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Second generation bioethanol: the bottlenecks
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Pioneer work on S. cerevisiae ATCC24860
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Fermenting Strains of Saccharomyces cerevisiae from
a Spent Sulfite Liquor Fermentation Plant
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From a continuous spml snlﬁle Ilqunr fermentation plant, two specles of yeast were isolated, Saccharomyces
© and Pichia One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and
produced a higher ethanol yield from spent sulfite liquor than did commerdnl baker’s yeast. The greatest
difference between isolate 3 and baker’s yeast was that of ion, even when
utilization was induced, i.e., when they were grown in the of, prior to fe ion. Without
acetic acid present, both baker’s yeast and isolate 3 fermented glucose and galactose sequentially. Galactose
fermentation with baker’s yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented
galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5.
The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some
of the isolates as well as in two strains of 5. cerevisiae (ATCC 24860 and baker’s yeast) and Pichia stipitis CBS
6054. The S. isiae strains xylose activity that was 2 orders of magnitude less than the
corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order
of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).
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Grape marc as trove of biodiversity for bioethanol
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‘ Temperature fluctuations ‘

Solar radiations ‘

Looking for robust yeast...

Bioprospecting

Fermentative abilitiles at 25, 30, 40, 45 °C
Inhibitors toIerarlmce at 30 and 40 °C | Yeast optimizer © |
Effectls of pH T

Effects of hig:h sugars levels

Fermentation of synthetic inhibitors mixtures




Looking for robust yeast...

‘ Yeast optimizer ©

Grape marc as trove of biodiversity for bioethanol

Favaro et al. Biotechnology for Biofuels 2013, 6:168 m
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To select for novel industrial yeast strains

>300 Saccharomyces cerevisiae strains
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Inhibitors tolerance: a short and powerful method
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washed 2x
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Inhibitors tolerance: synthetic inhibitors mixtures

Acetic acid Formicacid Lacticacid Furfural HMF  Coniferyl aldehyde Cinnamic acid
RC25 1.80 1.70 0.60 0.70 0.90 0.05 0.04
RCSD 3.60 3.40 1.20 1.40 1.80 0.09 0.08
RC100 7.20 6.80 2.40 2.80 3.60 0.18 0.15
Rczoo 14.40 13.60 4.80 5.60 7.20 0.36 0.30

Inhibitors mixtures concentrations (g/L) and composition (HMF stands for 5-hydroxymethyl-2-furaldehyde).

Ethanol
F17 Fm89 Fm90 Fm96 M2n MEL2 Y130
Red®
“ 81 87 79 55 82 76 65

RCs, 71 62 59 53 60 63

RC100 55

59

Relative growth in YNB supplemented with 20 g/L glucose and increasing dosages of inhibitors

mixtures.
pH was adjusted to 5.0 with 5M NaOH. Standard error was always less than 7% (not shown)

Inhibitors tolerance: steam-exploded lignocellulosic materials

Substrates LogR pH  Glucose Formic acid Acetic acid Furfural HMF

PG1 P. australis 3.60 3.75 0.14 0.32 1.00 0.24 0.05
PG2 P. australis 4.00 3.29 0.29 0.78 2.18 0.97 0.13
PG3 P. australis 4.40 3.23 0.43 1.08 3.50 1.43 0.48
PG4 C. cardunculus 3.85 3.86 0.30 2.73 3.15 0.46 0.30
PG5 C. cardunculus 4.28 3.79 0.13 4.28 5.80 0.64 0.39
PG6 C. cardunculus 4.02 3.93 0.20 2.18 2.76 0.44 0.20
PG7 C. cardunculus 4.28 4.10 0.02 0.50 0.71 0.09 0.05
SH S. officinarum n.a. 3.28 0.50 3.0 11.20 1.70 0.50

Severity factor LogR,, correlates with the harshness of the pre-treatment ‘
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Inhibitors tolerance: steam-exploded lignocellulosic materials

Ethanol
F17 Fm89 Fm90 Fm96 M2n MEL2 Y130
Red®
PG1 + + + + + + + +
PG2 + - + + + + + +
PG3 - - - - - - - -
+ + + + + + + +
- + + + +
+ + +
SH - - - - - - - -

Pre-hydrolysates PG3 from common reed , PG5 from cardoon , and SH from
sugarcane bagasse did not support the growth of any yeast indicating that the
concentration of toxic chemical species was higher than yeast could tolerate.
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The effect of pH on the inhibitors tolerance of yeast strains
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Fermentation studies using lignocellulosic waste

F17 Ethanol
Red®
PG3
Common reed 40 g/L
glucose Ethanol
H 5.0

PG6 ozg/L . Growth (ODy,)

Cardoon 30°6 Sugars consumption
200 rpm stirring Furans conversion

Cotana et al. (2015) Ind. Crops Prod. 69, 424-432
Cotana et al. (2015) Sustainability 7, 12149-12163

Fermentation studies using lignocellulosic waste

F17 Ethanol
Red®

Glucose/Ethanol (g/L)
Glucose/Ethanol (g/L)

Time (h) Time (h)

16




Conclusions and future perspectives

e The search for robust yeast is a strategic approach to maximi ze ethanol

production from lignocellulosic materials

e For the first time two undiluted lignocellulosic pre-hydro lysates were
proficiently fermented with yields even higher than those e xhibited by S.
cerevisiae Ethanol Red® , the most used industrial yeast strain in

lignocellulosic ethanol plants.
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