → m̄ strongly in Ls(K) for 1 ≤ s < q∗ and for every K ⊂⊂ RN . Moreover, using the
fact that

´
RN mnV dx ≤ C uniformly in n and (3.2) we get that for R > 1

C ≥
ˆ
RN

mnV dx ≥
ˆ
|x|≥R

mnV dx ≥ CRb
ˆ
|x|≥R

mn(x) dx

that is ˆ
|x|≥R

mn(x)dx→ 0, as R→ +∞.

Using also the uniform estimate (3.59), from the Vitali Convergence Theorem we obtain
that up to sub-sequences

mn → m̄ in L1(RN ) (3.60)

and as a consequence
´
RN m̄(x)dx =M . Finally, from (3.59) and (3.60), we deduce that

mn → m̄ strongly in Lp̄(RN ). Since Aξ,M,C is closed and by Lemma 3.4.4 we have that
F(Aξ,M,C) ⊂ Aξ,M,C , we may conclude that m̄ ∈ Aξ,M,C .

Finally we show that F is continuous.

Lemma 3.4.6. Let ξ, M and C as given by Lemma 3.4.4. Then, the map F is contin-
uous.

Proof. Let (µn)n be a sequence in Aξ,M,C such that µn → µ̃ ∈ Aξ,M,C strongly in Lp̄(RN ).
In order to prove that the map F is continuous, we have to show that F(µn) → F(µ̃)
with respect to the Lp̄-norm, that is mn → m̃ strongly in Lp̄(RN ).
We consider the sequence made by the couples (un, λ̄n) ∈ C2(RN )×R, where (un, λ̄n) =
F (µn) ∀n ∈ N, as previously defined. As observed in Lemma 3.4.5, Kα∗µn∗φ is uniformly
bounded in L∞. So by Proposition 3.4.3 we have that λ̄n are uniformly bounded, that

|∇un(x)| ≤ C(1 + |x|
b
γ ) uniformly in n

and then consequently

|∆un| ≤ C(1 + |x|b) uniformly in n. (3.61)

Up to extracting a subsequence we assume that λ̄n → λ(1). Since un is a classical
solution to the HJB equation, by classical elliptic regularity estimates applied to vn(x) :=
un(x)− un(0) (refer e.g to [93, Theorem 8.32]) for any θ ∈ (0, 1] and K ⊂⊂ RN we get

∥vn∥C1,θ
loc (K)

≤ C uniformly in n

(notice that the previous estimate holds for θ = 1 thanks to (3.61)). By Arzelà-Ascoli
Theorem, up to extracting a subsequence, we get that

vn → u(1) locally uniformly in C1,θ

and hence
∇un → ∇u(1) locally uniformly in C0,θ.
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Since ∥(µn − µ̃) ∗ φ∥Lp̄(RN ) ≤ 2M∥φ∥Lp̄(RN ), by Theorem 3.2.9 we get that

∥Kα ∗ φ ∗ µn∥C0,α−N/p̄ ≤ C, uniformly in n

and from Theorem 3.2.8

∥Kα ∗ φ ∗ µn −Kα ∗ φ ∗ µ̃∥L∞(RN ) ≤ CN,α,p̄∥µn − µ̃∥Lp̄(RN ) + ∥µn − µ̃∥L1(RN ).

Since µn → µ̃ in L1(RN ) ∩ Lp̄(RN ), then up to subsequences

Kα ∗ φ ∗ µn −→ Kα ∗ φ ∗ µ̃ locally uniformly.

By stability with respect to locally uniform convergence, we get that (u(1), λ(1)) is a
solution (in the viscosity sense) to the HJB equation

−∆u+
1

γ
|∇u|γ + λ = V (x)−Kα ∗ φ ∗ µ̃(x), on RN .

Let (ũ, λ̃) = F (µ̃), we want to show that λ̃ = λ(1). Assume by contradiction that
λ̃ ̸= λ(1), without loss of generality we can assume that λ(1) < λ̃ − 2ε for a certain
ε > 0. Then, for n sufficiently large λ̄n < λ̃ − ε and, possibly enlarging n, we have also
∥Kα ∗ φ ∗ µn −Kα ∗ φ ∗ µ̃∥∞ ≤ ε. One can observe that

−∆ũ+
1

γ
|∇ũ|γ + λ̃− ε− V (x) +Kα ∗ φ ∗ µn(x) ≤ 0,

i.e. ũ is a subsolution to the equation

−∆u+
1

γ
|∇u|γ + λ̃− ε = V (x)−Kα ∗ φ ∗ µn(x).

Since by definition (see [44, Theorem 2.7 (i)])

λ̄n := sup

{
λ ∈ R

∣∣∣∣ −∆u+
|∇u|γ

γ
+λ = V −Kα ∗µn ∗φ has a subsolution in C2(RN )

}
it must be λ̄n ≥ λ̃− ε, which yields a contradiction. Therefore λ̃ = λ(1). By Proposition
3.4.3 ii), ũ is unique up to addition of constants, namely there exists c ∈ R such that
ũ = u(1) + c, it follows that ∇ũ = ∇u(1). Once we have the sequence of function un, we
construct the sequence (mn)n ⊂ F(Aξ,M,C) such that for every n ∈ N fixed, it holds{

−∆mn − div(mn∇un|∇un|γ−2) = 0´
RN mn =M, mn ≥ 0

.

From Lemma 3.4.5, up to extracting a subsequence

mn → m(1) in Lp̄(RN )

where m(1) ∈ Aξ,M,C . Since ∇un|∇un|γ−2 → ∇ũ|∇ũ|γ−2 locally uniformly in RN , we
get that m(1) is a weak solution to

−∆m− div(m∇ũ|∇ũ|γ−2) = 0

that has m̃ = F(µ̃) as unique solution. This proves that mn → m̃ in Lp̄(RN ).
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We are ready to prove the following result on existence of solutions to the regularised
MFG system (3.42).

Theorem 3.4.7. We get the following results:

i. if N−γ′ < α < N then, for every M > 0 the MFG system (3.42) admits a classical
solution;

ii. if N−2γ′ ≤ α ≤ N−γ′ then, there exists a positive real value M0 =M0(N,α, γ, CV , b)
such that if M ∈ (0,M0) the MFG system (3.42) admits a classical solution.

Proof. From Lemma 3.4.2, Lemma 3.4.4, Lemma 3.4.5 and Lemma 3.4.6 assumptions
of Theorem 3.4.1 are verified, hence the map F has a fixed point mφ. The fixed point
mφ together with the couple (uφ, λ̄φ) = F (mφ) obtained solving the Hamilton-Jacobi-
Bellman equation with Riesz potential term equal to Kα ∗mφ ∗ φ, is a solution to the
MFG system (3.42).

3.4.2 Limiting procedure

Let (φk)k be a sequence of standard symmetric mollifiers approximating the unit as
k → +∞. For every k ∈ N (under the additional assumption that the constrained mass
M is sufficiently small in the case when N−2γ′ < α ≤ N−γ′) from Theorem 3.4.7 we can
construct a classical solution (uk,mk, λ̄k) to the corresponding regularised MFG system
(3.41). Our aim now is passing to the limit as k → +∞ and prove that (uk,mk, λ̄k)
converges to a solution of the MFG system (3.1).

We need some preliminary apriori estimates.

Lemma 3.4.8. Let α ∈ (N − 2γ′, N) and (uk,mk, λ̄k) be a solution to the regularized
MFG system (3.41) as constructed in Theorem 3.4.7. Then, there exist C1, C2, C3 positive
constants independent of k such that

∥mk∥L∞(RN ) ≤ C1,

|λ̄k| ≤ C2

and
|∇uk| ≤ C3(1 + |x|

b
γ ) |∆uk| ≤ C3(1 + |x|b). (3.62)

Proof. Note that if m ∈ Lr(RN ) ∩ Ls(RN ) for any r ∈
(
N
α ,+∞

]
and s ∈

[
1, Nα

)
, by

Theorem 3.2.8 we have that

∥Kα ∗ φk ∗m∥L∞(RN ) ≤ CN,α,r,s(∥φk ∗m∥Lr(RN ) + ∥φk ∗m∥Ls(RN ))

≤ C1∥m∥Lr(RN ) + C2∥m∥Ls(RN )

So, since mk ∈ L1(RN ) ∩ L∞(RN ) with ∥mk∥ 2N
N+α

≤ ξ, uk are bounded from below and
satisfy (3.4), we may apply Theorem 3.2.13 with Wk ≡ V , Gk,α[m] = Kα ∗ φk ∗m and
q = 2N

N+α >
N

α+γ′ and conclude the uniform L∞ bounds on mk.
Now, by Proposition 3.4.3, we get that λ̄k are equibounded in k and that

|∇uk(x)| ≤ C(1 + |x|
b
γ ) |∆uk| ≤ C(1 + |x|b)

where C is independent of k.
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Proof of Theorem 3.1.2. Since for any k ∈ N, uk is a classical solution to the HJB equa-
tion

−∆u+
1

γ
|∇u|γ + λ̄k = V (x)−Kα ∗ φk ∗mk

by Lemma 3.4.8 and elliptic estimates (refer to [93, Theorem 8.32]) applied to vk(x) :=
uk(x)− uk(0), we obtain that for every K ⊂⊂ RN and θ ∈ (0, 1]

∥vk∥C1,θ
loc (K)

≤ C uniformly with respect to k

hence up to extracting a subsequence

vk → ū locally uniformly in C1 on compact sets.

Similarly, since mk weak solution to −∆m − div(m|∇uk|γ−2∇uk) = 0, for every φ ∈
C∞
0 (K) it holds ∣∣∣∣ ˆ

K
mk∆φdx

∣∣∣∣ ≤ ∥∇φ∥L1(K)∥mk|∇uk|γ−1∥L∞(K).

Using the uniform L∞ estimates on mk and the estimates (3.62), by Proposition 3.2.2
and Sobolev embedding, we get that for every β ∈ (0, 1)

∥mk∥C0,β(K) ≤ C uniformly with respect to k

so up to extracting a subsequence

mk → m̄ locally uniformly.

Since the values of λ̄k are equibounded with respect to k, we have that λ̄k → λ̄ up to a
subsequence.Again recalling that

´
V (x)mk ≤ C uniformly in k, we conclude by Vitali

Convergence Theorem that mk → m̄ in L1(RN ) and hence
´
RN m̄ =M . From the strong

convergence in L1(RN ) and the uniform L∞ estimates, we obtain also that

mk → m̄ in Lp(RN )

for every p ∈ [1,+∞). We finally have that

Kα ∗ φk ∗mk → Kα ∗m locally uniformly.

We can pass to the limit and obtain that (ū, m̄, λ̄) is a solution to the MFG system
(3.1).
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Chapter 4

Concentration for Ergodic
Choquard Mean-Field Games

4.1 Introduction to the problem and main results

In the present chapter, we keep on the study, initiated in Chapter 3, of stationary
Mean-Field Games systems defined in the whole space RN with aggregating nonlocal
coupling of Riesz-type. In particular, given M > 0, we consider systems of the form

−∆u+ 1
γ |∇u|

γ + λ = −Kα ∗m(x)

−∆m− div(m∇u|∇u|γ−2) = 0´
RN m =M, m ≥ 0

in RN (4.1)

where γ > 1 is fixed and Kα : RN → R is the Riesz potential of order α ∈ (0, N).

Focusing on the mass-subcritical regime N − γ′ < α < N (where γ′ = γ
γ−1 is the

conjugate exponent of γ), we provide existence of classical solutions to the MFG system
(4.1). Notice that by classical solution we mean a triple (u,m, λ) ∈ C2(RN )×W 1,p(RN )×
R for every p ∈ (1,+∞), solving the system. More precisely, we obtain the following
existence result.

Theorem 4.1.1. Let N − γ′ < α < N . Then, for every M > 0 there exists (ū, m̄, λ̄)
classical solution to the MFG system (4.1). Moreover, there exist C1, C2, C3 and C4

positive constants such that

ū(x) ≥ C1|x| − C−1
1 , |∇ū| ≤ C2

and
0 < m̄(x) ≤ C3e

−C4|x|.

Remark 8. Solutions to the MFG system (4.1) are invariant by translation, namely if
(ū(x), m̄(x), λ̄) is a classical solution to (4.1) then for every x0 ∈ RN and c ∈ R, also(
ū(x+ x0) + c, m̄(x+ x0), λ̄

)
is a classical solution to (4.1). Therefore, the constants C1

and C4 appearing in the previous theorem, depend on the choice of the solution.
Theorem 4.1.1 partially completes the study of existence of solutions to the potential-

free MFG system (4.1) started in Chapter 3. In particular, in Theorem 3.1.1, using a
Pohozaev-type identity, one proves that if 0 < α < N − 2γ′, “regular” solutions to
the MFG system (4.1) (namely satisfying some quite natural integrability conditions

93
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and boundary conditions at infinity) do not exist. It remains still open the problem of
existence of solutions to (4.1) when α ∈ [N − 2γ′, N − γ′].

On the other hand, the main result in Chapter 3 deals with the study of MFG systems
with Riesz-type coupling and external confining potential V . More in detail, exploiting
a Schauder fixed point argument, one proves that the MFG system admits a classical
solution for every total mass M > 0 if α ∈ (N − γ′, N), and for sufficiently small masses
M < M0 if α ∈ (N−2γ′, N−γ′] (see Theorem 3.1.2 for more details). Notice that, using
a fixed point approach, the presence of the coercive potential V adds compactness to the
problem and proves to be essential to conclude, so the existence result in this chapter
does not cover the case when the potential V is identically 0. In order to deal with the
potential-free system we take advantage a variational argument. This approach allows
us to obtain some uniform (namely not depending on the viscosity parameter) estimates
on the solutions, which will be crucial in the vanishing viscosity setting and which can
not be obtained by means of a fixed point technique.
Remark 9. From Theorem 4.1.1 we obtain a more general result for the range of values
α such that the normalized Choquard equation (II.6) with V ≡ 0 has a solution, but we
left open the problem of symmetry of solutions.

Finally, if the coupling is given by Kα ∗m, dissipating forces dominate and we expect
nonexistence of solutions in the noncompact setting RN ; while if we consider a bounded
domain with periodic or Neumann boundary conditions a similar approach to the case
of power-like coupling should work (see e.g. [70, 98]).

In order to study system (4.1), we consider an ergodic MFG system defined in the
whole space RN with an external confining potential V and Brownian noise which depends
on ε > 0. Specifically, we take into account systems of the form

−ε∆u+ 1
γ |∇u|

γ + λ = V (x)−Kα ∗m(x)

−ε∆m− div(m∇u|∇u|γ−2) = 0´
RN m =M, m ≥ 0

in RN (4.2)

where we assume that the potential V is locally Hölder continuous and there exist two
positive constants b and CV such that

C−1
V (max{|x| − CV , 0})b ≤ V (x) ≤ CV (1 + |x|)b, ∀x ∈ RN . (4.3)

Studying the asymptotic behavior of rescaled solutions to the MFG system (4.2) in the
vanishing viscosity limit, we are able to prove existence of classical solutions to the MFG
system (4.1) (without the potential term V ). As a matter of fact, letting ε → 0, the
dynamic of each player is no subject anymore to the dissipation effect induced by the
Brownian motion, so we expect aggregation of players. In particular, in the vanishing
viscosity limit the mass m tends to concentrate, the introduction of the coercive potential
V , which represents spatial preferences of agents, rules out this possibility and leads to
concentration of mass around minima of the potential V .

Let us summarize the main tools to prove our results. As above mentioned, taking
into account the variational nature of the MFG system, solutions to (4.2) are related
to critical points of the energy functional E (as defined in (II.7)) over the constrained
set Kε,M (see (II.8)). Using some regularity results for the Kolmogorov equation (refer
to Proposition 3.2.4), the Hardy-Littlewood-Sobolev inequality and the fact that V is
non-negative, we show that the energy E is bounded from below when N − γ′ < α < N .
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By classical direct methods and compactness arguments, we obtain minimizers (mε, wε)
of E . Finally, passing to another functional with linearized Riesz-term and using convex
duality arguments (see for instance [33, 35, 36, 44, 45]), we are able to construct the
associated solutions (uε,mε, λε) of the MFG system (4.2). Then, in order to investigate
the behavior of the system in the vanishing viscosity limit, we define a suitable rescaling
of uε, mε and λε. We also translate the reference system by yε, where yε is a point of
minimum for the value function uε, in such a way around yε the mass remains positive and
we can rule out vanishing of the total mass in the limit. We obtain a triple (m̄ε, ūε, λ̃ε)
which solves the following MFG system

−∆ūε +
1
γ |∇ūε|

γ + λ̃ε = ε
(N−α)γ′
γ′−N+αV

(
ε

γ′
γ′−N+α (y + yε)

)
−Kα ∗ m̄ε(y)

−∆m̄ε − div(m̄ε∇ūε|∇ūε|γ−2) = 0´
RN m̄ε =M

(see Subsection 4.4.1 for more details). Exploiting a concentration-compactness argument
(refer to the seminal work of P.-L. Lions [136]) as done in [44], we are able to prove that
there is no loss of mass when passing to the limit as ε→ 0. We show that in the vanishing
viscosity limit, the rescaled solutions converge (up to sub-sequences) to (ū, m̄, λ̄) classical
solution to the MFG system (4.1). Moreover, solutions to (4.1) are related to minimum
points of the following energy

E0(m,w) :=
ˆ
RN

mL
(
−w

m

)
dx− 1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy

over the constrained set

B :=
{
(m,w) ∈ K1,M

∣∣∣ m(1 + |x|b) ∈ L1(RN )
}
.

We obtain the following theorem, which states existence of solutions to (4.2) and con-
centration of mass.

Theorem 4.1.2. Let N − γ′ < α < N . Assume that the potential V is locally Hölder
continuous and satisfies (4.3). Then, for every ε,M > 0 there exists (uε,mε, λε) classical
solution to (4.2), such that (mε,−mε∇uε|∇uε|γ−2) is a minimum of the energy E.

Moreover, there exists a sequence ε → 0 and a sequence of points xε = ε
γ′

γ′−N+α yε
around which there is concentration of mass, namely for every η > 0 there exist R, ε0 > 0
such that ˆ

B(xε,ε
γ′

γ′−N+αR)

mε(x) dx ≥M − η

for all ε < ε0 and
xε → x̄, as ε→ 0

where x̄ is a minimum point of the potential V and V (x̄) = 0.

Finally, if 0 < α < N − γ′ the energy E is not bounded from below, so global minima
do not exist. Despite this, since in the mass-supercritical and HLS-subcritical regime
N − 2γ′ < α < N − γ′, we still get some a priori estimates for the L

2N
N+α (RN )-norm

of m (see (3.13)), we can look for critical points, that are no global minimizers (called
bound states in the NLS literature). Hence, assuming for sake of simplicity ε = 1 (same
results hold for ε > 0 fixed), we study the previous minimization problem requiring a
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smallness constraint on the L
2N

N+α (RN )-norm of m. More in detail, we minimize E over
the constraint set

K1,M,ξ :=

{
(m,w) ∈ K1,M

∣∣∣∣ ∥m∥
L

2N
N+α (RN )

≤ ξ

}
,

where ξ is the value obtained from Lemma 3.4.4. Taking advantage of some results
obtained in Chapter 3 and adapting the previous minimization procedure, we prove that
if the total mass M is sufficiently small, local free minimizers of E exist. This procedure
allows us to construct classical solutions to the MFG system (4.2), which a priori are not
the same as those obtained in Chapter 3 by using a fixed point argument. More precisely,
we get the following result.

Theorem 4.1.3. Let N − 2γ′ < α ≤ N − γ′ and ε = 1. Assume that the potential
V is locally Hölder continuous and satisfies (4.3). Then, there exists a positive real
value M0 = M0(N,α, γ, CV , b) such that if M ∈ (0,M0) the MFG system (4.2) admits
a classical solution (ũ, m̃, λ̃). Moreover, m̃ is bounded in L∞(RN ) and the function ũ
satisfies for some constant C > 0 the following estimates

ũ(x) ≥ C|x|1+
b
γ − C−1

|∇ũ(x)| ≤ C(1 + |x|
b
γ ).

Unfortunately, due to the absence of adequate estimates for the value λ̃ in this regime,
we are unable to obtain the corresponding outcome of Theorem 4.1.1 when the potential
is identically zero.

The outline of this chapter is the following. In Section 4.2 we provide some prelim-
inary results. In particular, we provide some integrability, Hölder continuity and com-
pactness results for the Riesz-potential term when considering couples (m,w) ∈ Kε,M

with finite kinetic energy E. We state also a more general version of Theorem 3.2.13 for
α ∈ (N−γ′, N), which gives uniform L∞ bounds on m. In Section 4.3, using a variational
approach, we prove that minimizers of the energy do exist, and from them, we obtain as-
sociated solutions to the MFG system. We are in the position to analyze the asymptotic
behavior of solutions in the vanishing viscosity limit, in particular, in Section 4.4 we prove
existence of groundstates to MFG system defined in the whole space RN with Riesz-type
coupling and without the confining potential V . Finally, in Section 4.5, we show concen-
tration of the mass towards minima of V . We conclude this Chapter with the study of
the energy associated to the MFG system (4.2) when α ∈ (N−2γ′, N−γ′] in Section 4.6.

In what follows, C,C1, C2,K1, . . . denote generic positive constants which may change
from line to line and also within the same line.

4.2 Preliminaries

We state here some preliminary results for couples (m,w) ∈ Kε,M with finite kinetic
energy E. For further details we refer the reader to [19, 20, 44]. In what follows we
always assume that ε,M > 0 are fixed.

First of all, we have the following compactness result.
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Proposition 4.2.1. Let us consider a sequence of couples (mn, wn) ∈ Kε,M such that
En < C uniformly in n. Assume also that there exists a couple (m̄, w̄) ∈ Kε,M such that
Ē < +∞ and mn → m̄ in L1(RN ) as n→ +∞. Then

mn → m̄ in Ls(RN ), ∀s ∈
[
1,

N

N − γ′

)
(the previous holds ∀s ∈ [1,+∞) if γ′ ≥ N).

Proof. If γ′ < N , from Proposition 3.2.5 we have that mn, m̄ ∈ Lβ(RN ) ∀β < N
N−γ′ and

∥m∥Lβ(RN ) ≤ C(E+M). Let us pick 1 ≤ s < N
N−γ′ and s1 ∈

(
s, N

N−γ′
)
, by interpolation

we get there exists θ ∈ (0, 1) (depending on s and s1) such that

∥m̄−mn∥Ls(RN ) ≤ ∥m̄−mn∥θL1(RN ) ∥m̄−mn∥1−θLs1 (RN )
.

We observe that

∥m̄−mn∥Ls1 (RN ) ≤ ∥m̄∥Ls1 + ∥mn∥Ls1 ≤ C(Ē +M) + C(En +M) ≤ C1.

Hence ∥m̄ −mn∥Ls1 (RN ) is bounded, since ∥m̄ −mn∥L1(RN ) → 0 we can conclude. The
same argument holds in the case when γ′ ≥ N .

We are able to prove more precise integrability results for the Riesz term Kα ∗m and
also a compactness result.

Corollary 4.2.2. Assume that (m,w) ∈ Kε,M and E < +∞.

i) If γ′ ≥ N , then

Kα ∗m ∈ Lβ(RN ), ∀β ∈
(

N

N − α
,+∞

)
.

ii) In the case γ′ < N , if N − γ′ ≤ α < N , then

Kα ∗m ∈ Lβ(RN ), ∀β ∈
(

N

N − α
,+∞

)
;

whereas if 0 < α < N − γ′, then

Kα ∗m ∈ Lβ(RN ), ∀β ∈
(

N

N − α
,

N

N − γ′ − α

)
.

Moreover, there exists a constant C depending on N , α, γ′ and β such that

∥Kα ∗m∥Lβ(RN ) ≤ C(E +M).

Proof. Case γ′ ≥ N . From Proposition 3.2.5 i) we have in particular that m ∈ Lβ(RN )
∀β ∈ (1, Nα ), hence by Theorem 3.2.6 it follows claim i). Case γ′ < N . From Proposition
3.2.5 i) it holds that m ∈ Lβ(RN ) ∀β < N

N−γ′ . In the case when N − γ′ ≤ α < N , we
have that m ∈ Lβ(RN ) ∀β ∈ (1, Nα ) and we can conclude as before. Whereas in the case
when 0 < α < N − γ′, m ∈ Lβ(RN ) ∀β ∈ (1, N

N−γ′ ), by Theorem 3.2.6 we can conclude
the proof of claim ii).

Corollary 4.2.3. Under the assumptions of Proposition 4.2.1, we have the following:
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i) if γ′ < N and α > N − 2γ′, it holds

(Kα ∗mn)mn −−−−−→
n→+∞

(Kα ∗ m̄)m̄, in L1(RN );

ii) if γ′ ≥ N , then for every α ∈ (0, N)

(Kα ∗mn)mn −−−−−→
n→+∞

(Kα ∗ m̄)m̄, in L1(RN ).

Proof. Let us consider r̄ := Nr
N−αr and (r̄)′ its conjugate exponent, namely (r̄)′ =

Nr
Nr−N+αr . If γ′ < N , from Proposition 4.2.1, we observe that in order to have mn → m̄

in (Lr∩L(r̄)′)(RN ) for a certain r ∈
(
1, N

N−γ′
)
, it is sufficient to require that (r̄)′ < N

N−γ′ ,
that is

N

α+ γ′
< r <

N

N − γ′

and hence
α > N − 2γ′.

In particular mn → m̄ in Lr(RN ), so from Theorem 3.2.6 it follows that

Kα ∗mn → Kα ∗ m̄, in Lr̄(RN )

and since mn → m̄ in L(r̄)′(RN )

(Kα ∗mn)mn → (Kα ∗ m̄)m̄, in L1(RN ).

The case γ′ ≥ N is analogous.

Taking advantage of the integrability results in Proposition 3.2.5, we are able to prove
Hölder continuity of the term Kα∗m, for couples (m,w) ∈ Kε,M with finite kinetic energy
E.

Corollary 4.2.4. Assume that (m,w) ∈ Kε,M and E < +∞.

i) If γ′ ≥ N , then

Kα ∗m ∈ C0,θ(RN ), ∀θ ∈ (0,min{1, α}).

ii) If γ′ < N and α > N − γ′, then

Kα ∗m ∈ C0,θ(RN ), ∀θ ∈ (0,min{1, α− (N − γ′)} ).

Proof. The thesis follows from Theorem 3.2.9 and Proposition 3.2.5.

We recall here a Brezis-Lieb-type lemma for the Riesz potential (refer to [31, Theorem
1] for the classical Brezis-Lieb Lemma). It will be a key tool in Section 4.4.

Lemma 4.2.5 (Lemma 2.4 in [152]). Let 0 < α < N , p ∈
[
1, 2N

N+α

)
and (fn)n∈N be a

bounded sequence in L
2Np
N+α (RN ). If fn → f almost everywhere in RN as n→ +∞, then

lim
n→∞

ˆ
RN

(Kα ∗ |fn|p)|fn|p −
ˆ
RN

(Kα ∗ |fn − f |p)|fn − f |p =
ˆ
RN

(Kα ∗ |f |p)|f |p.
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4.2.1 Uniform L∞-bounds on m in the mass-subcritical regime

Finally, we state a simplified version of Theorem 3.2.13, indeed in the mass-subcritical
regime N − γ′ < α < N , uniform a priori L∞-bounds on m hold under more general
assumptions.

Theorem 4.2.6. Let α ∈ (N−γ′, N) and (sk)k, (tk)k be bounded positive real sequences.
We consider a sequence of classical solutions (uk,mk, λk) to the following MFG system

−∆u+ 1
γ |∇u|

γ + λ = skV (tkx)−Kα ∗m(x)

−∆m− div
(
m∇u|∇u|γ−2

)
= 0´

RN m =M, m ≥ 0

in RN ,

where the potential V satisfies assumption (4.3) with constant CV , b independent of k.
We assume that for every k, mk ∈ L∞(RN ) and uk are bounded from below. Then, there
exists a positive constant C not depending on k such that

∥mk∥L∞(RN ) ≤ C, ∀k ∈ N.

Proof. We follow the argument of the proof of Theorem 3.2.13 (refer to [20, Theorem
2.12] and see also [44, Theorem 4.1]), but since we are in the mass-subcritical regime,
some assumptions we require in the previous one can be weakened.
We assume by contradiction that

sup
RN

mk = Lk → +∞

and we define

δk :=

L
− 1

α+γ′
k if γ′ ≤ N

L
− 1

γ′
k if γ′ > N

.

We rescale (uk,mk, λk) as follows:

vk(x) := δ
2−γ
γ−1

k uk(δkx) + 1, nk(x) := L−1
k mk(δkx), λ̃k := δγ

′

k λk.

In this way 0 ≤ nk(x) ≤ 1, supnk = 1 and
´
RN nk(x)dx = δakM → 0 since a =

α+ γ′ −N > 0 if γ′ ≤ N and a = γ′ −N > 0 if γ′ ≥ N . Moreover, since up to addition
of constants we may assume inf uk(x) = 0, we have vk(x) ≥ 1 for all x ∈ RN . We get
that (vk, nk, λ̃k) is a solution to{

−∆vk +
1
γ |∇vk|

γ + λ̃k = Vk(x)−Kα ∗ nk(x)
−∆nk − div(nk∇vk|∇vk|γ−2) = 0

(4.4)

where
Vk(x) := δγ

′

k skV (tkδkx).

Notice that from (4.3), denoting by σk = δγ
′+b
k skt

b
k we have

δγ
′

k skC
−1
V (max{tkδk|x| − CV , 0})b ≤ Vk(x) ≤ CV (1 + σk|x|b), ∀x ∈ RN

and by Theorem 3.2.8 we get that

|Kα ∗ nk(x)| ≤ CN,α∥nk∥∞ + ∥nk∥1 ≤ C + δakM ≤ 2C, uniformly in k.
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Moreover, by computing the HJB equation of (4.4) in a minimum point of vk we have
that

λ̃k ≥ −Kα ∗ nk(x̄) ≥ −C

while with the same computations as in Lemma 3.2.12 ([20, Lemma 2.11]) we obtain that
λk ≤ C where C depends on γ,CV , b,N , this gives −C ≤ λ̃k ≤ δγ

′

k C hence |λ̃k| ≤ C
uniformly.

We can conclude following the proof of [44, Theorem 4.1]. More in detail, if xk is an
approximated maximum point of nk (that is nk(xk) = 1− δ), then either σk|xk|b → +∞
up to subsequences or σk|xk|b ≤ C for some C > 0.We suppose that the second possibility
occurs, using a priori gradient estimates on vk, we get that nk is uniformly (in k) Hölder
continuous in the ball B1(xk), which contradicts the fact that nk ≥ 0 and ∥nk∥L1 → 0.
Then σk|xk|b → +∞, in this case we may construct a Lyapunov function for the system
and hence some integral estimates on nk, this allows us to obtain a uniform (in k) Hölder
bound for nk, which yields an absurd. This proves that Lk → +∞ is not possible.

4.3 Existence of ground states for ε > 0

In this section, we provide existence of classical solutions to the MFG system (4.2)
using a minimization procedure. Notice that, even if this result partially covers the
existence result obtained in Chapter 3, the variational approach proves to be essential to
obtain some suitable estimates that will be necessary in the vanishing viscosity setting
and hence to prove concentration phenomena as ε→ 0.

If γ′ < N , condition
N − γ′ ≤ α < N (4.5)

is necessary for the problem
min

(m,w)∈Kε,M

E(m,w)

to be well-posed. Indeed, let us consider m = ce−|x| such that
´
RN m(x)dx = M and

w = ε∇m, in this way (m,w) ∈ Kε,M . For σ > 0 define

mσ(x) :=
m(σ−1x)

σN
and wσ(x) :=

w(σ−1x)

σN+1
,

we get that (mσ, wσ) ∈ Kε,M and

E(mσ, wσ) =
1

σγ′

[ˆ
RN

m

γ′

∣∣∣∣wm
∣∣∣∣γ′ + σγ

′
V mdX − σγ

′−N+α

2

ˆ
RN

m(X)(Kα ∗m)(X) dX

]
.

From (4.3) we have that
´
RN

m
γ′ |

w
m |γ′ + σγ

′
V mdX ≤ C, so if α < N − γ′ and σ → 0 the

Riesz term in the energy dominates and

E(mσ, wσ) → −∞, as σ → 0.

Actually, condition (4.5) is also sufficient, in fact we prove that if N − γ′ < α < N the
energy E is bounded from below; and in the case when α = N − γ′, requiring in addi-
tion that the constraint mass M is sufficiently small, the energy E is non-negative (see
Section 4.6.1). Hence, the minimum problem is well defined and by means of classical
direct methods we are able to obtain minimizers. Notice that in the case when γ′ ≥ N ,
the above condition (4.5) reduces to 0 < α < N .
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In what follows we address the case N − γ′ < α < N . Without loss of generality, we
may assume ε ∈ (0, 1] fixed. Let us define

eε(M) := inf
(m,w)∈Kε,M

E(m,w).

Lemma 4.3.1. Assume that N − γ′ < α < N and let (m,w) ∈ Kε,M . Then, there
exist C1 = C1(N, γ, α,M), C2 = C2(N, γ, α,M) and K = K(M,CV , b,N, α, γ) positive
constants such that

−C1ε
− γ′(N−α)

γ′−N+α ≤ eε(M) ≤ −C2ε
− γ′(N−α)

γ′−N+α +K. (4.6)

Proof. Let us fix β := 2N
N+α , since 1 < β < 1 + γ′

N by (3.12), (3.15) and the fact that
V ≥ 0, we get

E(m,w) ≥ c1ε
γ′∥m∥

2γ′
N−α

Lβ(RN )
− c2∥m∥2Lβ(RN ) (4.7)

where c1 is a constant depending on N,α, γ,M and c2 is a constant which depends on
N and α. Minimizing the RHS of (4.7), we obtain that

c1ε
γ′∥m∥

2γ′
N−α

Lβ(RN )
− c2∥m∥2Lβ(RN ) ≥ (c3 − c4)ε

− γ′(N−α)

γ′−N+α

hence, there exists a constant C1 > 0 depending on N, γ, α,M such that

E(m,w) ≥ −C1ε
− γ′(N−α)

γ′−N+α .

In order to prove the estimate from above it is enough to show that for a suitable couple
(m̃, w̃) ∈ Kε,M it holds

E(m̃, w̃) ≤ −C2ε
− γ′(N−α)

γ′−N+α +K.

Let us consider a smooth function φ : [0,+∞) → R defined as φ(r) = e−r. We define

m̃(x) :=MτNI1φ(τ |x|)

w̃(x) := ε∇m̃(x)

where τ is a positive constant to be fixed and I−1
1 :=

´
RN e

−|y|dy, obviously (m̃, w̃) ∈
Kε,M . We get that ˆ

RN

m̃

∣∣∣∣ w̃m̃
∣∣∣∣γ′ dx =Mεγ

′
τγ

′
,

ˆ
RN

V (x) m̃ dx ≤MCV +MCV I1I2
1

τ b

and ˆ
RN

ˆ
RN

m̃(x)m̃(y)

|x− y|N−αdx dy =M2I21I3τ
N−α

where I2 :=
´
RN |y|bφ(|y|)dy and I3 :=

´
RN

´
RN

φ(|x|)φ(|y|)
|x−y|N−α dx dy. Now, coming back to

the energy, we obtain

E(m̃, w̃) ≤M(ετ)γ
′
+MCV +MCV I1I2

1

τ b
− 1

2
M2I21I3 τ

N−α

finally taking τ = 1
Aε

− γ′
γ′−N+α we get
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E(m̃, w̃) ≤
(
M

Aγ′
− M2I21I3

2AN−α

)
ε
− γ′(N−α)

γ′−N+α +MCV +MCV I1I2
1

τ b
≤ −C2ε

− γ′(N−α)

γ′−N+α +K

choosing A large enough.

In particular, from Lemma 4.3.1, it follows that for N −γ′ < α < N , eε(M) is finite. We
have also the following a priori bounds.

Proposition 4.3.2. Let (m,w) ∈ Kε,M such that eε(M) ≥ E(m,w)−η for some positive
η. Then

∥m∥2
L

2N
N+α (RN )

≤ Cε
− γ′(N−α)

γ′−N+α (4.8)

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx ≤ Cε
− γ′(N−α)

γ′−N+α +K (4.9)

and ˆ
RN

V (x)mdx ≤ Cε
− γ′(N−α)

γ′−N+α +K (4.10)

where C and K are positive constants depending on M,N,α,CV , b, γ and η.

Proof. Let us denote β := 2N
N+α , if (m,w) ∈ Kε,M and eε(M) ≥ E(m,w) − η for some

η > 0, we have

c+ η ≥ eε(M) + η ≥ E(m,w) ≥ 1

γ′

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx− 1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy

≥ C1ε
γ′M1− 2γ′

N−α ∥m∥
2γ′

N−α

Lβ(RN )
− C2∥m∥2Lβ(RN ), (4.11)

where in the first inequality, we used that by Lemma 4.3.1 there exists a positive constant
c depending on M,CV , b, γ,N, α such that eε(M) ≤ c, while in the last inequality we
exploit estimates (3.12) and (3.15). Since γ′

N−α > 1, choosing C sufficiently large (not
depending on ε) we have

C1ε
γ′M1− 2γ′

N−α

(
ε
− γ′(N−α)

γ′−N+αC

) γ′
N−α

− C2

(
ε
− γ′(N−α)

γ′−N+αC

)
≥ c+ η,

hence we must have
∥m∥2

L
2N

N+α (RN )
≤ ε

− γ′(N−α)

γ′−N+αC.

From (4.11) we get that

1

γ′

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx ≤ c+ η +
1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy

≤ c+ η + C∥m∥2
L

2N
N+α (RN )

≤ Cε
− γ′(N−α)

γ′−N+α +K

which proves (4.9). Finally, since

1

γ′

ˆ

RN

m
∣∣∣w
m

∣∣∣γ′ dx+

ˆ

RN

V (x)mdx = E(m,w) + 1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−α ,



4.3 Existence of ground states for ε > 0 103

using (3.15) and (4.8), we obtain
ˆ
RN

V (x)mdx ≤ 1

γ′

ˆ

RN

m
∣∣∣w
m

∣∣∣γ′ dx+

ˆ

RN

V (x)mdx ≤ E(m,w) + C∥m∥2
L

2N
N+α (RN )

≤ eε(M) + η + Cε
− γ′(N−α)

γ′−N+α (4.12)

which gives estimate (4.10).

By means of classical direct methods, we prove that for every ε,M > 0 there exists
a minimizer (mε, wε) ∈ Kε,M of the energy E .

Proposition 4.3.3. For every ε > 0 and M > 0, there exists a minimizer (mε, wε) ∈
Kε,M of the energy E, namely

E(mε, wε) = inf
(m,w)∈Kε,M

E(m,w).

For every minimizer (mε, wε) of E, we have that

∥mε∥
L

2N
N+α (RN )

≤ Cε
− γ′(N−α)

γ′−N+α (4.13)

ˆ
RN

mε

∣∣∣∣wεmε

∣∣∣∣γ′dx ≤ Cε
− γ′(N−α)

γ′−N+α +K (4.14)

and ˆ
RN

V (x)mε dx ≤ Cε
− γ′(N−α)

γ′−N+α +K, (4.15)

where C > 0 and K are two constants not depending on ε. Moreover, it holds

mε(1 + |x|)b ∈ L1(RN ) and wε(1 + |x|)
b
γ ∈ L1(RN ). (4.16)

Proof. Let us consider a minimizing sequence (mn, wn) ∈ Kε,M , namely E(mn, wn) →
eε(M) as n → +∞. For n sufficiently large eε(M) ≥ E(mn, wn) − 1, so estimates (4.8),
(4.9) and (4.10) hold. By Proposition 3.2.5, using (4.9), we get that

∥mn∥W 1,r(RN ) ≤ C, ∀r < q

where C does not depend on n, hence by Sobolev compact embedding, up to subsequences
mn → mε in Ls(K) for 1 ≤ s < q∗ := qN

N−q and K ⊂⊂ RN . We observe that if A ⊂ RN
it holds ˆ

A
mn(x) dx =

ˆ
RN

mn(x)χA(x) dx ≤ ∥mn∥ 2N
N+α

∥χA∥ 2N
N−α

;

hence using (4.8) we get that for every µ > 0 there exists δµ > 0 such that
ˆ
A
mn(x) dx ≤ µ

for every n and for any A ⊂ RN such that meas(A) < δµ. Using estimate (4.10) and
(4.3) we obtain that for R > 1

C ≥
ˆ
RN

mnV dx ≥
ˆ
Bc

R

mnV dx ≥ CRb
ˆ
Bc

R

mn(x) dx
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namely, for every η > 0 there exists R > 1 such that
´
|x|>Rmn(x) dx ≤ η for any n

(more precisely, for every n greater than a certain value n0). Thus, using the Vitali
Convergence Theorem, up to extracting a subsequence, we have that

mn → mε in L1(RN )

and consequently ˆ
RN

mε(x) dx =M.

Moreover, since by Sobolev embedding, mn are bounded in Ls(RN ) for every s ∈ [1, q∗),
we have also that mn → m̄ in L

2N
N+α (RN ). If we assume β = 2N

N+α , by Hölder inequality
we get also

ˆ
RN

|wn|
γ′β

γ′−1+β dx ≤
(ˆ

RN

m1−γ′
n |wn|γ

′
dx

) β
γ′−1+β

∥mn∥
β(γ′−1)

γ′−1+β

Lβ(RN )

hence using (4.8) and (4.9)

wn ⇀ wε in L
γ′β

γ′−1+β (RN ).

From (4.8), (4.9) and (4.10) passing to the limit as n → +∞ and using Fatou’s Lemma
we obtain estimates (4.13), (4.14) and (4.15).

We can infer that (mε, wε) ∈ Kε,M . Since the functional
´
RN m|wm |γ′ + V (x)mdx is

sequentially lower semi-continuous with respect to the weak convergence and by Corollary
4.2.3 we have that (Kα ∗mn)mn → (Kα ∗mε)mε in L1(RN ), then (mε, wε) is a minimum
of the energy E .

Finally the fact that mε(1 + |x|)b ∈ L1(RN ) follows from (4.15) and (4.3); whereas,
by Hölder inequality

ˆ
RN

|wε|(1 + |x|)b/γdx ≤

(ˆ
RN

m
− γ′

γ
ε |wε|γ

′
dx

) 1
γ′ (ˆ

RN

mε(1 + |x|)bdx
) 1

γ

since
´
RN m

− γ′
γ

ε |wε|γ
′
dx =

´
RN mε

∣∣ wε
mε

∣∣γ′dx, using (4.14) and the fact that mε(1+ |x|)b ∈
L1, we obtain that wε(1 + |x|)b/γ ∈ L1(RN ).

Once we have obtained minimizers (mε, wε) ∈ Kε,M of the energy E , we construct
the associated solutions (uε,mε, λε) of the MFG system (4.2).

Proposition 4.3.4. Let N − γ′ < α < N . Assume that the potential V is locally Hölder
continuous and satisfies (4.3). Then, for every ε,M > 0 there exists a classical solution
(uε,mε, λε) to the MFG system (4.2) such that

uε(x) ≥ Cε|x|1+
b
γ − C−1

ε

|∇uε(x)| ≤ Cε(1 + |x|
b
γ )

where Cε positive constant. Moreover, uε is unique up to additive constants, mε ∈
L∞(RN ) and there exist C1, C2,K positive constants not depending on ε such that

−C1ε
− γ′(N−α)

γ′−N+α ≤ λε ≤ K − C2ε
− γ′(N−α)

γ′−N+α . (4.17)
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Proof. Following the proof of [44, Proposition 3.4], let us consider the set of test functions

A :=

{
ψ ∈ C2(RN )

∣∣∣∣ lim sup
|x|→+∞

|∇ψ(x)|
|x|b/γ

< +∞, lim sup
|x|→+∞

|∆ψ(x)|
|x|b

< +∞

}
.

From Proposition 4.3.3 there exists at least one minimizer (mε, wε) of the energy E , and
one can verify (using (4.16) and integrating by parts) that

−ε
ˆ
RN

mε∆ψ dx =

ˆ
RN

wε · ∇ψ dx, ∀ψ ∈ A (4.18)

(see (3.18) in [44], for details). Since every minimizer satisfies (4.16) and (4.18), mini-
mizing E on Kε,M is equivalent to minimize E on the following constraint set

K :=

{
(m,w) ∈ (L1 ∩W 1,r)× L

γ′β
γ′+β−1 (RN )

∣∣∣∣ (m,w) satisfies

(4.16), (4.18),
ˆ
RN

m =M, m ≥ 0

}
where r < q. Now we prove that if (mε, wε) is a minimizer of E on K, then (mε, wε) is
also a minimizer of the functional

Ẽ(m,w) := 1

γ′

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx+

ˆ
RN

V (x)mdx−
ˆ
RN

ˆ
RN

m(x)mε(y)

|x− y|N−α dx dy

on K. Define

Φ(m,w) :=

{
1
γ′

´
RN m

∣∣w
m

∣∣γ′ dx if (m,w) ∈ K
+∞ otherwise

and
Ψ(m) :=

ˆ
RN

V (x)mdx− 1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy,

we have
E(m,w) = Φ(m,w) + Ψ(m).

For any (m,w) ∈ K and λ ∈ (0, 1) we define mλ := (1 − λ)mε + λm and wλ :=
(1− λ)wε + λw, by minimality of (mε, wε) it holds

Φ(mλ, wλ)− Φ(mε, wε) ≥ Ψ(mε)−Ψ(mλ) (4.19)

and by convexity of Φ

λ (Φ(m,w)− Φ(mε, wε)) ≥ Φ(mλ, wλ)− Φ(mε, wε). (4.20)

From (4.19) and (4.20) we obtain that

λ (Φ(m,w)− Φ(mε, wε)) ≥ −λ
ˆ

RN

V (m−mε)dx+λ

ˆ

RN

ˆ

RN

mε(y) (m−mε) (x)

|x− y|N−α dy dx+o(λ),

dividing by λ and letting λ go to 0, we get

−
ˆ
RN

V (m−mε)dx+

ˆ
RN

ˆ
RN

mε(y) (m(x)−mε(x))

|x− y|N−α dy dx ≤ Φ(m,w)− Φ(mε, wε)
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for any (m,w) ∈ K. Hence, the couple (mε, wε) minimizes Ẽ on K.
Let us consider the following functional

L(m,w, λ, ψ) := Ẽ(m,w) +
ˆ
RN

εm∆ψ + w∇ψ − λmdx+ λM.

One can easily verify that

min
(m,w)∈K

Ẽ(m,w) = min
(m,w)∈E

sup
(λ,ψ)∈R×A

L(m,w, λ, ψ)

where

E :=

{
(m,w) ∈ (L1 ∩W 1,r)(RN )× L

γ′β
γ′+β−1 (RN )

∣∣∣∣ (m,w) satisfies (4.16)
}
.

Proceeding as in [44, Proposition 3.4], by means of the Fan’s minimax theorem (refer to
Theorem 2.3.7 in [24]) and the Rockafellar interchange theorem (see [173, Theorem 3A]),
we get that

min
(m,w)∈E

sup
(λ,ψ)∈R×A

L(m,w, λ, ψ)

= sup
(λ,ψ)∈R×A

min
(m,w)∈E

ˆ

RN

m

γ′

∣∣∣w
m

∣∣∣γ′ + V m− (Kα ∗mε)m+ εm∆ψ + w∇ψ − λmdx+ λM

= sup
(λ,ψ)∈R×A

ˆ

RN

min
(m,w)∈R≥0×RN

m

(
1

γ′

∣∣∣w
m

∣∣∣γ′ + V −Kα ∗mε + ε∆ψ +
w

m
∇ψ − λ

)
dx+ λM.

We observe now that

min
(m,w)∈R≥0×RN

m

(
1

γ′

∣∣∣w
m

∣∣∣γ′ + V −Kα ∗mε + ε∆ψ +
w

m
∇ψ − λ

)
= 0

if ε∆ψ − 1
γ |∇ψ|

γ − λ+ V −Kα ∗mε ≥ 0, while it is −∞ otherwise. This proves that

min
(m,w)∈K

Ẽ(m,w) = sup
(λ,ψ)∈B

λM

where

B :=

{
(λ, ψ) ∈ R×A

∣∣∣∣ − ε∆ψ +
1

γ
|∇ψ|γ + λ ≤ V −Kα ∗mε on RN

}
.

From Corollary 4.2.2 and Corollary 4.2.4 we have that Kα ∗mε ∈ Lβ(RN ) ∩ C0,θ(RN ),
hence by Proposition 3.2.11 ([20, Proposition 2.10]) there exists a couple (uε, λε) ∈
C2(RN )× R such that

−ε∆uε +
1

γ
|∇uε|γ + λε = V (x)−Kα ∗mε(x), on RN (4.21)

where

λε := sup

{
λ ∈ R

∣∣∣∣ −ε∆u+ 1

γ
|∇u|γ+λ = V −Kα∗mε has a subsolution uε ∈ C2(RN )

}
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and uε is unique up to additive constants. Using also Proposition 3.2.10 ([20, Proposition
2.9]) we have

uε(x) ≥ Cε|x|
b
γ
+1 − C−1

ε , |∇uε(x)| ≤ Cε(1 + |x|)
b
γ .

Since
ε|∆uε| ≤

1

γ
|∇uε|γ + |λε|+ V (x) +Kα ∗mε(x) ≤ C(1 + |x|)b,

it follows that lim sup
|x|→+∞

|∆uε(x)|
|x|b < +∞, hence uε ∈ A. This proves that sup

(λ,ψ)∈B
λM = λεM

and consequently

λεM = Ẽ(mε, wε) = E(mε, wε)−
1

2

ˆ
RN

ˆ
RN

mε(x)mε(y)

|x− y|N−α dx dy. (4.22)

Now, by (4.22), (4.21) and (4.18) (since uε ∈ A) we get that

0 =

ˆ

RN

(
1

γ′

∣∣∣∣wεmε

∣∣∣∣γ′ + V −Kα ∗mε − λε

)
mεdx =

ˆ

RN

(
1

γ′

∣∣∣∣wεmε

∣∣∣∣γ′ − ε∆uε +
|∇uε|γ

γ

)
mεdx

=

ˆ

RN

(
1

γ′

∣∣∣∣wεmε

∣∣∣∣γ′ + wε
mε

· ∇uε +
1

γ
|∇uε|γ

)
mε dx

and we must have

wε
mε

= −∇uε|∇uε|γ−2, on the set {mε > 0}.

We can conclude that ε∆mε + div(mε∇uε|∇uε|γ−2) = 0 in weak sense.
Proof of estimate (4.17). From (4.22) we get that

λε =
1

M
E(mε, wε)−

1

2M

ˆ
RN

ˆ
RN

mε(x)mε(y)

|x− y|N−α dx dy (4.23)

hence, by (4.6) and (3.16) we get that

λε ≥ −c1ε
− γ′(N−α)

γ′−N+α − c2∥mε∥2
L

2N
N+α (RN )

≥ −C1ε
− γ′(N−α)

γ′−N+α (4.24)

using (4.8) in the last inequality. Moreover, from (4.23) we have

λε ≤
1

M
E(mε, wε) =

1

M
inf

(m,w)∈Kε,M

E(m,w)

and using (4.6), we conclude the proof of estimate (4.17).
Finally, the function mε ∈ L∞(RN ) ∩W 1,p(RN ) for very p ≥ 1, this follows proving

that the function urε for r > 1 is a Lyapunov function for the stochastic process with
drift ∇uε|∇uε|γ−2 and mε density of the invariant measure associated to the process,
then using some results in [150] and Proposition 3.2.2 (we refer the reader to the proof
of [20, Proposition 4.3 iv)] for more details). This proves that the triple (uε,mε, λε) is a
classical solution to the MFG system (4.2).
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4.4 Asymptotic analysis of solutions

In this section, assuming α ∈ (N − γ′, N), we want to study the behavior of agents
when the Brownian noise vanishes. To this end, we analyze the asymptotic behavior of
a solution (mε, uε, λε) to the MFG system (4.2) as ε→ 0.

4.4.1 The rescaled problem and some a priori estimates

For ε > 0, let us define a suitable rescaling for m, u and λ, which preserves the mass
of m:

m̃(y) := ε
Nγ′

γ′−N+αm

(
ε

γ′
γ′−N+α y

)
,

ũ(y) := ε
γ′(N−α)−γ′−N+α

γ′−N+α u

(
ε

γ′
γ′−N+α y

)
,

λ̃ := ε
(N−α)γ′
γ′−N+αλ

and a rescaled potential

Vε(y) := ε
(N−α)γ′
γ′−N+αV

(
ε

γ′
γ′−N+α y

)
. (4.25)

Notice that Vε vanishes locally as ε → 0, hence, passing to the limit, we can not take
advantage of the coercivity of V in order to prove that there is no loss of mass (compare
with the proof of Proposition 4.3.3) indeed we will use a concentration-compactness argu-
ment. From assumptions (4.3) on the potential V , we get the corresponding assumptions
on Vε:

C−1
V ε

(N−α)γ′
γ′−N+α

(
max

{
ε

γ′
γ′−N+α |y| − CV , 0

})b
≤ Vε(y) ≤ CV ε

(N−α)γ′
γ′−N+α

(
1 + ε

γ′
γ′−N+α |y|

)b
.

(4.26)
The rescaled Riesz-type interaction term is

Kα ∗ m̃(y) = ε
(N−α)γ′
γ′−N+αKα ∗m

(
ε

γ′
γ′−N+α y

)
.

Hence, if the triple (uε,mε, λε) is a classical solution to the MFG system (4.2) (from
Proposition 4.3.4 there exists at least one solution to (4.2)), one can verify that

−∆ũε(y) +
1

γ
|∇ũε(y)|γ + λ̃ε

= −ε
γ′(N−α)

γ′−N+α
+1

∆uε(ε
γ′

γ′−N+α y) + ε
γ′(N−α)

γ′−N+α
1

γ

∣∣∇uε(ε γ′
γ′−N+α y

)∣∣γ + ε
γ′(N−α)

γ′−N+αλε

= ε
γ′(N−α)

γ′−N+α

[
−ε∆uε +

1

γ
|∇uε|γ + λε

]
= ε

γ′(N−α)

γ′−N+α

[
V (ε

γ′
γ′−N+α y)−Kα ∗m(ε

γ′
γ′−N+α y)

]
= Vε(y)−Kα ∗ m̃(y)

and also

−∆m̃ε(y)− div
(
m̃ε(y)∇ũε(y)|∇ũε(y)|γ−2

)
= −ε

Nγ′+2γ′
γ′−N+α∆mε(ε

γ′
γ′−N+α y)− div

(
ε

Nγ′+N−α
γ′−N+α mε∇uε|∇uε|γ−2(ε

γ′
γ′−N+α y)

)
= ε

Nγ′+N−α+γ′
γ′−N+α [−ε∆mε − div(mε∇uε|∇uε|γ−2)] = 0.
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Hence 
−∆ũε +

1
γ |∇ũε|

γ + λ̃ε = Vε(y)−Kα ∗ m̃ε(y)

−∆m̃ε − div(m̃ε∇ũε|∇ũε|γ−2) = 0´
RN m̃ε =M

in RN . (4.27)

In order to prove that there is no loss of mass when passing to the limit as ε → 0, we
translate the reference system at a point around which the mass m̃ε remains positive.
By Proposition 4.3.4, uε ∈ C2(RN ) is coercive, hence there exists a point yε ∈ RN such
that

ũε(yε) = min
RN

ũε(y).

Let us define
ūε(y) := ũε(y + yε)− ũε(yε)

m̄ε(y) := m̃ε(y + yε)

in this way we have ūε(0) = 0 = minRN ūε. One can immediately verify that (m̄ε, ūε, λ̃ε)
is a classical solution to

−∆ūε +
1
γ |∇ūε|

γ + λ̃ε = Vε(y + yε)−Kα ∗ m̄ε(y)

−∆m̄ε − div(m̄ε∇ūε|∇ūε|γ−2) = 0´
RN m̄ε =M

. (4.28)

We define also the rescaled energy as

Eε(m,w) :=
ˆ
RN

m

γ′

∣∣∣w
m

∣∣∣γ′ + Vε(y + yε)mdy − 1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy,

for couples (m,w) ∈ Kε,M with m > 0. Notice that Eε(m̄ε, w̄ε) = ε
(N−α)γ′
γ′−N+α E(mε, wε),

hence if (mε, wε) ∈ Kε,M is a minimizer of E , then (m̄ε, w̄ε) is a minimizer of Eε on K1,M

(where w̄ε = −m̄ε∇ūε|∇ūε|γ−2). We will denote

ẽε(M) := min
(m,w)∈K1,M

Eε(m,w).

From (4.6) by rescaling, we get

−C1 ≤ ẽε(M) ≤ −C2 +Kε
(N−α)γ′
γ′−N+α (4.29)

where C1, C2,K are positive constants not depending on ε.

First of all, we prove the following a priori estimates.

Lemma 4.4.1. Let (ūε, m̄ε, λ̃ε) be a classical solution to (4.28). Then, there exist
C1, C2, C positive constants not depending on ε such that

−C1 ≤ λ̃ε ≤ −C2 (4.30)
ˆ
RN

m̄ε|∇ūε|γdx ≤ C (4.31)

∥m̄ε∥L∞(RN ) ≤ C (4.32)
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ε
γ′(N−α+b)

γ′−N+α |yε|b ≤ C (4.33)

0 ≤ Vε(y + yε) ≤ C

(
1 + ε

γ′(N−α+b)

γ′−N+α |y|b
)

(4.34)

|∇ūε(y)| ≤ C(1 + |y|)
b
γ and ūε(y) ≥ C|y|1+

b
γ − C−1. (4.35)

Moreover, for R sufficiently large we have
ˆ
BR(0)

m̄ε(y)dy ≥ C. (4.36)

Proof. Estimates (4.30) and (4.31) follow, by rescaling, from (4.17) and (4.14) respec-
tively. From Proposition 4.3.4 we have that for every ε, ūε are bounded from below and

m̄ε ∈ L∞(RN ), so by Theorem 4.2.6 with sε = ε
(N−α)γ′
γ′−N+α and tε = ε

γ′
γ′−N+α , we obtain the

uniform L∞-bound (4.32). Evaluating the first equation of (4.28) in y = 0, we get

λ̃ε ≥ Vε(yε)−Kα ∗ m̄ε(0) (4.37)

from estimates (4.30), (4.32) and (4.26) we get (4.33); using it and (4.26) again, we obtain
(4.34).
Since (4.30), (4.32) and (4.34) hold and ūε is bounded from below, from Proposition
3.2.10 (see [20, Proposition 2.9]) we get estimates (4.35) (which are uniform with respect
to ε since ∥Kα ∗ m̄ε∥∞ ≤ CN,α∥m̄ε∥∞ +M ≤ C uniformly in ε).
From (4.37), using the fact that Vε ≥ 0 and (4.30), we get that there exists a positive
constant C not depending on ε such that

Kα ∗ m̄ε(0) ≥ C > 0,

hence
C ≤

ˆ
BR

m̄ε(y)

|y|N−αdy +

ˆ
RN\BR

m̄ε(y)

|y|N−αdy ≤
ˆ
BR

m̄ε(y)

|y|N−αdy +
M

RN−α .

This implies that for R > 0 sufficiently large
ˆ
BR

m̄ε(y)

|y|N−αdy ≥ C1 > 0.

Moreover, if r < R we have

C1 ≤
ˆ
BR\Br

m̄ε(y)

|y|N−αdy +

ˆ
Br

m̄ε(y)

|y|N−αdy ≤ 1

rN−α

ˆ
BR\Br

m̄ε(y)dy + ∥m̄ε∥∞
ˆ
Br

dy

|y|N−α .

Keeping in mind that
´
Br

dy
|y|N−α = crα and (4.32), we can infer that choosing r sufficiently

small
1

rN−α

ˆ
BR\Br

m̄ε(y)dy ≥ C2 > 0

and consequently ˆ
BR

m̄ε(y)dy ≥ C3 > 0.
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4.4.2 Convergence of solutions

At this stage we are able to prove a convergence result, which however, do not ensure
conservation of mass in the limit.

Proposition 4.4.2. If (ūε, m̄ε, λ̃ε) is a classical solution to (4.28), then as ε→ 0 up to
extracting a subsequence we have that

λ̃ε → λ̄

and
ūε → ū, ∇ūε → ∇ū, m̄ε → m̄, locally uniformly.

The triple (ū, m̄, λ̄) is a classical solution to
−∆ū+ 1

γ |∇ū|
γ + λ̄ = g(x)−Kα ∗ m̄(x)

−∆m̄− div(m̄∇ū|∇ū|γ−2) = 0´
RN m̄ dx = a

(4.38)

where g is a continuous function such that, up to subsequence, Vε(x + yε) −−−→
ε→0

g(x)

locally uniformly and a ∈ (0,M ]. Moreover, there exist C1, C2, c1, c2 positive constants
such that

ū(y) ≥ C1|y| − C1
−1 and |∇ū| ≤ C2 (4.39)

and finally
m̄(x) ≤ c1e

−c2|x|, on RN . (4.40)

Proof. By means of the previous uniform estimates and the fact ūε is a classical solution
to the HJB equation, using [93, Theorem 8.32], we get that for any compact set K in
RN and for any θ ∈ (0, 1]

∥ūε∥C1,θ(K) ≤ C locally uniformly in ε.

Using (4.32) and (4.35), by Proposition 3.2.2 and Sobolev embedding, we get that for
every µ ∈ (0, 1)

∥m̄ε∥C0,µ(K) ≤ C locally uniformly in ε.

Hence, up to subsequences, we have that as ε→ 0

ūε → ū, locally uniformly in C1 on compact sets

and
m̄ε → m̄ locally uniformly on compact sets

and weakly in W 1,p(BR) ∀p > 1 and R > 0. Moreover, from (4.30) it follows that up
to extracting a subsequence λ̃ε → λ̄. From (4.32) and the fact that ∥m̄ε∥L1(RN ) = M ,
by interpolation we get that for every p ∈ (1,+∞) it holds ∥m̄ε∥Lp(RN ) ≤ C uniformly
in ε. Using Theorem 3.2.8 and Theorem 3.2.9 we have that ∥Kα ∗ m̄ε∥

C0,α−N
r (RN )

≤ C

uniformly in ε and up to extracting a subsequence

Kα ∗ m̄ε −−−→
ε→0

Kα ∗ m̄, locally uniformly.

Moreover, from estimate (4.34) we have that up to subsequences Vε(x + yε) → g(x)
locally uniformly, where g is a continuous function such that 0 ≤ g(x) ≤ C. Finally,
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from (4.36) it follows that
´
RN m̄(x) dx = a ∈ (0,M ]. By stability with respect to

uniform convergence, ū solves in the viscosity sense

−∆u+
1

γ
|∇u|γ + λ̄ = g(x)−Kα ∗ m̄(x)

and using the regularity of the HJB equation we get that ū ∈ C2. Finally, by the strong
convergence ∇uε → ∇ū, we get that m̄ solves

∆m− div(m∇ū|∇ū|γ−2) = 0

and with the same procedure as Proposition 3.4.3 iv), we get that m̄ ∈ W 1,p(RN ) for
every p ∈ (1,+∞). Hence, (ū, m̄, λ̄) is a classical solution to (4.38).

In order to prove (4.39) we use Proposition 3.2.10. Notice that, if f is a non-negative
Hölder continuous function such that

´
RN f

β dx < +∞ for a certain β > 1, then f(x) → 0
as |x| → +∞ (see [44, Lemma 2.2] which is stated in the case β = 1 but it can be easily
generalised to β > 1). Since Kα ∗ m̄ ∈ C0,θ(RN )∩Lβ(RN ) and it is non-negative, we get
that

Kα ∗ m̄(x) → 0, as |x| → +∞

and hence
lim inf
|x|→+∞

(
g(x)−Kα ∗ m̄(x)− λ̄

)
≥ −λ̄ > 0.

From Proposition 3.2.10 we get (4.39).
Since we can choose k > 0 such that the function φ(x) := ekū(x) is a Lyapunov

function for the process, from [150, Proposition 2.6] we get that

ekū ∈ L1(m̄)

and finally from [150, Theorem 6.1] it follows (4.40).

4.4.3 No loss of mass when passing to the limit

First, we prove that the energy functional Eε(m,w) holds a sort of sub-additive prop-
erty. Then, we assume by contradiction to have loss of mass, namely that

´
RN m̄ dx =

a ∈ (0,M), by means of a concentration-compactness argument we prove that this leads
to an absurd. Hence m̄ has still L1-norm equal to M .

Lemma 4.4.3. For all a ∈ (0,M), there exists a positive constant C depending on a, M
and the other constants of the problem (but not on ε) such that

ẽε(M) < ẽε(a) + ẽε(M − a)− C.

Proof. Let us assume that a ≥ M
2 and fix c > 1 and B > 0. If (m,w) ∈ K1,B we get

ẽε(cB) ≤ Eε(cm, cw) =
ˆ
RN

cm

γ′

∣∣∣w
m

∣∣∣γ′ + cVε(x+ yε)mdx− c2

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy

= cEε(m,w)−
c(c− 1)

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy (4.41)

If (m,w) ∈ K1,B is a minimizer of Eε, we have

−C2(B) +Kε
(N−α)γ′
γ′−N+α ≥ ẽε(B) ≥ −1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy
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notice that the constant C2 is the one that appears in (4.29) and depends on B and on
the others variables of the problem. Taking ε sufficiently small, we obtain

1

2

ˆ
RN

ˆ
RN

m(x)m(y)

|x− y|N−αdx dy ≥ C2(B)

2
> 0. (4.42)

and using (4.42) in (4.41) we get

ẽε(cB) < cẽε(B)− c(c− 1)
C2(B)

2
. (4.43)

Taking B = a and c =M/a in (4.43) we have

ẽε(M) <
M

a
ẽε(a)−

M

a

(
M

a
− 1

)
C2(a)

2
= ẽε(a) +

M − a

a
ẽε(a)−

M

a

(
M

a
− 1

)
C2(a)

2

if a = M/2 we have done, whereas if a > M/2 we take B = M − a and c = a
M−a in

(4.43) and multiplying by M−a
a , we get

M − a

a
ẽε(a) < ẽε(M − a)−

(
a

M − a
− 1

)
C2(M − a)

2
≤ ẽε(M − a).

We can conclude that

ẽε(M) < ẽε(a) + ẽε(M − a)− M

a

(
M

a
− 1

)
C2(a)

2
.

In the case when a < M/2 we replace a with M − a.

From estimate (4.40), it follows that there exists a positive constant c̄ such that
m̄ ≤ c̄e−|x|. For R > 0 (which will be fixed later) let us define

νR(x) :=

{
c̄e−R if |x| ≤ R

c̄e−|x| if |x| > R
.

We have the following splitting of the energy Eε.

Lemma 4.4.4. Let (m̄ε, w̄ε) be a minimizer of Eε, m̄ and ū obtained from Proposition
4.4.2 and w̄ε → w̄ = −m̄∇ū|∇ū|γ−2 locally uniformly. If

´
RN m̄dx = a ∈ (0,M), then

Eε(m̄ε, w̄ε) ≥ Eε(m̄, w̄)+Eε(m̄ε− m̄+2νR, w̄ε− w̄+2∇νR)+ oε(1)−CRb+Ne−R (4.44)

as ε→ 0.

Proof. Following the arguments of the proof of [44, Theorem 5.6], we recall some facts
that we will need. By definition, m̄(x) ≤ νR(x) for |x| > R and
ˆ
RN

νR(x)dx = ωNR
N c̄e−R +

ˆ
RN\BR

c̄e−|x| ≤ Ce−RRN → 0, as R→ +∞. (4.45)

Since m̄ε → m̄ and ∇ūε → ∇ū locally uniformly as ε→ 0, there exists ε0, which depends
on R, such that ∀ε ≤ ε0

|m̄ε − m̄|+
∣∣∣|∇ūε|γ−2∇ūε − |∇ū|γ−2∇ū

∣∣∣ ≤ c̄e−R, for |x| ≤ R.
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Moreover, ∀ε ≤ ε0
m̄ε − m̄+ 2νR ≥ νR, ∀x ∈ RN

and hence
|m̄ε − m̄| ≤ m̄ε − m̄+ 2νR. (4.46)

We estimate each term of the energy Eε separately. Concerning the kinetic term,
notice that the function (m,w) 7→ m

γ′

∣∣w
m

∣∣γ′ is convex and in particular

∂m

(
m

γ′

∣∣∣w
m

∣∣∣γ′) = −1

γ

∣∣∣w
m

∣∣∣γ′ and ∇w

(
m

γ′

∣∣∣w
m

∣∣∣γ′) =
w

m

∣∣∣w
m

∣∣∣γ′−2
.

By convexity, we estimate separately the integral over BR and the integral over RN \BR,
obtaining
ˆ
BR

m̄ε

γ′

∣∣∣∣ w̄εm̄ε

∣∣∣∣γ′ dx ≥
ˆ
BR

m̄

γ′

∣∣∣ w̄
m̄

∣∣∣γ′ dx
+

ˆ
BR

m̄ε − m̄+ 2νR
γ′

∣∣∣∣ w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

∣∣∣∣γ′ dx− CRNe−R, (4.47)

ˆ
RN\BR

m̄ε

γ′

∣∣∣∣ w̄εm̄ε

∣∣∣∣γ′ dx ≥
ˆ
RN\BR

m̄

γ′

∣∣∣ w̄
m̄

∣∣∣γ′ dx
+

ˆ
RN\BR

m̄ε − m̄+ 2νR
γ′

∣∣∣∣ w̄ε − w̄ + 2∇νR
m̄ε − m̄+ 2νR

∣∣∣∣γ′ dx− CRN+be−R.

(4.48)

we also have (refer to estimate (5.44) in [44])ˆ
RN

Vε(x+yε)m̄εdx ≥
ˆ
RN

Vε(x+yε)m̄dx+

ˆ
RN

Vε(x+yε)(m̄ε−m̄+2νR)dx−CRb+Ne−R.

(4.49)
Regarding the Riesz term in the energy Eε, since by Proposition 4.4.2 m̄ε(x) → m̄(x)

a.e. as ε→ 0 and (m̄ε)ε is a bounded sequence in L
2N

N+α (RN ) (it follows by interpolation
using the uniform estimate (4.32)), applying Lemma 4.2.5 we get that

lim
ε→0

ˆ

RN

ˆ

RN

m̄ε(x)m̄ε(y)

|x− y|N−α dx dy

=

ˆ

RN

ˆ

RN

m̄(x)m̄(y)

|x− y|N−αdx dy + lim
ε→0

ˆ

RN

ˆ

RN

|m̄ε(x)− m̄(x)| |m̄ε(y)− m̄(y)|
|x− y|N−α dx dy

≤
ˆ

RN

ˆ

RN

m̄(x)m̄(y)

|x− y|N−αdx dy + lim
ε→0

ˆ

RN

ˆ

RN

(m̄ε − m̄+ 2νR)(x) (m̄ε − m̄+ 2νR)(y)

|x− y|N−α dx dy

where in the last inequality we used (4.46). Henceˆ

RN

(Kα ∗ m̄ε)m̄ε

≤
ˆ

RN

(Kα ∗ m̄)m̄+

ˆ

RN

(
Kα ∗ (m̄ε − m̄+ 2νR)

)
(m̄ε − m̄+ 2νR) + oε(1).

(4.50)

Finally, putting together estimates (4.47), (4.48), (4.49) and (4.50), we obtain (4.44).
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We are now in position to prove that there is no loss of mass passing to the limit.

Theorem 4.4.5. Let N − γ′ < α < N , assume that (m̄ε, w̄ε) is a minimizer of Eε, m̄
and ū obtained from Proposition 4.4.2. Then,

ˆ
RN

m̄ dx =M

and hence m̄ε → m̄ in L1(RN ). Moreover, for every η > 0, there exist R, ε0 > 0 such
that for all ε ≤ ε0 ˆ

B(0,R)
m̄ε(x) dx ≥M − η, (4.51)

namely ˆ
B(ε

γ′
γ′−N+α yε,ε

γ′
γ′−N+αR)

mε(x) dx ≥M − η. (4.52)

Proof. From (4.45) we get
ˆ
RN

(m̄ε − m̄+ 2νR)dx =M − a+ 2

ˆ
RN

νRdx→M − a, as R→ +∞.

Let us define
CR :=

M − a

M − a+ 2
´
RN νR

,

we observe that 0 < CR < 1 and CR → 1 as R → +∞, moreover the couple
(
CR(m̄ε −

m̄+ 2νR), CR(w̄ε − w̄ + 2∇νR)
)
∈ KM−a and it follows that

CREε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR) = Eε
(
CR(m̄ε − m̄+ 2νR), CR(w̄ε − w̄ + 2∇νR)

)
+
C2
R − CR
2

ˆ
RN

ˆ
RN

(m̄ε − m̄+ 2νR)(x) (m̄ε − m̄+ 2νR)(y)

|x− y|N−α dx dy.

Notice that C2
R − CR < 0 and from (4.32) and the fact that ∥m̄ε∥L1(RN ) = M , by

interpolation we get that ∥m̄ε∥Lp(RN ) ≤ C uniformly in ε for every p ∈ (1,+∞). By
(3.15) we get that∣∣∣∣ ˆ

RN

ˆ
RN

(m̄ε − m̄+ 2νR)(x) (m̄ε − m̄+ 2νR)(y)

|x− y|N−α dx dy

∣∣∣∣ ≤ C∥m̄ε − m̄+ 2νR∥2
L

2N
N+α (RN )

≤ C

(
∥m̄ε∥

L
2N

N+α (RN )
+ ∥m̄∥

L
2N

N+α (RN )
+ 2∥νR∥

L
2N

N+α (RN )

)2

≤ C

where the constant C is independent of ε. Hence

CREε(m̄ε − m̄+ 2νR,w̄ε − w̄ + 2∇νR)

≥ Eε
(
CR(m̄ε − m̄+ 2νR), CR(w̄ε − w̄ + 2∇νR)

)
+ C

C2
R − CR
2

≥ ẽε(M − a) + C
C2
R − CR
2

.

Using this in (4.44) we have that

ẽε(M) ≥ ẽε(a) + ẽε(M − a) + (1− CR)Eε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR)
+ oε(1)− CRb+Ne−R + C(C2

R − CR)
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by (4.29) we have Eε(m̄ε − m̄+ 2νR, w̄ε − w̄ + 2∇νR) ≥ −K, hence

ẽε(M) ≥ ẽε(a) + ẽε(M − a)− (1− CR)K + oε(1)− CRb+Ne−R + C(C2
R − CR)

finally, from Lemma 4.4.3 we get

0 > −C > −(1− CR)K + oε(1)− CRb+Ne−R + C(C2
R − CR)

letting R→ +∞ this yields a contradiction. We can conclude following the proof of [44,
Corollary 5.7].

4.4.4 Proof of Theorem 4.1.1

We are ready to prove that the triple (ūε, m̄ε, λ̃ε) converges to (ū, m̄, λ̄) solution to
the MFG system (4.1).

Proof of Theorem 4.1.1. Let (ū, m̄, λ̄) be the triple obtained from Proposition 4.4.2 and
set w̄ := −m̄∇ū|∇ū|γ−2. We have that (m̄, w̄) ∈ B, indeed from Proposition 4.4.2 and
Theorem 4.4.5 we get that (m̄, w̄) ∈ K1,M , and using estimate (4.40) it follows

ˆ
RN

m̄(1 + |x|b)dx ≤
ˆ
RN

c1e
−c2|x|(1 + |x|)bdx < +∞.

Since m̄ε → m̄ in L1(RN ), (m̄ε, w̄ε), (m̄, w̄) ∈ K1,M and Ēε, Ē < +∞, using Corollary
4.2.3 we get that (Kα ∗ m̄ε)m̄ε → (Kα ∗ m̄)m̄ in L1(RN ). Moreover, w̄ε → w̄ locally

uniformly and weakly in L
γ′β

γ′−1+β (RN ).
It follows that the energy E0 is lower semi-continuous and it holds

E0(m̄, w̄) =
ˆ
RN

m̄

γ′

∣∣∣ w̄
m̄

∣∣∣γ′ dy − ˆ
RN

ˆ
RN

m̄(x) m̄(y)

|x− y|N−αdx dy

≤ lim inf
ε

(ˆ
RN

m̄ε

γ′

∣∣∣∣ w̄εm̄ε

∣∣∣∣γ′ dy − ˆ
RN

ˆ
RN

m̄ε(x) m̄ε(y)

|x− y|N−α dx dy

)
≤ lim inf

ε
Eε(m̄ε, w̄ε) (4.53)

where in the last inequality we used the fact that V ≥ 0. Moreover, if (m,w) ∈ B, using
(4.26), we have

0 ≤ lim
ε→0

ˆ
RN

m(y + yε)Vε(y + yε)dy ≤ lim
ε→0

CV ε
(N−α)γ′
γ′−N+α

ˆ
RN

(1 + |y|)bm(y)dy = 0

from which it follows that

lim
ε→0

Eε
(
m(·+ yε), w(·+ yε)

)
= E0(m,w).

Using the fact that (m̄ε, w̄ε) is a minimizer for Eε and then (4.53), we finally get

E0(m,w) = lim
ε→0

Eε
(
m(·+ yε), w(·+ yε)

)
≥ lim

ε→0
Eε(m̄ε, w̄ε) ≥ E0(m̄, w̄),

this proves that
E0(m̄, w̄) = min

(m,w)∈B
E0(m,w).
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Since (m̄ε, w̄ε) and (m̄, w̄) are minimizers of Eε and E0 respectively, we obtain that

Eε(m̄ε, w̄ε) ≤
ˆ
RN

(
m̄

γ′

∣∣∣ w̄
m̄

∣∣∣γ′ + Vε m̄− m̄(Kα ∗ m̄)

)
(y + yε)dy

= E0(m̄, w̄) +
ˆ
RN

Vε(y + yε) m̄(y + yε)dy ≤ E0(m̄ε, w̄ε) + Cε
(N−α)γ′
γ′−N+α

where in the last inequality we used also (4.26) and the fact that (m̄, w̄) ∈ B. It follow
immediately that ˆ

B(0,R)
m̄ε(y)Vε(y + yε)dy ≤ Cε

(N−α)γ′
γ′−N+α .

From (4.26) and (4.51) we get that there exists a positive constant C such that

ε
γ′

γ′−N+α |yε| ≤ C (4.54)

and hence using (4.26) again we obtain that

0 ≤ Vε(y + yε) ≤ CV ε
(N−α)γ′
γ′−N+α

(
1 + ε

γ′
γ′−N+α |y + yε|

)b
≤ Cε

(N−α)γ′
γ′−N+α

(
1 + ε

γ′
γ′−N+α |y|

)b
which allows us to conclude that Vε(y + yε) → 0 locally uniformly as ε→ 0. This prove
that the function g defined in Theorem 4.4.2 is actually zero.

4.5 Concentration of the mass

The following result allows us to localize the points where the mass concentrates.

Proposition 4.5.1. As ε → 0, the sequence ε
γ′

γ′−N+α yε converges, up to subsequences,
to a point x̄ ∈ RN such that V (x̄) = 0.

Proof. Let z ∈ RN (to be fixed later), by minimality of (m̄ε, w̄ε) and (m̄(·+ z), w̄(·+ z))
we get

Eε(m̄ε, w̄ε) ≤ Eε
(
m̄(·+ z), w̄(·+ z)

)
= E0(m̄, w̄) +

ˆ
RN

m̄(y + z)Vε(y + yε)dy

≤
ˆ
RN

m̄ε

γ′

∣∣∣∣ w̄εm̄ε

∣∣∣∣γ′ dy − ˆ
RN

ˆ
RN

m̄ε(x) m̄ε(y)

|x− y|N−α dx dy +

ˆ
RN

m̄(y + z)Vε(y + yε)dy

henceˆ
RN

m̄ε(y)Vε(y + yε)dy ≤
ˆ
RN

m̄(y + z)Vε(y + yε)dy =

ˆ
RN

m̄(y)Vε(y + yε − z)dy

and using (4.25) and the fact that m̄ε(y) = ε
Nγ′

γ′−N+αmε

(
ε

γ′
γ′−N+α y + ε

γ′
γ′−N+α yε

)
we getˆ

RN

mε(y)V (y)dy ≤
ˆ
RN

m̄(y)V
(
ε

γ′
γ′−N+α (y + yε − z)

)
dy.

By assumption the potential V is a locally Hölder continuous coercive function, so it has
a global minimum at a point z̄ ∈ RN , and by a shift of λ we may assume that V (z̄) = 0.

Let us fix z = yε − ε
− γ′

γ′−N+α z̄, it holds

lim sup
ε→0

ˆ

RN

m̄(y)V
(
ε

γ′
γ′−N+α y + z̄

)
dy ≤ lim sup

ε→0
c1

ˆ

RN

e−c2|y|V
(
ε

γ′
γ′−N+α y + z̄

)
dy = 0.

(4.55)
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Moreover, by (4.54), we get that (up to subsequences)

ε
γ′

γ′−N+α yε → x̄ ∈ RN

and by (4.52) denoting by B := B
(
ε

γ′
γ′−N+α yε, ε

γ′
γ′−N+αR

)
lim inf
ε→0

ˆ
RN

mε(y)V (y)dy ≥ lim inf
ε→0

ˆ
B
mε(y)V (y)dy

≥ lim inf
ε→0

min
x∈B

V (x)

ˆ
B
mε(y)dy ≥ lim inf

ε→0
min
x∈B

V (x)(M − η)

≥ (M − η)V (x̄). (4.56)

From (4.55) and (4.56) we obtain that V (x̄) = 0.

Proof of Theorem 4.1.2. It follows from Proposition 4.5.1 and Theorem 4.4.5.

Remark 10. Arguing as in [44] (refer to Proposition 5.13 and its proof) one can prove
that if V has a finite number of minima xi ∈ RN for i = 1, . . . , n and can be written as

V (x) = h(x)
n∏
i=1

|x− xi|bi

for a certain function C−1
V ≤ h(x) ≤ CV on RN and bi > 0 such that

∑n
i=1 bi = b, then

the sequence ε
γ′

γ′−N+α yε, as ε → 0, converges (up to subsequences) to the more stable
minimum of V (namely the point xj such that bj = max

i=1...n
bi).

4.6 Variational approach in the regime N − 2γ′ < α ≤ N − γ′

In this last section, we show how the variational approach developed in Section 4.3,
can be used to construct solutions to the MFG system (4.2) in the mass-supercritical
and HLS-subcritical regime and in the mass-critical case. Despite that, we are not able
to obtain suitable estimates for the value of the game λε analogous to (4.17), which in-
deed proves to be essential in the vanishing viscosity argument. Hence, using the same
technique as in Section 4.4, we are unable to obtain existence of classical solutions to the
MFG system (4.1) when N − 2γ′ < α ≤ N − γ′.

More precisely, when α = N − γ′ we show that if the total mass M is sufficiently
small, then the energy is bounded from below, and by direct methods, we can construct
global minimizers, which corresponds to solutions of the MFG system (4.2).

On the other hand, if N−2γ′ < α < N−γ′ the energy is not bounded from below, in
this case, we prove that for sufficiently small total masses M , it is possible to construct
local minimizers of the energy. The key idea consists of considering a constrained varia-
tional problem, where the constraint is on the L

2N
N+α -norm of m, constructing minimizers

of the constrained problem and finally showing that actually such minimizers are local
free minimizers of the energy. In this way, we can construct solutions to the MFG system
arising from local minima of the energy. Moreover in this regime, as the L

2N
N+α -norm of

m is becoming larger, the energy is decreasing to −∞, so the problem should present a
sort of mountain pass geometry and we expect existence of saddle-type critical points of
the energy. Currently, we are not able to construct such saddle-type critical points, but
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this open question is in our opinion quite interesting and it will be the subject of future
investigation. Moreover, in the vanishing viscosity limit, where up to rescaling the coer-
cive potential is disappearing, we expect that local minimizers are subject to vanishing
(following the terminology of the concentration-compactness argument), that is, roughly
speaking, they lose their mass “at infinity”, while the saddle-type critical points are go-
ing to concentrate, converging in the limit to a solution of the potential-free MFG system.

In order to deal with the Riesz-interaction term which is not Hölder continuous a
priori for α ∈ (N − 2γ′, N − γ′] (refer to Corollary 4.2.4), we first regularize the problem
convolving the Riesz term with a standard symmetric mollifier. We can assume, for sake
of simplicity, ε = 1. More precisely, we consider the following approximation of the MFG
system (4.2) 

−∆u+ 1
γ |∇u|

γ + λ = V (x)−Kα ∗ φk ∗m(x)

−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0´
RN m =M, m ≥ 0

in RN (4.57)

where (φk) is a sequence of standard symmetric mollifiers approximating the unit as
k → +∞. We associate to (4.57) the following energy

Ek(m,w) :=


´
RN

mL
(
−w
m

)
+ V mdx− 1

2

´
RN

m(x)Kα ∗ φk ∗m(x)dx if (m,w) ∈ K1,M

+∞ otherwise

where

L
(
−w

m

)
:=


1
γ′

∣∣w
m

∣∣γ′ if m > 0

0 if m = 0, w = 0

+∞ otherwise

.

4.6.1 Existence of minima in the critical case α = N − γ′

In the critical case α = N − γ′, if the total mass M is sufficiently small then, the
energy Ek is bounded from below.

Lemma 4.6.1. Let α = N−γ′ and (m,w) ∈ K1,M . Then, there exists M0 > 0 (depending
on N and γ) such that for any M ∈ (0,M0]

Ek(m,w) ≥ 0. (4.58)

Hence, inf(m,w)∈K1,M
Ek(m,w) is finite.

Proof. Similarly to the proof of Lemma 4.3.1, let us fix β := 2N
2N−γ′ , we get

Ek(m,w) ≥
(
C1

1

M
− C2

)
∥m∥2Lβ(RN ) (4.59)

where C1 and C2 are constants depending on N and γ. If C1
M −C2 > 0, that is M ≤M0

where M0 :=
C1
C2

, we have that
Ek(m,w) ≥ 0.
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As before, by classical direct methods we prove that for every M ∈ (0,M0] there exists a
global minimizer (mk, wk) ∈ K1,M of the regularised energy Ek, this allows us to construct
the corresponding associated solutions (uk,mk, λk) of the regularised problem.

With the same arguments of Subsection 3.4.2, since we have uniform L∞-bounds on
mk, we can finally pass to the limit as k → +∞ in the MFG system and obtain a solution
to the initial problem (4.2) for α = N − γ′.

4.6.2 Existence of local minima for N − 2γ′ < α < N − γ′

In this subsection, assuming γ′ < N , we study the mass-supercritical and HLS-
subcritical regime N − 2γ′ < α < N − γ′. We consider the MFG system (4.57) with k
fixed 

−∆u+ 1
γ |∇u|

γ + λ = V (x)−Kα ∗ φ ∗m(x)

−∆m− div(m∇u(x) |∇u(x)|γ−2) = 0´
RN m =M, m ≥ 0

in RN . (4.60)

From Theorem 3.4.7 (which takes advantage of a fixed point argument) there exists a
positive real value M0 = M0(N,α, γ, CV , b) such that if M ∈ (0,M0) the MFG system
(4.60) admits a classical solution (uφ,mφ, λφ). Moreover, mφ belongs to the set

Aξ,M,C :=

{
µ ∈ (Lp̄ ∩ L1)(RN )

∣∣∣∣ ∥µ∥ 2N
N+α

≤ ξ, ∥µ∥1 =M, µ ≥ 0,

ˆ
RN

µV (x) dx ≤ C

}
where p̄ > N

α and once fixed the mass M ∈ (0,M0), the values of ξ and C are given by
Lemma 3.4.4. We associate to the system (4.60) the following energy

E(m,w) :=


´
RN

m
γ′

∣∣w
m

∣∣γ′ + V (x)mdx− 1
2

´
RN

m(x)Kα ∗ φ ∗m(x)dx if (m,w) ∈ K1,M

+∞ otherwise
.

In the case where N −2γ′ < α < N −γ′, the energy E is no a priori bounded from below,
hence we have to look for local minimizers over the constraint set

K1,M,ξ :=

{
(m,w) ∈ K1,M

∣∣∣∣ ∥m∥
L

2N
N+α (RN )

≤ ξ

}
.

Lemma 4.6.2. Let us assume that N − 2γ′ < α < N − γ′, M ∈ (0,M0) and (m,w) ∈
K1,M,ξ. Then,

E(m,w) ≥ −M0

γ′
− C2

2
ξ2

where C2 is a constant depending on N and α.

Proof. Let us fix β := 2N
N+α , by (3.13), (3.15) and the fact that V ≥ 0, we get

E(m,w) ≥ 1

γ′C
M1− 2γ′

N−α ∥m∥
2γ′

N−α

Lβ(RN )
− M

γ′
− C2

2
∥m∥2Lβ(RN ) ≥ −M0

γ′
− C2

2
ξ2

where C2 is a constant which depends on N and α.
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Hence, for every M ∈ (0,M0) the local minimum problem is well-defined over the
constraint set K1,M,ξ, we define

e(M, ξ) := inf
(m,w)∈K1,M,ξ

E(m,w).

Notice that the couple (mφ,mφ∇uφ|∇uφ|γ−2) obtained in Section 3.4 taking advantage
of a fixed point argument, belongs to ∈ K1,M,ξ and it holds

E(mφ, wφ) =

ˆ
RN

mφ

γ′
|∇uφ|γ + V (x)mφ dx− 1

2

ˆ
RN

mφ (Kα ∗ φ ∗mφ) dx

= λφM +
1

2

ˆ
RN

mφ (Kα ∗ φ ∗mφ) dx ≤ CλM +
C2

2
ξ2

where we used that
´
RN

mφ

γ′ |∇uφ|
γ + V mφ dx = λφM +

´
RN mφ (Kα ∗ φ ∗mφ) dx (refer

to identity (3.54)). It follows immediately that

e(M, ξ) ≤ CλM +
C2

2
ξ2. (4.61)

We prove now that the values of the energy E for the couples (m,w) ∈ K1,M,ξ such that
∥m∥ 2N

N+α
= ξ are strictly greater than the infimum e(M, ξ).

Lemma 4.6.3. We have that

inf
(m,w)∈K1,M,ξ

∥m∥ 2N
N+α

=ξ

E(m,w) > inf
(m,w)∈K1,M,ξ

E(m,w).

Proof. Let us consider a couple (m̂, ŵ) ∈ K1,M,ξ such that ∥m̂∥
L

2N
N+α

= ξ. Then, denoting

by a := 2γ′

N−α and with g the function g(t) = ta−C C2γ
′Ma−1t2 −CMa− γ′CCλM

a, we
have

E(m̂, ŵ) ≥ 1

γ′C
M1−aξa − M

γ′
− C2

2
ξ2 =

1

γ′CMa−1

(
ξa − CMa − C C2γ

′Ma−1ξ2
)
+
C2

2
ξ2

=
1

γ′CMa−1

(
g(ξ) + γ′CCλM

a
)
+
C2

2
ξ2.

Since from Lemma 3.4.4 we have chosen ξ in such a way that g(ξ) > 0, we get that

E(m̂, ŵ) > CλM +
C2

2
ξ2 ≥ E(mφ, wφ).

The claim follows.

Remark 11. If (m̄, w̄) minimizes the energy E over the set K1,M,ξ, then there must exists
a positive real value η (η ≤ ξ) such that

∥mk∥
L

2N
N+α (RN )

≤ ξ − η < ξ

We have the following a priori bounds.
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Proposition 4.6.4. Let (m,w) ∈ K1,M,ξ such that e(M, ξ) ≥ E(m,w) − c for some
positive c. Then ˆ

RN

m

γ′

∣∣∣w
m

∣∣∣γ′ dx ≤ C2

2
ξ2 +K (4.62)

and ˆ
RN

V (x)mdx ≤ C2

2
ξ2 +K

where C2 and K are positive constants depending respectively on N,α and on M,α, b, γ,N .

Proof. From (4.61) there exists a positive constant Ce depending on M,CV , b, γ,N, α
such that

e(M, ξ) ≤ Ce.

Let us denote with β := 2N
N+α , we have

Ce + c ≥ e(M, ξ) + c ≥ E(m,w) ≥
ˆ
RN

m

γ′

∣∣∣w
m

∣∣∣γ′ dx− 1

2

ˆ
RN

m (Kα ∗ φ ∗m)dx.

From the previous we get

1

γ′

ˆ
RN

m
∣∣∣w
m

∣∣∣γ′ dx ≤ Ce + c+
1

2

ˆ
RN

m(x)(Kα ∗ φ ∗m)(x)dx

≤ Ce + c+
C2

2
∥m∥2Lβ(RN ) ≤ K +

C2

2
ξ2

which proves (4.62). Finally, since it holds 1
γ′

´
RN

m
∣∣w
m

∣∣γ′ dx+ ´
RN

V (x)mdx = E(m,w)+

1
2

´
RN m(Kα ∗ φ ∗m), using (3.15), we obtain
ˆ
RN

V (x)mdx ≤ E(m,w) + C2

2
∥m∥2

L
2N

N+α (RN )
≤ e(M, ξ) + c+

C2

2
ξ2 ≤ K +

C2

2
ξ2.

By means of classical direct methods, we prove that for every M ∈ (0,M0) there
exists a local minimizer (m̄, w̄) ∈ K1,M,ξ of the energy E .

Proposition 4.6.5. For every M ∈ (0,M0) there exists (m̄, w̄) local minimizer of the
energy E over the set K1,M,ξ, namely

E(m̄, w̄) = inf
(m,w)∈K1,M,ξ

E(m,w).

For every local minimizer (m̄, w̄) of E we have that

ˆ
RN

m̄

γ′

∣∣∣∣ w̄m̄
∣∣∣∣γ′dx ≤ C2

2
ξ2 +K

and ˆ
RN

V (x)m̄ dx ≤ C2

2
ξ2 +K.

Moreover, it holds

m̄(1 + |x|)b ∈ L1(RN ) and w̄(1 + |x|)
b
γ ∈ L1(RN ). (4.63)
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Proof. It follows as the proof of Proposition 4.3.3.

Once we have obtained local minimizers (m̄, w̄) ∈ K1,M,ξ of the energy E , we construct
the associated solutions (ū, m̄, λ̄) of the MFG system (4.60).

Proposition 4.6.6. If N − 2γ′ < α < N − γ′, then for any M ∈ (0,M0) there exists a
classical solution (ū, m̄, λ̄) to the MFG system (4.60). Moreover, the following estimates
hold

ū(x) ≥ C|x|1+
b
γ − C−1 (4.64)

|∇ū(x)| ≤ C(1 + |x|
b
γ ). (4.65)

Proof. This proof is very similar to the one of Proposition 4.3.4, so we shall omit many
details, we recall only the different facts. From Proposition 4.6.5 there exists at least one
local minimizer (m̄, w̄) of the energy E , and one can verify that

−
ˆ
RN

m̄∆ψ dx =

ˆ
RN

w̄ · ∇ψ dx, ∀ψ ∈ A (4.66)

(refer to the proof of identity (3.18) in [44], for more details). Since every local minimizer
satisfies (4.63) and (4.66), minimizing E on K1,M,ξ is equivalent to minimize E on the
following constraint set

K :=

(m,w) ∈ (L1 ∩W 1,r)× L
γ′β

γ′+β−1 (RN )

∣∣∣∣∣ (m,w) satisfies (4.63), (4.66),
ˆ
RN

m =M

m ≥ 0 and ∥m∥
L

2N
N+α (RN )

≤ ξ


where r < q. Let us consider in addition the following set

K̃ :=

(m,w) ∈ (L1 ∩W 1,r)× L
γ′β

γ′+β−1 (RN )

∣∣∣∣∣
(m,w) satisfies (4.63), (4.66)ˆ

RN

m =M m ≥ 0


and define

Φ(m,w) :=

{´
RN

m
γ′

∣∣w
m

∣∣γ′ dx if (m,w) ∈ K̃
+∞ otherwise

and
Ψ(m) :=

ˆ
RN

V (x)mdx− 1

2

ˆ
RN

m(Kα ∗ φ ∗m)dx.

In this way E(m,w) = Φ(m,w) + Ψ(m). For every couple (m,w) ∈ K̃ and for every
λ ∈ (0,Λ) (where Λ will be fixed later) we define mλ := (1 − λ)m̄ + λm and wλ :=
(1− λ)w̄ + λw. One can verify that (mλ, wλ) ∈ K, indeed we have

∥mλ∥
L

2N
N+α (RN )

≤ (1−λ)∥m̄∥
L

2N
N+α (RN )

+λ∥m∥
L

2N
N+α (RN )

≤ (1−λ)(ξ−η)+λ∥m∥
L

2N
N+α (RN )

(see Remark 11). Taking Λ = min

{
1, η

∥m∥ 2N
N+α

}
, it follows that

∥mλ∥
L

2N
N+α (RN )

< (1− λ)ξ − (1− λ)η + η = ξ − λ(ξ − η) ≤ ξ
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since ξ−η ≥ 0. The other conditions follow immediately. Since (m̄, w̄) is a local minimum
of E over K and (mλ, wλ) ∈ K, we get that

E(mλ, wλ) ≥ E(m̄, w̄)

hence
Φ(mλ, wλ)− Φ(m̄, w̄) ≥ Ψ(m̄)−Ψ(mλ) (4.67)

and by convexity of Φ

λ (Φ(m,w)− Φ(m̄, w̄)) ≥ Φ(mλ, wλ)− Φ(m̄, w̄). (4.68)

From (4.67) and (4.68), dividing by λ and letting λ go to 0, we finally obtain that

Φ(m,w)− Φ(m̄, w̄) ≥ −
ˆ
RN

V (x)(m− m̄)dx+

ˆ
RN

(m− m̄)Kα ∗ φ ∗ m̄

Hence, the couple (m̄, w̄) minimizes also the following convex functional on K̃

Ẽ(m,w) :=
ˆ
RN

m

γ′

∣∣∣w
m

∣∣∣γ′ dx+

ˆ
RN

V (x)mdx−
ˆ
RN

m(x)(Kα ∗ φ ∗ m̄)(x)dx.

The remaining part of the proof is analogous to the one of Proposition 4.3.4 and can
be summarized as follows. We include the differential constraint in the functional by
adding a supremum, so that using the Fan’s min-max theorem, we may interchange
the min and the sup. In this way, we can define the minimum of Ẽ over K̃ as the
supremum of the values of λM for which the HJB equation has a regular subsolution.
Finally, since φ ∗ m̄ ∈ Lr(RN ) for a certain suitable r by Theorem 3.2.9 we get that
Kα ∗ φ ∗ m̄ ∈ C0,α−N

r (RN ), hence we can use Proposition 3.2.11 and obtain the couple
(ū, λ̄) ∈ C2(RN )× R and the estimates (4.64)-(4.65).

Finally, the function m̄ is bounded from above in RN .

Proposition 4.6.7. Let (ū, m̄, λ̄) be a solution to the MFG system (4.60). Then, m̄ ∈
L∞(RN ).

Proof. The proof is analogous to the one of Proposition 3.4.3 iv).

Theorem 4.6.8. Let N − 2γ′ < α < N − γ′. Assume that the potential V is locally
Hölder continuous and satisfies (4.3). Then, for every M ∈ (0,M0) there exists (ū, m̄, λ̄)
classical solution to the MFG system (4.60). Moreover, m̄ is bounded in L∞(RN ) and
the function ū satisfies for some constant C > 0 the following estimates

ū(x) ≥ C|x|1+
b
γ − C−1

|∇ū(x)| ≤ C(1 + |x|
b
γ ).

Proof. It follows from Proposition 4.6.6 and Proposition 4.6.7.

Proof of Theorem 4.1.3. If (φk)k is a sequence of standard symmetric mollifiers approx-
imating the unit as k → +∞, from Theorem 4.6.8 we get that for every k ∈ N and
M ∈ (0,M0) there exists a classical solution (ūk, m̄k, λ̄k) to the regularised MFG system
(4.57). Proceeding as in Lemma 3.4.8, we get uniform L∞ bounds on m̄k, that the values
λ̄k are equibounded in k and

|∇ūk| ≤ C1(1 + |x|
b
γ ) |∆ūk| ≤ C2(1 + |x|b)
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where C1 and C2 are positive constants not depending on k.
We are now in the position to pass to the limit as k → +∞ (for more details we

refer the reader to the proof of Theorem 3.1.2) and prove that (ūk, m̄k, λ̄k) converges to
a triple (ũ, m̃, λ̃) solution to the MFG system (4.2).
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Part III

Choquard equation.
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Chapter 5

Boundary value problems for
Choquard equations

5.1 Introduction to the problem and main results

In the present chapter, we study the following nonlinear Choquard equation{
−∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u in Ω

u > 0 in Ω
(5.1)

with Dirichlet or Neumann boundary conditions. We assume that N ∈ N, N ≥ 2, the
exponent in the nonlinearity is a real value p > 1 and the potential V : Ω → R is a
continuous radial function such that infx∈Ω V > 0. Here, Iα : RN → R is the Riesz
potential of order α ∈ (0, N), which is defined for every x ∈ RN \ {0} by

Iα(x) =
CN,α
|x|N−α , where CN,α =

Γ
(
N−α
2

)
Γ(α2 )π

N
2 2α

, (5.2)

recall that by Iα ∗f in a domain Ω ⊂ RN , we mean the convolution Iα ∗(χΩf) in RN . We
consider both the case when the domain Ω is an annulus centered at the origin, namely
there exist two real values 0 < a < b < +∞ such that

Ω = Aa,b := {x ∈ RN | a < |x| < b }

and the case of the exterior domain

Ω = RN \Ba(0) = {x ∈ RN | |x| > a > 0 }.

The Choquard equation has been extensively studied over the last decades, since it
arises in the modeling of several mean-field physical phenomena. More in detail, the
Choquard-Pekar equation

−∆u+ u = (I2 ∗ |u|2)u in R3, (5.3)

has been first introduced by S. Pekar [163] in 1954 to model the quantum mechanics of
a polaron at rest, then P. Choquard used it to describe an electron trapped in its own
hole. A further application was proposed by R. Penrose [165–167], who used it to model
self-gravitating matter. Existence of solutions to equation (5.3) in the normalized frame-
work, namely imposing that ∥u∥L2(R3) = µ, has been first investigated using variational

129
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methods by E.H. Lieb [130] and in more general cases by P.-L. Lions [134] (refer also to
[19, 20] for further results about existence of solutions to more general Choquard-type
systems). In particular, using symmetric decreasing rearrangement inequalities, E.H.
Lieb proved that there exists a minimizing solution, which is radial and unique up to
translations, while more recently, L. Ma and L. Zhao [139] classified all positive solutions
to (5.3) (see also [126, 180]).

On the other hand, the Choquard equation on RN with a more general nonlocal
nonlinearity depending on a parameter p > 1, that is the following semilinear elliptic
equation

−∆u+ u = (Iα ∗ |u|p)|u|p−2u in RN ,

admits a nontrivial solution u ∈ H1(RN )∩L
2Np
N+α (RN ) with ∇u ∈ H1

loc(RN )∩L
2Np
N+α

loc (RN )
if and only if N+α

N < p < N+α
N−2 . We bring up e.g. [13, 67, 152, 154, 156] for a complete

overview on the topic and also [78, 90, 92] for existence of sign-changing solutions. The
situation changes when adding an external potential V in the equation, that is considering

−∆u+ V u = (Iα ∗ |u|p)|u|p−2u in RN , (5.4)

since the presence of the (possibly) variable potential V influences particles and hence
it could affect existence of solutions (see for instance [155, 179] and [156, §4], for further
discussion and references).

As we mentioned above, Choquard equations on the whole space RN have been ex-
tensively studied in past decades, while there are few results about Choquard equations
on other types of domain Ω ⊂ RN . Notice that the notion of solution to the Choquard
equation is nonlocal, that is if u ≥ 0 (weakly) solves (5.4), than u is only a supersolution
to the same equation in Ω ⊂ RN . We refer, among others, to [89] for a Brezis-Nirenberg
type critical problem of the Choquard equation on bounded domains, to [91] who proved
that for slightly subcritical Choquard problems the number of positive solutions depends
on the topology of the domain, and to [94, 95] for existence results at the HLS critical
level for problems on non-contractible domains which contain a sufficiently large annu-
lus. On the other hand, for what concerns exterior domains, we mention the work of V.
Moroz and J. Van Schaftingen [153] regarding sharp Liouville-type nonexistence results
for supersolutions in some suitable range of the parameter p, and optimal decay rates for
solutions (see also [55, 78] and the references therein).

In this chapter, we prove that problem (5.1) with Neumann or Dirichlet boundary
conditions, admits a positive radial solution in annular domains Ω = Aa,b for every p ≥ 1,
while in exterior domains Ω = RN \ B̄a for every p > N+α

N . Our result generalizes to the
case of nonlocal nonlinear equations a classical result by Kadzan and Warner [120] about
existence of solutions to nonlinear equations with power-like nonlinearities in annular
domains.

Problem (5.1) has a variational structure: weak solutions are formally critical points
(with u > 0 on Ω) of the action functional A defined for a function u : RN → R by

A(u) =
1

2

ˆ

Ω

(
|∇u|2 + V (x)u2

)
− 1

2p

ˆ

Ω

(Iα ∗ |u|p) |u|p.

Notice that due to the classical Sobolev Embedding Theorem H1(RN ) ↪→ Lq(RN ) for
q ∈ [2, 2∗], the above energy is well-defined and sufficiently differentiable on the Sobolev
space H1(RN ) if N+α

N ≤ p ≤ N+α
N−2 . Setting the problem in an annular domain or in the
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exterior of a ball, and looking for radial solutions, we are able to enlarge the range of
parameters p for which the energy is well-defined. We will consider the Sobolev space of
radial functions

H1
rad(Ω) := {u ∈ H1(Ω) | u(x) = u(|x|) }

with the usual norm

∥u∥H1 :=
(
∥u∥2L2 + ∥∇u∥2L2

) 1
2 =

(ˆ
Ω
|u|2 + |∇u|2

) 1
2

.

We take advantage of the fact that the embedding

H1
rad(Ω) ↪→ Lq(Ω)

is compact for every q ≥ 1 if Ω = Aa,b and for every q > 2 if Ω = {x ∈ RN | |x| > a > 0}
(see Theorem 5.2.1 and Theorem 5.2.2 below). Analogous results hold also for H1

0,rad(Ω)
(see Corollary 5.2.3 and Corollary 5.2.4 below). Then, in order to find solutions to (5.1)
with homogeneous Neumann or Dirichlet boundary conditions we consider a constrained
variational problem (see also [155] and [179]). For every α ∈ (0, N) fixed, we look for
minimizers of the energy functional

Q(u) =
1

2

ˆ

Ω

|∇u|2 + V u2 (5.5)

over the constrained set

Mα :=

{
u ∈ H1

rad(Ω)

∣∣∣∣ ˆ
Ω
(Iα ∗ up)up = 1

}
. (5.6)

Notice that the minimizers uα can be chosen non-negative (possibly taking |uα| since it
holds

´
Ω

∣∣∇|uα|
∣∣2dx =

´
Ω |∇uα|2dx). Hence, if

Q(uα) = Jα := inf{Q(u) |u ∈Mα}, (5.7)

up to multiplication by a constant, the function uα is a positive groundstate of (5.1) with
Neumann homogeneous boundary conditions.

Our main results are the following.

Theorem 5.1.1. Let N ≥ 2, α ∈ (0, N), Ω = Aa,b and V (|x|) be a continuous radial
function on Ω such that infx∈Ω V (x) > 0. Then, for every p ∈ [1,+∞) there exists
u ∈ H1

rad(Ω) which solves
−∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u in Ω

u > 0 in Ω
∂u
∂ν = 0 on ∂Ω

. (5.8)

On the other hand, if Ω = {x ∈ RN | |x| > a > 0} the boundary value problem (5.8)
admits a solution for every p ∈

(
N+α
N ,+∞

)
.

The analogous result holds in the case of Dirichlet boundary conditions. Notice that
if N ≥ 3 and Ω is an annular domain, we can weaken the assumptions on the potential
V , covering in this way also the case of the Choquard equation with the unperturbed
Laplacian, that is when V ≡ 0.
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Theorem 5.1.2. Let N ≥ 2, α ∈ (0, N), Ω = Aa,b and V (|x|) be a continuous radial
function on Ω such that infx∈Ω V (x) > 0 if N = 2 and V (|x|) ≥ 0 if N ≥ 3. Then, for
every p ∈ [1,+∞) there exists u ∈ H1

0,rad(Ω) which solves


−∆u+ V u = (Iα ∗ |u|p)|u|p−2u in Ω

u > 0 in Ω

u = 0 on ∂Ω

. (5.9)

If Ω = {x ∈ RN | |x| > a > 0} the boundary value problem (5.9) admits a solution when
infx∈Ω V (x) > 0 for every p ∈

(
N+α
N ,+∞

)
.

On the other hand, when Ω is a smooth domain in RN and the solution u is suffi-
ciently regular, we are able to obtain a Pohozaev-type identity, which in turns implies
the triviality of u, when the domain Ω is strictly star-shaped.

Theorem 5.1.3. Let N ≥ 3, Ω ⊂ RN be a smooth domain strictly star-shaped with
respect to the origin, p ≥ N+α

N−2 and V ∈ C1(Ω). Let u ∈ H1
0 (Ω) ∩H2(Ω) ∩W 1, 2pN

N+α (Ω)
be a solution to {

−∆u+ V u = (Iα ∗ |u|p)|u|p−2u in Ω

u = 0 on ∂Ω
. (5.10)

Assume that
u2V, u2∇V · x ∈ L1(Ω)

and ˆ
Ω
u2∇V · x ≥ 0.

If p = N+α
N−2 , we assume that V > 0 in Ω, whereas if p > N+α

N−2 it is sufficient that V ≥ 0.
Then, u ≡ 0.

Finally, in the case Ω = Aa,b, we prove a Γ-convergence type result as α → 0+,
relating the minimization problem (5.7) with

J0 = inf{Q(u) |u ∈M0}

where

M0 :=

{
u ∈ H1

rad(Ω)

∣∣∣∣ ∥u∥L2p(Ω) = 1, u ≥ 0

}
.

This argument allows us to recover the existence result of Kadzan and Warner [120] for
solutions to the corresponding local problem

−∆u+ V u = u2p−1 in Ω

u > 0 in Ω
∂u
∂ν = 0 on ∂Ω

(5.11)

and to extend it also to the case V is nonconstant. Notice that, the analogous result
holds also with Dirichlet boundary conditions, in this context we may refer among others
to [106, 160] for some related results.
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Theorem 5.1.4. Let us assume that Ω = Aa,b, N ≥ 2, V (|x|) be a continuous radial
function on Ω such that infx∈Ω V (x) > 0 and p is a fixed real value in [1,+∞). Then,

lim
α→0+

Jα = J0

and if {uα} is a sequence of minimizers for Jα, there exists u0 ∈M0 such that as α→ 0+

uα → u0 in H1
rad(Ω)

and J0 = Q(u0). Moreover, u0 is a solution to (5.11) up to multiplication by a constant.

Theorem 5.1.5. Under the assumptions of Theorem 5.1.2, the same result as Theorem
5.1.4 holds in the case of Dirichlet boundary condition on Ω = Aa,b.

This chapter is organized as follows. In Section 5.2, we provide some preliminary
results about Sobolev embeddings for radial functions defined in annular domains or in
exterior domains. Using a variational approach, in Section 5.3, we prove existence of a
positive radial solution to our problem. In Section 5.4, we obtain a suitable Pohozaev-
type identity which allows us to prove the nonexistence result of Theorem 1.3. Finally,
Section 5.5 is devoted to the study of the limiting problem as α→ 0+.

5.2 Sobolev embeddings for radial functions

We state here some results on Sobolev embeddings for H1
rad(Ω) and H1

0,rad(Ω), both
in the cases when the domain Ω ⊂ RN is an annulus and when Ω = {x ∈ RN | |x| >
a > 0}. Since we have not found a detailed proof in the literature, we recall it here by
completeness.

Theorem 5.2.1. Let N ≥ 2 and Ω = Aa,b. For every p ∈ [1,+∞), the following
immersion

H1
rad(Ω) ↪→ Lp(Ω)

is compact. Moreover, for every p ≥ 1 there exists a positive constant C = C(N, p, a, b)
such that

∥u∥Lp(Ω) ≤ C∥u∥H1
rad(Ω). (5.12)

Remark 12. If a = 0 namely Ω = A0,b = Bb(0), from the classical Rellich-Kondrachov
Theorem (refer to [2, Theorem 6.2]) we have that the previous result holds for every
p ∈ [1, 2∗) if N ≥ 3, and for every p ∈ [1,+∞) if N = 2.

Proof. If N = 2, since Ω is bounded and smooth, we have that for all p ∈ [1,+∞) the
embedding

H1(Ω) → Lp(Ω)

is compact (see e.g. [2, Theorem 6.2]).
If N ≥ 3, every function u ∈ H1

rad(Aa,b) can be extended to a function ū ∈ H1
rad(RN )

such that ū|Aa,b
= u and ū(x) = 0 for |x| sufficiently large with (by construction we have

that ū ≡ 0 for |x| ≥ 2b− a)

∥ū∥L2(RN ) ≤ C∥u∥L2(Aa,b) and ∥ū∥H1(RN ) ≤ C∥u∥H1(Aa,b)

where C depends only on |b−a|, see [30, Theorem 8.6]. We recall also that every function
ū ∈ H1(R) is represented by a continuous function on R̄, which we denote again by ū,
and such that

ū(x)− ū(y) =

ˆ x

y
ū′(r) dr, ∀x, y ∈ [−∞,+∞]
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(refer to [30, Theorem 8.2]). Hence following [175], for any u ∈ H1
rad(Aa,b) and x ∈ Aa,b

we have that

|u(x)|2 = |ū(|x|)|2 =
∣∣∣∣ˆ +∞

|x|

d

dr
|ū(r)|2dr

∣∣∣∣ ≤ ˆ +∞

|x|

∣∣∣∣ ddr |ū(r)|2
∣∣∣∣dr

≤ 2

(ˆ +∞

|x|
|ū(r)|

2N
N−2 rN−1dr

)N−2
2N
(ˆ +∞

|x|

∣∣∣∣ ddr ū(r)
∣∣∣∣2 rN−1dr

) 1
2
(ˆ +∞

|x|
r(2−N)N−1dr

) 1
N

≤ C|x|2−N∥ū∥L2∗ (RN )∥∇ū∥L2(RN ) ≤ C|x|2−N∥∇ū∥2L2(RN )

≤ C|x|2−N∥u∥2H1(Aa,b)

where C = C(N, a, b) and we used the Hölder’s inequality and the classical Sobolev
Embedding Theorem (refer to [30, Theorem 9.9] or [127, Corollary 11.9]). Hence for
every p ∈ [1,+∞) we get

ˆ
Aa,b

|u(x)|pdx = C

ˆ b

a
rN−1|u(r)|pdr ≤ C∥u∥p

H1(Aa,b)

ˆ b

a
rN−1+p−Np

2 dr

which proves estimate (5.12). In order to prove compactness, let {un |n ∈ N} ⊂ H1
rad(Ω)

be a bounded sequence, then there exists a constant M > 0 such that ∥un∥H1(Ω) ≤ M
∀n ∈ N. Using (5.12), we get that the family {un |n ∈ N} is bounded in Lp(Ω) for any
p ∈ [1,+∞). Let us show that {un |n ∈ N} is uniformly equi-continuous in Lp(Ω). For
every k ∈ N∗ we define

Ωk :=

{
x ∈ Ω

∣∣∣∣dist(x, ∂Ω) > 1

k

}
.

Using the Hölder’s inequality and the Sobolev embedding, we can prove that ∀k ∈ N∗
and ∀h ∈ RN it holds

∥τhu− u∥L1(Ω\Ωk) ≤ C∥u∥H1(Ω)L(Ω \ Ωk)
1
2 , (5.13)

where C = C(N, a, b) and τhu(x) := u(x+h) with u extended with 0 outside Ω. Moreover
∀k ∈ N∗ and ∀h ∈ RN such that |h| ≤ 1

k we have

∥τhu− u∥L1(Ωk) ≤ |h| ∥∇u∥L2(Ω)L(Ω)
1
2 . (5.14)

Hence from (5.13) and (5.14) we get that ∀k ∈ N∗, ∀h ∈ RN such that |h| ≤ 1
k and

∀n ∈ N we have

∥τhun − un∥L1(Ω) = ∥τhun − un∥L1(Ω\Ωk) + ∥τhun − un∥L1(Ωk)

≤M
(
CL(Ω \ Ωk)1/2 + |h| L(Ω)

1
2

)
.

For every fixed ε > 0 we can choose k0 such that if |h| ≤ 1
k0

then

|h| L(Ω)
1
2 ≤ ε

M
and L(Ω \ Ωk)1/2 ≤

ε

CM
,

hence we get that ∀ε > 0, ∃δ > 0 such that ∀h ∈ RN with |h| ≤ δ and for any n ∈ N it
holds

∥τhun − un∥L1(Ω) ≤ ε.
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Finally for every p ∈ (1,+∞) fixed, by interpolation there exist q ∈ (p,+∞) and θ ∈ (0, 1)
such that

∥τhun − un∥Lp(Ω) ≤ ∥τhun − un∥θL1(Ω)∥τhun − un∥1−θLq(Ω)

≤ ∥τhun − un∥θL1(Ω)

[
∥τhun∥Lq(Ω) + ∥un∥Lq(Ω)

]1−θ
≤ ∥τhun − un∥θL1(Ω)

[
2∥un∥Lq(Ω)

]1−θ
≤ ∥τhun − un∥θL1(Ω)(2CM)1−θ

where in the last inequality we used (5.12). This proves equicontinuity in Lp(Ω), namely
∀ε > 0, ∃δ > 0 such that ∀h ∈ RN with |h| ≤ δ and for any n ∈ N it holds

∥τhun − un∥Lp(Ω) ≤ ε.

Then by the compactness criterion in Lp, we can conclude that the sequence {un |n ∈ N}
converges (up to subsequences) in Lp(Ω).

Theorem 5.2.2. Let N ≥ 2 and Ω = {x ∈ RN | |x| > a > 0}. For every p ∈ [2,+∞) we
have the following continuous immersion

H1
rad(Ω) ↪→ Lp(Ω);

which is also compact for p ∈ (2,+∞).

Proof. Case N ≥ 3. Let u ∈ H1
rad(Ω), since it is radial we can identify it with a function

inH1
(
(a,+∞)

)
which we still denote by u. Since u ∈ H1((a,+∞)) then lim

|x|→+∞
u(x) = 0,

by the same argument as in the proof of Theorem 5.2.1, we get that

|u(x)| ≤ C|x|1−
N
2 ∥u∥H1(Ω) (5.15)

where C = C(N, a). If p > 2∗, N + p− Np
2 < 0 and so

ˆ
Ω
|u(x)|pdx ≤ C1∥u∥pH1(Ω)

ˆ +∞

a
rN−1+p−Np

2 dr = C2∥u∥pH1(Ω)
. (5.16)

From (5.16) and the classical Sobolev embedding (see [2, Theorem 5.4]) which holds for
p ∈ [2, 2∗], we can conclude that if u ∈ H1

rad(Ω)

∥u∥Lp(Ω) ≤ CN,p,a∥u∥H1(Ω), ∀p ∈ [2,+∞)

and hence
H1
rad(Ω) ↪→ Lp(Ω), ∀p ∈ [2,+∞).

Now in order to prove compactness, we proceed as in [5, Theorem 11.2] (see also [175]).
Let {un |n ∈ N} ⊂ H1

rad(Ω) be a bounded sequence, without loss of generality we can
assume that un ⇀ 0 in H1

rad(Ω). From (5.15) it follows that

|un(x)| ≤ C1|x|1−
N
2 , for every n ∈ N

so if p > 2, given ε > 0 there exist C2, R > 0 (we can always assume R > a) such that

|un(x)|p−2 ≤ C1|x|(1−
N
2 )(p−2) ≤ C2ε, for |x| ≥ R.
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Using this we get thatˆ
|x|≥R

|un(x)|pdx ≤ C2ε

ˆ
|x|≥R

|un(x)|2dx ≤ C2ε∥un∥2H1(Ω) ≤ C3ε. (5.17)

We consider now the annulus A := {x ∈ RN | a < |x| < R}, since the sequence {un |n ∈
N} is bounded in H1

rad(A), recalling the compact embedding H1
rad(A) ⊂⊂ Lp(A) for any

p ∈ [1,+∞) (see Theorem 5.2.1) we get that un → 0 strongly in Lp(A). It follows that
there exists n0 ∈ N such that for all n ≥ n0ˆ

a<|x|<R
|un(x)|pdx ≤ ε. (5.18)

Combining (5.17) and (5.18), we get that for every n ≥ n0ˆ
Ω
|un(x)|pdx ≤ C4ε

which proves that un → 0 in Lp(Ω) ∀p ∈ (2,+∞).
Case N = 2. The continuous immersion H1(Ω) ↪→ Lp(Ω) holds for every p ∈ [2,+∞)

(see [2, Theorem 5.4 Case B]). For what concern compactness, we proceed as in the
previous case using that for any u ∈ H1

rad(Ω) it holds

|u(x)| ≤ C|x|−
1
4 ∥u∥H1(Ω).

Actually, if N = 2 the embedding is compact for every p ∈ [2,+∞).

Remark 13. Notice that if N ≥ 3 the embedding of H1
rad(RN ) in Lp(RN ) is compact for

all p ∈ (2, 2∗) (see [5, Theorem 11.2] and also [175]).
Regarding the Sobolev space H1

0,rad(Ω) we get the following results.

Corollary 5.2.3. Let N ≥ 2 and Ω = Aa,b. For every p ∈ [1,+∞), the following
compact immersion holds

H1
0,rad(Ω) ↪→ Lp(Ω).

Moreover, if N ≥ 3 there exists a positive constant C = C(N, p, a, b) such that ∀p ≥ 1

∥u∥Lp(Ω) ≤ C∥∇u∥L2(Ω). (5.19)

Proof. It follows similarly to the proof of Theorem 5.2.1. If N = 2, since Aa,b is bounded,
we have that for all p ∈ [1,+∞) the embedding

H1
0 (Ω) ↪→ Lp(Ω)

is compact (see e.g. [2, Theorem 6.2] which holds also in H1
0 (Ω)). If N ≥ 3 and U ⊂ RN

is an arbitrary open set, then for every u ∈ H1
0 (U) it holds

∥u∥L2∗ (U) ≤ CN∥∇u∥L2(U) (5.20)

(classical Gagliardo-Nirenberg-Sobolev inequality for H1
0 (U)). Since we are working with

functions in H1
0,rad(Ω), extending u by 0 outside Ω and proceeding as before we obtain

the following estimate

|u(x)|2 ≤ C|x|2−N∥u∥L2∗ (Ω)∥∇u∥L2(Ω) ≤ C|x|2−N∥∇u∥2L2(Ω)

where in the last inequality we used (5.20). Estimate (5.19) follows immediately; for
what concerns compactness we can replicate the arguments before.
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Remark 14. Notice that differently from Theorem 5.2.1, if N ≥ 3 only the gradient of u
appears in the right-hand-side of inequality (5.19). This fact will be useful in the next
section, in order to relax the assumptions on the potential V for problems defined on
annular domains.

Corollary 5.2.4. Let Ω = {x ∈ RN | |x| > a > 0}. For every p ∈ [2,+∞) we have the
following continuous immersion

H1
0,rad(Ω) ↪→ Lp(Ω).

Hence for every p ≥ 2 there exists a positive constant C = C(N, p, a) such that

∥u∥Lp(Ω) ≤ C∥u∥H1
rad(Ω)

moreover, if N ≥ 3 for any p ≥ 2∗ we have

∥u∥Lp(Ω) ≤ C∥∇u∥L2(Ω). (5.21)

The previous immersion is compact for every p ∈ (2,+∞).

Proof. Case N ≥ 3. Let u ∈ H1
0,rad(Ω), by the same argument as before and using

estimate (5.20), we get that

|u(x)| ≤ C|x|1−
N
2 ∥∇u∥L2(Ω)

where C = C(N, a). If p > 2∗, N + p− Np
2 < 0 and so

ˆ
Ω
|u(x)|pdx ≤ C1∥∇u∥pL2(Ω)

ˆ +∞

a
rN−1+p−Np

2 dr = C2∥∇u∥pL2(Ω)
,

which proves estimate (5.21). By the previous inequality and the classical Sobolev em-
bedding (see [2, Theorem 5.4]) which holds for p ∈ [2, 2∗], we can conclude that if
u ∈ H1

0,rad(Ω)

∥u∥Lp(Ω) ≤ CN,p,a∥u∥H1(Ω), ∀p ∈ [2,+∞)

and hence the continuous embedding follows.
Case N = 2. The continuous immersion H1

0 (Ω) ↪→ Lp(Ω) holds for every p ∈ [2,+∞)
(see [2, Theorem 5.4 Case B]).

In both cases, the proof of compactness follows the same arguments as in the proof
of Theorem 5.2.2.

5.3 Existence of a constrained minimizer

We construct a radial solution to the Neumann boundary value problem (5.8) as
minimizer of Q(u) on the constrained set Mα (as defined in (5.5) and (5.6)).

Proposition 5.3.1. Let N ≥ 2, α ∈ (0, N) fixed, Ω = Aa,b and V (|x|) be a continuous
radial function on Ω such that infx∈Ω V (x) > 0. Then, for every p ∈ [1,+∞), there exists
uα ∈Mα non-negative function such that

Q(uα) = Jα := inf
u∈Mα

Q(u).
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Proof. Let Jα := inf
u∈Mα

Q(u) ≥ 0 and {un |n ∈ N} ∈ Mα be a minimizing sequence for

Jα. We can assume that there exists n0 ∈ N such that for any n ≥ n0

Q(un) < Jα + 1

from which, using that inf
x∈Ω

V (x) > 0, we deduce that

ˆ
Ω
|∇un|2dx < Jα + 1,

ˆ
Ω
u2n dx ≤ Q(un)

inf V
<
Jα + 1

inf V
.

This proves that the sequence {un |n ∈ N} is bounded in H1
rad(Ω), hence there exists

uα ∈ H1
rad(Ω) such that un ⇀ uα weakly in H1

rad(Ω) (up to subsequences) as n → ∞
and almost everywhere in Ω. Notice that the function uα can be chosen non-negative,
possibly taking |uα|. Now, in order to conclude, we have to verify that uα ∈Mα. Using
the Hardy-Littlewood-Sobolev inequality (3.15) we get that∣∣∣∣∣

ˆ
Ω
(Iα ∗ |un|p)|un|p −

ˆ
Ω
(Iα ∗ |uα|p)|uα|p

∣∣∣∣∣
= CN,α

∣∣∣∣∣
ˆ

Ω

ˆ

Ω

|un(x)|p|un(y)|p

|x− y|N−α dx dy −
ˆ

Ω

ˆ

Ω

|uα(x)|p|uα(y)|p

|x− y|N−α dx dy

∣∣∣∣∣
= CN,α

∣∣∣∣∣
ˆ

Ω

ˆ

Ω

(|un(x)|p − |uα(x)|p)(|un(y)|p + |uα(y)|p)
|x− y|N−α dx dy

∣∣∣∣∣
≤ C

∥∥∥ |un|p − |uα|p
∥∥∥
L

2N
N+α (Ω)

∥∥∥ |un|p + |uα|p
∥∥∥
L

2N
N+α (Ω)

≤ C
∥∥∥|un|p − |uα|p

∥∥∥
L

2N
N+α (Ω)

(
∥un∥p

L
2Np
N+α (Ω)

+ ∥uα∥p
L

2Np
N+α (Ω)

)
.

Using estimate (5.12) and the fact that ∥un∥H1(Ω) ≤ C, we obtain that for every p ∈
[1,+∞)

∥un∥p
L

2Np
N+α (Ω)

+ ∥uα∥p
L

2Np
N+α (Ω)

≤ C

uniformly in n. If p = 1 we are done, since using Theorem 5.2.1 we have that ∥un −
uα∥ 2N

N+α
→ 0. On the other hand if p > 1, in order to deal with the term ∥|un|p −

|uα|p∥
L

2N
N+α (Ω)

, we take advantage of the following estimate. Using convexity of the

function xp, for x > 0 and p > 1, we get that∣∣∣|un|p − |uα|p
∣∣∣ ≤ p

∣∣∣|un| − |uα|
∣∣∣ (|un|p−1 + |uα|p−1

)
and so using Hölder’s inequality∥∥∥|un|p−|uα|p

∥∥∥
L

2N
N+α (Ω)

≤ C
∥∥∥|un| − |uα|

∥∥∥
L

2Nr
N+α (Ω)

∥∥∥|un|p−1 + |uα|p−1
∥∥∥
L

2Nr′
N+α (Ω)

≤ C
∥∥∥|un| − |uα|

∥∥∥
L

2Nr
N+α (Ω)

(
∥un∥p−1

L
2Nr′(p−1)

N+α (Ω)

+ ∥uα∥p−1

L
2Nr′(p−1)

N+α (Ω)

)
(5.22)
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where r and r′ are conjugate exponents. Choosing r such that

2Nr′(p− 1)

N + α
≥ 1,

we can use estimate (5.12) again, and since {un} is bounded in H1
rad(Ω), we get that

∥un∥p−1

L
2Nr′(p−1)

N+α (Ω)

+ ∥uα∥p−1

L
2Nr′(p−1)

N+α (Ω)

≤ C

uniformly in n. Finally, since the embedding is compact (refer to Theorem 5.2.1) we have
that up to subsequences

∥un − uα∥
L

2Nr
N+α (Ω)

→ 0.

This proves that ∥∥∥|un|p − |uα|p
∥∥∥
L

2N
N+α (Ω)

→ 0

and consequently that ˆ

Ω

(Iα ∗ |uα|p)|uα|pdx = 1.

We can conclude that uα ∈Mα.

Proposition 5.3.2. Under the assumptions of Proposition 5.3.1, let Ω = {x ∈ RN | |x| >
a > 0}. Then, for every p ∈

(
N+α
N ,+∞

)
there exists uα ∈ Mα non-negative function

such that
Q(uα) = Jα := inf

u∈Mα

Q(u).

Proof. We proceed in the same way as the previous proof, but since Ω = {x ∈ RN | |x| >
a > 0}, we use the following Sobolev Embedding (see Theorem 5.2.2): for every q ∈
[2,+∞) we have the continuous immersion

H1
rad(Ω) ↪→ Lq(Ω)

which is also compact for q ∈ (2,+∞). Since {un} is bounded in H1
rad(Ω), it follows that

for every p ∈
(
N+α
N ,+∞

)
∥un∥p

L
2Np
N+α (Ω)

+ ∥uα∥p
L

2Np
N+α (Ω)

≤ C

uniformly in n. Recalling estimate (5.22), in this case we have to require that

2Nr′(p− 1)

N + α
≥ 2 and

2Nr

N + α
> 2.

If p ≥ 2, taking r = r′ = 2, the two previous conditions are satisfied. If N+α
N < p < 2,

we set r′ = N+α
N(p−1) and consequently r = N+α

2N+α−Np , in this way

2Nr′(p− 1)

N + α
= 2 and

2Nr

N + α
=

2N

2N + α−Np
> 2

which concludes the proof.
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Proof of Theorem 5.1.1. Let uα ∈ Mα be a minimizer for Jα (see Proposition 5.3.1 and
Proposition 5.3.2). By classical arguments, uα solves

−∆uα + V (x)uα = µα(Iα ∗ |uα|p)|uα|p−2uα in Ω

uα > 0 in Ω
∂uα
∂ν = 0 on ∂Ω

where µα is a Lagrange multiplier, and uα > 0 by the Strong Maximum Principle.
Therefore |µα|

1
2p−2 uα provides a solution to (5.8).

Proof of Theorem 5.1.2. When dealing with homogeneous Dirichlet boundary conditions
we will investigate existence of minima of the functional Q over the constrained set

Mα,0 :=

{
u ∈ H1

0,rad(Ω)

∣∣∣∣ ˆ
Ω
(Iα ∗ |u|p) |u|p = 1

}
.

Exploiting Corollary 5.2.3 and Corollary 5.2.4, one can prove that there exists uα,0 non-
negative function which achieves the infimum

Jα,0 := inf{Q(u) |u ∈Mα,0}.

Hence, the results of Proposition 5.3.1 and Proposition 5.3.2 hold also for Dirichlet bound-
ary conditions, and we can conclude by rescaling. Let us assume now that V ≥ 0, N ≥ 3
and Ω = Aa,b. If {un} is a minimizing sequence for Jα,0, exploiting estimate (5.19) we
get that ˆ

Aa,b

u2n dx ≤ C

ˆ
Aa,b

|∇un|2dx ≤ C Q(un) < C(Jα,0 + 1).

Hence, if N ≥ 3 we obtain existence of solutions to the problem (5.9) on Ω = Aa,b also
in the more general case V (|x|) ≥ 0.

5.4 Nonexistence result

First, we prove a suitable version of the celebrated Pohozaev identity (refer to the
seminal papers [168, 172] and also to [6, 89] for the Choquard case).

Theorem 5.4.1. Let Ω be a smooth domain in RN . Assume that u ∈ H1
0 (Ω) ∩W 2,2(Ω) ∩

W 1, 2Np
N+α (Ω) is a solution to

−∆u+ V (x)u = (Iα ∗ |u|p)up−2u, in Ω (5.23)

such that u2V ∈ L1(Ω) and u2∇V ·x ∈ L1(Ω). Then the following Pohozaev-type identity
holds(

2−N +
α+N

p

)ˆ
Ω
|∇u|2dx−

(
N − α+N

p

) ˆ
Ω
V u2 dx−

ˆ
Ω
u2∇V · x dx = I∂Ω,

(5.24)
where ν is the exterior unit normal at ∂Ω and uν := ∂u

∂ν and I∂Ω =
´
∂Ω u

2
ν (x · ν) dσ.

Proof. Since u solves (5.23), multiplying each term by ∇u · x and integrating over Ω, we
get

−
ˆ
Ω
∆u∇u · x dx+

ˆ
Ω
V u∇u · x dx =

ˆ
Ω
(Iα ∗ |u|p)|u|p−2u∇u · x dx.
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We consider each term of the previous equality separately. Integrating by parts the first
term, we have

−
ˆ
Ω
∆u∇u · x dx =

ˆ
Ω
∇u · ∇(∇u · x)dx−

ˆ
∂Ω

(∇u · ν)(∇u · x) dσ

=

ˆ
Ω
|∇u|2 +

ˆ
Ω

∑
i,j

uxiuxi xjxj −
ˆ
∂Ω

(∇u · ν)(∇u · x) dσ. (5.25)

Notice that integrating by parts

ˆ
Ω

∑
i,j

(uxixj)uxixj =

ˆ
∂Ω

|∇u|2 x · ν dσ −
ˆ
Ω
∇u · ∇(∇u · x) + (1−N)

ˆ
Ω
|∇u|2. (5.26)

Putting (5.26) into (5.25), and integrating by parts again, we find

−
ˆ
Ω
∆u∇u · x dx = (2−N)

ˆ
Ω
|∇u|2 dx+

ˆ
Ω
∆u∇u · x dx+

+

ˆ
∂Ω

|∇u|2 x · ν dσ − 2

ˆ
∂Ω

(∇u · ν)(∇u · x) dσ.

Since u = 0 on ∂Ω, one has that ∇u(x) = uνν where uν = ∂u
∂ν , hence we get

−
ˆ
Ω
∆u∇u · x dx =

2−N

2

ˆ
Ω
|∇u|2 dx− 1

2

ˆ
∂Ω
u2ν x · ν dσ. (5.27)

Concerning the second term, integrating by parts we have

ˆ
Ω
V u∇u · x dx =

ˆ
∂Ω
V u2 x · ν dσ −

ˆ
Ω
V u∇u · x dx−N

ˆ
Ω
V u2 dx−

ˆ
Ω
u2∇V · x dx

and hence

ˆ
Ω
V u∇u · x dx =

1

2

ˆ
∂Ω
V u2 x · ν dσ − N

2

ˆ
Ω
V u2 dx− 1

2

ˆ
Ω
u2∇V · x dx. (5.28)

As for the Riesz term we get

ˆ

Ω

(Iα ∗ |u|p)|u|p−2u∇u · x dx = c

ˆ

Ω

ˆ

Ω

|u(y)|p |u(x)|p−2u(x)∇u · x
|x− y|N−α dy dx =

= c

ˆ

Ω

ˆ

∂Ω

|u(y)|p |u(x)|p

|x− y|N−α (x · ν) dσ(x) dy − c

ˆ

Ω

ˆ

Ω

|u(y)|p u(x) divx
(
u(x)|u(x)|p−2x

|x− y|N−α

)
dx dy,

(5.29)
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where c = c(N,α) is the constant in the definition of the Riesz potential. We have that

ˆ

Ω

ˆ

Ω

|u(y)|pu(x) divx
(
u(x)|u(x)|p−2

|x− y|N−α x

)
dx dy

=

ˆ

Ω

ˆ

Ω

|u(y)|p u(x)|u(x)|p−2∇u · x
|x− y|N−α dx dy + (p− 2)

ˆ

Ω

ˆ

Ω

|u(y)|p u(x)|u(x)|p−2∇u · x
|x− y|N−α dx dy

+ (α−N)

ˆ

Ω

ˆ

Ω

|u(x)|p |u(y)|p

|x− y|N−α
(x− y) · x
|x− y|2

dx dy +N

ˆ

Ω

ˆ

Ω

|u(x)|p |u(y)|p

|x− y|N−α dx dy

= (p− 1)

ˆ

Ω

ˆ

Ω

|u(y)|p u(x)|u(x)|p−2∇u · x
|x− y|N−α dx dy +

α+N

2

ˆ

Ω

ˆ

Ω

|u(x)|p |u(y)|p

|x− y|N−α dx dy

+
α−N

2

ˆ

Ω

ˆ

Ω

|u(x)|p |u(y)|p

|x− y|N−α
(x+ y) · (x− y)

|x− y|2
dx dy (5.30)

where we used that x·(x−y)
|x−y|2 = 1

2 +
(x+y)·(x−y)

2|x−y|2 and moreover we observe that by symmetry

ˆ

Ω

ˆ

Ω

|u(x)|p |u(y)|p

|x− y|N−α
(x+ y) · (x− y)

|x− y|2
dx dy = 0.

Using (5.30) in (5.29) we finally get
ˆ

Ω

(Iα ∗ |u|p)|u|p−2u∇u · x dx

=
c

p

ˆ

Ω

ˆ

∂Ω

|u(y)|p |u(x)|p

|x− y|N−α (x · ν) dσ(x) dy − α+N

2p

ˆ

Ω

(Iα ∗ |u|p)|u|pdx.
(5.31)

Summing up (5.27), (5.28) and (5.31), and using the fact that u = 0 on ∂Ω we obtain
the following identity

2−N

2

ˆ
Ω
|∇u|2 dx− N

2

ˆ
Ω
V u2 dx− 1

2

ˆ
Ω
u2∇V · x dx

+
α+N

2p

ˆ

Ω

(Iα ∗ |u|p)|u|p dx =
1

2

ˆ
∂Ω
u2ν x · ν dσ.

(5.32)

Finally, testing equation (5.23) with u, we infer that
ˆ
Ω
(Iα ∗ |u|p)|u|p dx =

ˆ
Ω
|∇u|2dx+

ˆ
Ω
V u2 dx

using this relation in (5.32) we conclude the proof of the Pohozaev-type identity (5.24).

Remark 15. Notice that the previous integrability assumptions on u can be weakened
for suitable values of the nonlinearity p, indeed one can adapt the proof of regularity for
solutions to the Choquard equation in the whole space RN to other kinds of domains
(see [152, Proposition 4.1] and also [154, Theorem 2]).
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As a consequence, using the Pohozaev identity we can prove that if the domain Ω is
strictly star-shaped, the value p = N+α

N−2 is critical from the point of view of existence of
non-trivial solution for the Dirichlet problem (5.10). Notice that in the literature also
p = α+N

N is a critical value for the Choquard equation in the whole space RN and for
Choquard boundary value problems defined in exterior domains of the form RN \Ba(0)
(refer to Theorem 5.1.1 and Theorem 5.1.2).

Proof of Theorem 5.1.3. Since u ∈ H1
0 (Ω) ∩W 2,2(Ω) ∩W 1, 2Np

N+α (Ω) solves (5.10) and we
assumed that u2V, u2∇V · x ∈ L1(Ω), we have the following Pohozaev identity(

N − 2− α+N

p

)ˆ
Ω
|∇u|2dx+

(
N − α+N

p

) ˆ
Ω
V u2 dx

+

ˆ
Ω
u2∇V · x dx+

ˆ
∂Ω
u2ν (x · ν) dσ = 0

Since Ω is strictly star-shaped with respect to 0 ∈ RN , we have that x · ν > 0 on ∂Ω,
moreover by assumptions

´
Ω u

2∇V · x dx ≥ 0. So if V ≥ 0 and p > N+α
N−2 , u must be

identically equal to 0, and in the case p = N+α
N−2 the same holds if V > 0.

5.5 Limiting problem

In this section we will always assume that Ω = Aa,b, N ≥ 2, p is a fixed real value
in [1,+∞) and V (|x|) is a continuous radial function on Ω such that infx∈Ω V (x) > 0.
Notice that if 0 ≤ α2 < α1 < N for every couple of points x, y ∈ Bb(0) it holds

1

|x− y|N−α1
≤ (max{1, 2b})α1−α2

1

|x− y|N−α2
,

from which using that CN,α1 < CN,α2 (as defined in (5.2)) it follows that
ˆ
Ω
(Iα1 ∗ |f |)|f | dx ≤ C

ˆ
Ω
(Iα2 ∗ |f |)|f | dx (5.33)

where C = (max{1, 2b})α1 . From Proposition 5.3.1 we have that for every fixed α ∈
(0, N), there exists a non-negative function uα ∈ Mα which minimizes Q(u), that is
Jα = Q(uα).

We recall the following classical result (see [122, Theorem D]).

Theorem 5.5.1 (Riesz kernel as an approximation of the identity). Let f ∈ Lp(RN ) for
p ∈ [1,+∞). If the Riesz potential Iα ∗ f is well-defined, we have that

Iα ∗ f(x) → f(x), as α→ 0+

at each Lebesgue point of f .

Following some arguments in [107], we prove weak convergence of minimizers when
α→ 0+.

Proposition 5.5.2. Let {αn} be a sequence of real values in (0, N) such that αn → 0+

as n→ +∞ and uαn ∈Mαn be a sequence of minimizers to Jαn respectively. Then, there
exists u0 ∈ H1

rad(Ω) such that, up to subsequences

uαn ⇀ u0 in H1
rad(Ω) uαn → u0 in Lq(Ω), ∀q ∈ [1,+∞)
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and ˆ

Ω

u2p0 (x) dx = 1.

Proof. First we prove that the sequence {uαn |n ∈ N } is bounded in H1
rad(Ω). Let us

consider a non-negative test function η ∈Mα1 and for every α ∈ (0, α1) let us define

ηα :=
η(´

Ω

(Iα ∗ ηp)ηp dx
) 1

2p

.

Denoting by a =
( ´
Ω

(Iα ∗ ηp)ηp dx
) 1

2p we observe that

ˆ

Ω

(Iα ∗ ηpα)ηpα dx =
1

a2p

ˆ

Ω

(Iα ∗ ηp)ηp dx = 1

hence ηα ∈Mα. For every α ∈ (0, α1), using (5.33), we get

Q(ηα) =
Q(η)

a2
=

Q(η)( ´
Ω

(Iα ∗ ηp)ηp dx
) 1

p

≤ Q(η)(
1
C

´
Ω

(Iα1 ∗ ηp)ηp dx
) 1

p

= C1Q(η)

where C1 = C1(b, α1, p) and in the last equality we exploited the fact that η ∈ Mα1 .
Since ηα ∈ Mα, it follows that Jα ≤ C1Q(η), therefore Jα ≤ C1 for every α ∈ (0, α1).
Hence if uαn is a minimizer associated to αn, we have thatˆ

Ω
|∇uαn |2 ≤ C1 and

ˆ
Ω
|uαn |2 ≤ C1

uniformly in n. This proves that the sequence {uαn |n ∈ N} is bounded in H1
rad(Ω) as

αn → 0+, so there exists u0 ∈ H1
rad(Ω) such that, up to subsequences uαn ⇀ u0 in

H1
rad(Ω). We can conclude using the compact Sobolev Embedding for radial functions

(refer to Theorem 5.2.1).
Now we prove that

´
Ω

u2p0 (x) dx ≥ 1. We observe that if uα1 ∈Mα1 , using (5.33) it holds

1 =

ˆ

Ω

(Iα1 ∗ |uα1 |p)|uα1 |p dx ≤ lim
α2→0+

C

ˆ

Ω

(Iα2 ∗ |uα1 |p)|uα1 |p dx. (5.34)

Passing to the limit as α1 → 0+ in (5.34), we get that

1 = lim
α1→0+

ˆ
Ω
(Iα1 ∗ |uα1 |p)|uα1 |p dx ≤ lim

α1→0+
lim

α2→0+
C

ˆ

Ω

(Iα2 ∗ |uα1 |p)|uα1 |p dx,

and using monotone convergence and Theorem 5.5.1, we obtain that

1 ≤ lim
α1→0+

C

ˆ

Ω

lim
α2→0+

(Iα2 ∗ |uα1 |p)|uα1 |p dx = lim
α1→0+

C

ˆ

Ω

|uα1(x)|2p dx.

Since uαn → u0 in Lq(Ω) for every q ∈ [1,+∞) and C = (max{1, 2b})α1 → 1 as α1 → 0,
we can conclude that

1 ≤
ˆ

Ω

u0(x)
2p dx.
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As for the inverse inequality, we observe that again by (5.33), for α2 > α1

lim
α1→0+

ˆ

Ω

(Iα2 ∗ |uα1 |p)|uα1 |pdx ≤ lim
α1→0+

C

ˆ

Ω

(Iα1 ∗ |uα1 |p)|uα1 |pdx = C

where C = (max{1, 2b})α2 . Passing to the limit as α2 → 0+ we get

1 ≥ lim
α2→0+

lim
α1→0+

ˆ

Ω

(Iα2 ∗ |uα1 |p)|uα1 |pdx = lim
α2→0+

ˆ

Ω

(Iα2 ∗ |u0|p)|u0|pdx

where to get the last equality, we proceed as in the proof of Proposition 5.3.1. Finally,
using again the Monotone Convergence Theorem and Theorem 5.5.1, we obtain that

1 ≥
ˆ

Ω

u0(x)
2p dx

which concludes the proof.

Now we prove that every non-negative function belonging to M0 can be seen as the
limit of a suitable approximating sequence.

Proposition 5.5.3. Let u ∈ M0 be a non-negative function. Then for every α ∈ (0, N)
there exists wα ∈Mα such that wα → u in H1

rad(Ω) as α→ 0+.

Proof. For every α ∈ (0, N), let us consider the function

wσα := σαu, where σα =

(ˆ
Ω
(Iα ∗ |u|p)|u|p

)− 1
2p

.

It follows immediately that
ˆ

Ω

(Iα ∗ |wσα |p)|wσα |pdx = σ2pα

ˆ

Ω

(Iα ∗ |u|p)|u|pdx = 1,

hence wσα belongs to Mα. In order to conclude we observe that

lim
α→0+

σα = lim
α→0+

(ˆ
Ω
(Iα ∗ |u|p)|u|pdx

)− 1
2p

=

(ˆ
Ω
|u(x)|2p dx

)− 1
2p

= 1

using in the last equality that u ∈M0.

In order to conclude we have to show that the constrained variational problems Jα
converges to the limit problem J0 as α→ 0+.

Proposition 5.5.4. Let us consider a sequence of real values α ∈ (0, N) such that
α→ 0+ and let {uα} be a sequence of minimizers of Q(u) in Mα respectively. Then, up
to subsequences, we have that

uα → u0 in H1
rad(Ω)

and
Jα = inf

u∈Mα

Q(u) = Q(uα) −−−−→
α→0+

J0 = inf
u∈M0

Q(u) = Q(u0).
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Proof. From Proposition 5.5.2 there exists u0 ∈ M0 such that uα ⇀ u0 in H1
rad(Ω). So,

by lower semicontinuity with respect to weak convergence, we get that

J0 ≤ Q(u0) ≤ lim inf
α→0+

Q(uα) = lim inf
α→0+

Jα (5.35)

where we used also that J0 := inf
u∈M0

Q(u) and that every uα is a minimizer for Jα.

Conversely, let u ∈ M0 be a non-negative function, by Proposition 5.5.3 there exists a
sequence of function wα ∈Mα such that wα → u in H1

rad(Ω) as α→ 0+, so it holds

Q(u) = lim
α→0+

Q(wα) ≥ lim sup
α→0+

Jα. (5.36)

Notice that in the minimization problem J0 = inf
u∈M0

Q(u), we can equivalently minimize

over the constrained set {u ∈ M0 | u ≥ 0} (possibly taking |u| instead of u). Passing to
the infimum in (5.36), we get that

J0 = inf
{u∈M0|u≥0}

Q(u) ≥ lim sup
α→0+

Jα

and hence from (5.35) we finally obtain

J0 ≥ lim sup
α→0+

Jα ≥ lim inf
α→0+

Jα ≥ J0,

which concludes the proof.

Proof of Theorem 5.1.4. Since u0 is a minimizer for J0, we have that
−∆u0 + V (x)u0 = µ0u

2p−1
0 in Ω

u0 > 0 in Ω
∂u0
∂ν = 0 on ∂Ω

where µ0 is a Lagrange multiplier. A suitable multiple of u0 (namely |µ0|
1

2p−2 u0) provides
a solution to (5.11).
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