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Abstract: Accurate predictive mathematical models are urgently needed in synthetic biology to
support the bottom-up design of complex biological systems, minimizing trial-and-error approaches.
The majority of models used so far adopt empirical Hill functions to describe activation and repression
in exogenously-controlled inducible promoter systems. However, such equations may be poorly
predictive in practical situations that are typical in bottom-up design, including changes in promoter
copy number, regulatory protein level, and cell load. In this work, we derived novel mechanistic
steady-state models of the lux inducible system, used as case study, relying on different assumptions
on regulatory protein (LuxR) and cognate promoter (Plux) concentrations, inducer-protein complex
formation, and resource usage limitation. We demonstrated that a change in the considered
model assumptions can significantly affect circuit output, and preliminary experimental data are in
accordance with the simulated activation curves. We finally showed that the models are identifiable a
priori (in the analytically tractable cases) and a posteriori, and we determined the specific experiments
needed to parametrize them. Although a larger-scale experimental validation is required, in the
future the reported models may support synthetic circuits output prediction in practical situations
with unprecedented details.

Keywords: mathematical modeling; mechanistic model; synthetic biology; copy number; inducible
promoter; cell load; bottom-up design

1. Introduction

Recent advances in the construction and characterization of DNA encoded synthetic circuits have
enabled to boost the design-build-test engineering cycle applied to biological systems, in terms of
time and economic resources. This process has led to the engineering of complex engineering-inspired
information processing and control systems, as well as solutions to numerous problems in industrial
biotechnology and medicine [1–3].

Given a genetic circuit, its promoters, ribosome binding sites (RBSs) and the DNA copy number
of its elements are some of the crucial degrees of freedom that biological engineers have to tune to
implement an effectively working function [4,5]. However, the combinatorial search space to properly
tune complex regulatory networks makes a trial-and-error approach unpractical with no guarantee to
reach an optimally working system [6,7].

High-impact industrially-attractive control systems for different applications have been already
delivered by synthetic biology, for example to adaptively regulate biofuel production as a function of
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pathway intermediates availability [8] or to switch cellular metabolism towards growth or product
formation as a function of cell stress [9]. Although the mentioned circuits are characterized by an
elegant design and have real-world impact, the final correctly working systems were obtained only
after random selection steps—e.g., to tune the expression levels of key proteins—or the affinity of
repressors exerting feedback control [10]. These and a number of other examples suggest that a
bottom-up design process is desirable to increase the success rate in the construction of working
biological systems that behave as intended. To this aim, accurate predictive models are needed to
support this design step.

Among the many issues currently limiting model-based approaches in synthetic biology, several
unpredictability sources affect the re-use of biological parts in different contexts (i.e., strains, growth
media, and even circuits). Cell-to-cell variability, flanking regions-dependent behavior, and cell load
are among the major features causing such variability [11–16]. Many of such effects have often been
neglected in mathematical models, thereby limiting their predictive power. In addition, widely used
modeling approaches describe recombinant protein regulation via empirical Michaelis–Menten or Hill
equations [17].

Empirical models are popular tools and have many advantages (e.g., low number of parameters,
overall good descriptive capability and no need to know the biomolecular interactions underlying
the described process) [18,19]. However, they may have poor predictive power on unseen data
when one or more circuit elements are changed [20], like copy number of DNA or protein regulators
that have been reported to be essential for the biological systems behavior [21]. In specific, transfer
functions of inducible devices can be characterized in vivo through dose–response experiments,
in which a constitutively expressed regulator (activator or repressor) is activated or inhibited by
an exogenously added molecule and the complex eventually affects the transcription of a cognate
regulated promoter [22]. While empirical models can be easily identified from such experimental data,
it is not trivial to generalize them in situations in which molecule copy number changes, also for the
empirical nature of model parameters [20]. This weak aspect of empirical models might be crucial
in practical bottom-up design situations, in which circuit parts are interconnected and the behavior
of the system is predicted from the functioning of individual parts, by using previously estimated
parameters [23].

Mechanistic models are able to overcome some of the issues mentioned above: parameters usually
have biological meaning (e.g., dissociation constants, copy numbers, etc.) and predictive power is
expected to be higher than empirical models, since circuit changes can be translated into the variation
of specific parameters [20]. However, mechanistic models usually have a larger number of parameters
to be estimated, thereby raising issues of model identifiability [18,24]. Since such models require a
deep knowledge of occurring biomolecular interactions in the biological system under study, they are
less popular than empirical models. Different mechanistic modeling efforts have been undertaken,
describing gene regulation using thermodynamics or law of mass action [18,25–28]. However, the
application of these models in bottom-up design approaches remains low due to the absence of studies
on their identification and lack of broad-range advantages demonstrations over the empirical ones.

In this work, we presented different mechanistic models of the widely used lux inducible
system [29], derived under different key assumptions on molecule abundances and resource limitation,
thereby obtaining mathematical tools able to describe copy number changes and the burden effects
caused by individual parts.

Our objective was to investigate the impact of the underlying assumptions on the transfer function
of the lux inducible circuit via numerical simulations. The inclusion of the considered features in a
mechanistic model represents a novel contribution of this work. We extended the work by studying
the usability of such models in terms of structural and practical identifiability, given experimental
measurements commonly available in synthetic biology in vivo studies.

We showed that different assumptions can lead to relevant differences among activation
curves features (i.e., all the Hill function parameters showed variations). We also showed that
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simulations were consistent with preliminary in vivo data, measured in recombinant Escherichia
coli in previous and novel studies, although a larger-scale validation of the model variants will be
required. Finally, model identifiability analysis outlined the experimental designs required to enable
accurate parameter estimation.

This study is expected to have high relevance for both computational biologists, since new models
have been proposed and the impact of their key assumptions evaluated in silico, and for experimental
biologists, since recommendations on the measurement procedures have been provided, supporting
the future in vivo assessment of the models. Taken together, the results found in this work may support
bottom-up design of synthetic biological systems by providing new models that, once validated, will
represent accurate tools for synthetic circuits behavior prediction.

2. Materials and Methods

2.1. Inducible System Description

The inducible system studied in this work is described in Figure 1a. It includes a constitutively
expressed LuxR protein, which acts as transcriptional activator of the cognate Plux promoter in
presence of N-(3- oxohexanoyl)-L-homoserine lactone (HSL). The LuxR-HSL active complex binds
to the lux box of the Plux promoter, triggering its activity in an HSL concentration-dependent
fashion, thereby regulating the transcription of the downstream gene, which is then translated into
protein. We considered a set of reactions affecting the production of the (reporter) protein-encoded
gene regulated by Plux, similar to the ones described by Carbonell-Ballestero et al. [20] (Figure 1b).
Specifically, a LuxR protein dimer (R2) and HSL (L) form a complex (Q), which binds the free promoter
(P) to form a transcriptionally active bound promoter (S).Processes 2019, 7, 119 4 of 25 

 

 
Figure 1. Description of the lux inducible system. (a) The gene encoding the LuxR protein 
transcriptional regulator is expressed by a constitutive promoter (Pcon); the LuxR regulator becomes 
activated upon HSL molecule binding to form a complex which can bind the Plux promoter in its single 
lux box sequence, thereby activating the expression of the gene of interest (GOI), placed downstream 
of Plux. Curved arrows represent promoters; ovals represent ribosome binding sites (RBSs); straight 
arrows represent coding sequences; hexagons represent transcriptional terminators; circles represent 
HSL molecules. (b) and (c) Biomolecular reactions modeled in this work. The LuxR dimer (R2T, blue 
overlapping circles) is assumed to be activated upon binding of one (b) or two (c) HSL molecules (L, 
yellow circles) to form an activated complex (Q or Q2, respectively), which binds DNA (double helix 
icon) to enable transcription. In panel (c), Q is the LuxR dimer form bound to one HSL molecule and 
it is assumed to be unable to bind DNA. The equilibrium constants are reported for each reaction 
occurring in panels (b) and (c). 

2.2. Model Definition 

In this section, different models describing the lux system are illustrated. In particular, the 
essential elements of gene expression modeling are reported in Section 2.2.1, together with the 
description of a basic empirical model for transcriptional activation. The description of all the models 
used in this work is provided in Sections 2.2.2–2.2.5. Due to the complexity of model structure under 
some assumptions, the theoretical analysis of the activation function parameters is only provided for 
the models described in Sections 2.2.1 and 2.2.2. 
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Figure 1. Description of the lux inducible system. (a) The gene encoding the LuxR protein
transcriptional regulator is expressed by a constitutive promoter (Pcon); the LuxR regulator becomes
activated upon HSL molecule binding to form a complex which can bind the Plux promoter in its single
lux box sequence, thereby activating the expression of the gene of interest (GOI), placed downstream
of Plux. Curved arrows represent promoters; ovals represent ribosome binding sites (RBSs); straight
arrows represent coding sequences; hexagons represent transcriptional terminators; circles represent
HSL molecules. (b,c) Biomolecular reactions modeled in this work. The LuxR dimer (R2T, blue
overlapping circles) is assumed to be activated upon binding of one (b) or two (c) HSL molecules
(L, yellow circles) to form an activated complex (Q or Q2, respectively), which binds DNA (double
helix icon) to enable transcription. In panel (c), Q is the LuxR dimer form bound to one HSL molecule
and it is assumed to be unable to bind DNA. The equilibrium constants are reported for each reaction
occurring in panels (b,c).

As an alternative reaction scheme, we also considered a similar set of biomolecular interactions,
with complex formation occurring in two steps (Figure 1c): binding of R2 and L to form Q, and
subsequent binding of L to Q to form the hetero-tetramer Q2. This alternative reaction set was
defined to refine the mechanistic model above, in accordance with previous investigations, in which a
hetero-tetrameric structure was suggested for the activated complex [30].

2.2. Model Definition

In this section, different models describing the lux system are illustrated. In particular, the essential
elements of gene expression modeling are reported in Section 2.2.1, together with the description of a
basic empirical model for transcriptional activation. The description of all the models used in this work
is provided in Sections 2.2.2–2.2.5. Due to the complexity of model structure under some assumptions,
the theoretical analysis of the activation function parameters is only provided for the models described
in Sections 2.2.1 and 2.2.2.

2.2.1. Empirical Michaelis–Menten Model (M0)

Assumptions

Assuming that no post-transcriptional or post-translational regulations are involved in the circuit,
the intracellular dynamics of mRNA (M), immature protein (X) concentration regulated by Plux and
the mature form of the protein (Y) can be described via Equations (1)–(3):

dM
dt

= H(L)− γM ×M (1)

dX
dt

= ρ×M− (γX + σ)× X (2)

dY
dt

= σ× X− γX ×Y (3)



Processes 2019, 7, 119 5 of 24

In Equation (1), γM is the mRNA degradation rate and H(L) is an HSL-dependent activation
function describing transcription rate, expressed in (RNA time−1) units. In Equation (2), γX (time−1)
includes the protein degradation and dilution rates, and ρ (time−1) is the translation rate. If the
expressed protein is very stable, γX is equal to the rate of cell division. When relevant in terms of
dynamics, protein maturation or folding is also included: Y represents mature protein, σ (time−1)
represents protein maturation rate and protein degradation rate is assumed to be the same for immature
and mature forms. Assuming the steady-state of all the intracellular processes, the output commonly
considered for such system, i.e., the mature protein synthesis rate per cell (y), which is equal to the
synthesis term of Equation (3), is proportional to H(L) (Equation (4))

y =
σ× ρ× H(L)
(γX + σ)× γM

(4)

Another output commonly found in literature is the per-cell mature protein (Y), which is
proportional to y, thereby enabling to generalize all the modeling work presented in this study.

In many works considering a constant LuxR production, not changing throughout the
experiments [22,23,31–34], H(L) is modeled via a Hill equation and the circuit output, y, can be
written as in Equation (5)

y = δ +
α

1 +
(

κ
L
)η (5)

Assuming no cooperativity, Equation (5) with η = 1 is equivalent to a Michaelis–Menten equation
with three parameters: δ is the basic protein synthesis rate when Plux is in its off state; α is the activity
range in the on state; κ is the HSL concentration corresponding to half of the maximum activation [20].
The δ and α parameters are expressed as intracellular protein concentration per time. The experimental
measurements routinely performed in laboratory to characterize synthetic circuits usually exploit
fluorescent reporter proteins, which are quantified via in vivo assays by means of plate reader or
flow-cytometry. In these cases, per-cell arbitrary units of fluorescence (AU) can be adopted to express
intracellular protein concentration, assuming their proportionality.

Derivation

When LuxR level is also needed to be described (situation of interest in the present work),
another commonly found modeling approach includes the following equations (Equations (6) and
(7)) [30,33,35], describing the LuxR-HSL complex formation and the subsequent activation of protein
synthesis by this complex

C =
U

1 +
( κR

L
)β

(6)

y = δ̂ +
α̂

1 +
(

κ̂
C
)η̂

(7)

In Equation (6), C is the intracellular LuxR-HSL complex concentration, U is the total LuxR
concentration, κR is the concentration of HSL required for half-activation of LuxR, and β is the Hill
coefficient. In Equation (7), symbols have the same meaning as in Equation (5), with the cap denoting
that this Hill function has C as input. For this reason, κ̂ has the same units as C and U (protein
concentration or AU, as explained above). Assuming no cooperativity, as before, the Hill coefficients
(β and η̂) can be fixed to 1. The expressions in Equations (6) and (7) can be lumped into a single
equation describing y as a function of L (Equation (8))

y = δ̂ +
α̂/(1 + κ̂/U)

1 + κR/(1+U/κ̂)
L

(8)
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which is equivalent to the Michaelis–Menten function in Equation (5) with the following parameters
(Equations (9)–(11))

δ = δ̂ (9)

α =
α̂

1 + κ̂
U

(10)

κ =
κR

1 + U
κ̂

(11)

Final Expression

Although the parameters of Equation (8) have empirical nature, the copy numbers of Plux (n1)
and LuxR (n2) can be included in the model. Specifically, n1 and n2 can act as known scale factors of
δ̂, α̂ and U (Equations (12)–(14)), thereby enabling the description of copy number changes among
different situations. Following a bottom-up approach, model parameters (δ̂ or d, α̂ or v, κ̂ and κR) can
be estimated from experimental data and the parametrized model can be adopted to predict unseen
situations with different n1 and n2

δ̂ = n1 × d (12)

α̂ = n1 × v (13)

U = n2 × u (14)

As before, the system output (y) can be expressed in per-time intracellular protein concentration
or AU time-1, like δ̂ and α̂. Analogously, U and κ̂ are intracellular protein concentrations that can also
be expressed in AU, while κR has the same units as HSL concentration. For this reason, the relative
copy number changes, instead of the absolute ones, are sufficient to express n1 and n2. Specifically, n1

can be set according to plasmid copy number and n2 is proportional to the strength of the promoter
expressing LuxR. Finally, the u value (Equation (14)) can be set to 1 without any loss of generality, since
U is always present in ratio with κ̂ (Equation (8)). The final empirical model, called M0, describing
the output of the lux inducible system as a function of HSL and the per-cell copy numbers of Plux and
LuxR, is reported in Equation (15)

y = n1·d +
n1 × v/(1 + κ̂/(n2 × u))

1 + κR/(1+n2×u/κ̂)
L

(15)

2.2.2. Mechanistic Model with LuxR Abundance Assumption (M1)

Assumptions

A mechanistic model of the biomolecular reactions shown in Figure 1b has been previously
reported [20] and is herein briefly illustrated. The main underlying assumptions are that HSL molecules
bound to LuxR are negligible compared to the total HSL amount, and that P << R. A difference from
the work by Carbonell-Ballestero et al. is that no binding is assumed between LuxR dimer and Plux,
and the low-entity promoter activation by this unspecific complex is neglected. Previous experimental
work showed that this activity increase is undetectable in the commonly tested conditions [35].

Derivation

Considering the same equations for transcription, translation and maturation (Equations (1)–(3))
as in Section 2.2.1, H(L) can be expressed in a more mechanistic fashion (Equation (16))

H(L) = km0 × P + kmL × S (16)
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where P and S represent the intracellular concentrations of free and complex-bound promoter, while
km0 and kmL are the transcription rate constants in off and on state, respectively.

Based on the law of mass action, the biomolecular interactions in Figure 1b depend on the
following equilibrium constants and conservation expressions (Equations (17)–(20))

K1 =
Q

L× R2
(17)

K3 =
S

P×Q
(18)

PT = P + S (19)

R2T = R2 + Q + S (20)

Symbols in Equations (17)–(20) are described in Figure 1b; briefly, R2T and R2 are the total and
free LuxR dimer concentrations, respectively, where R2T ≈ RT/2 (and RT is the total concentration
of LuxR monomer). Under the assumption that P << R, the bound promoter S in Equation (20) can
be neglected: R2T = R2 + Q. Considering Equations (1)–(3) and Equations (16)–(20), the following
expressions for LuxR-HSL complex and circuit output can be written (Equations (21) and (22)) [20]

Q =
R2T

1 + 1
K1×L

(21)

y = k̂m0 × PT +

(
k̂mL − k̂m0

)
× PT

1 + 1
K3×Q

(22)

where k̂m0 and k̂mL are km0 and kmL, respectively, scaled by σ× ρ/((γX + σ)× γM) (see Equation (4)).
These equations show that, like in the empirical model in Equations (6) and (7), in this

mechanistic model the intracellular complex concentration and circuit output can be both described by
Michaelis–Menten functions. Analogously, circuit output as a function of HSL is a Michaelis–Menten
function (Equation (23)) with coefficients described in Equations (24)–(26)

y = PT × k̂m0 +
PT ×

(
k̂m0 + k̂mL

)
1 + 1/(K3 × R2T)

× 1
1 + 1/(K1 × (1 + K3 × R2T)× L)

(23)

δ = PT × k̂m0 (24)

α =
PT ×

(
k̂m0 + k̂mL

)
1 + 1/(K3 × R2T)

(25)

κ = 1/(K1 × (1 + K3 × R2T)) (26)

In summary, M0 (Equation (15)) and M1 (Equation (23)) have the same y(L) function and
analogous LuxR-dependent Michaelis–Menten parameters expressions (Equations (9)–(11) and
Equations (24)–(26)). However, the mechanistic nature of M1 gives the advantages that molecule
concentrations are explicitly described and the link between model parameters and biological
mechanism is not lost. As a result, M1 offers the opportunity to parametrize the model with biologically
meaningful parameters, like intracellular concentrations, equilibrium constants, and copy numbers.
Nonetheless, hard-to-measure quantities can still be expressed in AUs instead of concentrations, as in
M0. For instance, while promoter concentration and DNA copy number are easy to retrieve (e.g., from
assumptions about cell volume and plasmid datasheets or quantitative PCR), protein concentration
requires more resource consuming experiments (e.g., Western blot) and depends not only on DNA
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copy number, but also on transcription, translation and degradation rates [20]. Nevertheless, the
relative protein level can still be approximated via the strength of the upstream promoter.

For the reasons above, in this work M0 will not be further analyzed, and only serves as a reference
for M1 parameters expressions.

Final Expression

The final expression of M1, explicitly including n1 and n2, is reported in Equation (27)

y = n1 × PU × k̂m0 +
n1 × PU ×

(
k̂m0 + k̂mL

)
/(1 + 1/(K3 × n2 × rT))

1 + 1/(K1 × (1 + K3 × n2 × rT)× L)
(27)

where PU and rT are the intracellular concentrations of one DNA copy of promoter and LuxR protein,
respectively. The n1 and n2 parameters are, respectively, the Plux copy number, and the scale factor
between one protein monomer and the actual dimer concentration.

2.2.3. Mechanistic Model without LuxR Abundance Assumption (M2)

Assumptions and Final Expression

Following the same biomolecular reactions and calculation steps as in M1, it is possible to calculate
circuit output without the P << R assumption. In this situation, S cannot be neglected in Equation (20).
Circuit output can be computed from Equation (28), in which R2 and P are the roots of a second order
two-equation system (Equations (29)–(30)). In this equation system, only one root has a biologically
acceptable meaning for any value of L (not shown). Analytical formulas expressing R2 and P are
not reported due to their complexity and, as a result, Equations (28)–(30) represent the final reported
expression for M2

y = P×
(

k̂m0 + k̂mL × K1 × K3 × R2 × L
)

(28)

(K1 × K3 × L)× P2 + (1 + K1 × L + K1 × K3 × n2 × rT × L
−K1 × K3 × n1 × PU × L)× P− (PT + K1 × n1 × PU × L) = 0

(29)

(
K1 × K3 × L + K2

1 × K3 × L2)× R2
2

+(1 + K1 × L + K1 × K3 × n1 × PU × L− K1 × K3 × n2 × rT × L)
×R2 − n2 × rT = 0

(30)

2.2.4. Modeling LuxR-HSL Hetero-Tetramerization (M1T, M2T)

Assumptions

The biomolecular interactions illustrated in Figure 1c can be used to derive mathematical models
in which, differently from Figure 1b, the activated complex is a hetero-tetramer, formed by two LuxR
and two HSL molecules. In particular, under the P << R assumption, we also assumed that: i) the
LuxR dimer has two binding sites for HSL; ii) the probability of HSL binding to a free site of R2 and
Q is the same (i.e., there is no cooperative behavior); iii) the probability of HSL unbinding from an
occupied site of R2 and Q is the same.

Derivation

The output can be expressed as in Equation (16), the K1 equilibrium constant as in Equation (17)
and the conservation of total, free and bound promoter as in Equation (19). The following expressions
describe equilibrium constants K4 and K5, as well as the LuxR dimer (free, bound with L, bound with
2L and bound with 2L and the promoter) conservation (Equations (31)–(33))
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K4 =
Q2

Q× L
(31)

K5 =
S

P×Q2
(32)

R2T = R2 + Q + Q2 + S (33)

Thanks to the P << R assumption, as in M1 the S concentration becomes negligible in
Equation (33), thereby having: R2T = R2 + Q + Q2.

The forward and reverse rate constants in Equation (34) (k+ and k−) and Equation (35) (k′+ and k′−),
describing the two HSL binding steps, have the following relations: k+ = 2× k′+ and 2× k− = k′−:

R2 + L
k+
�
k−

Q (34)

Q + L
k′+
�
k′−

Q2 (35)

For the described reasons, a relation between K1 and K4 can be written (Equation (36))

K4 =
k′+
k′−

=
k+

4·k−
=

K1

4
(36)

Final Expression

Based on the relations above and following the same mathematical steps as in M1, the final
output for this model (M1T) is reported in Equation (37); the M1T expression in Equation (37) does not
resemble a Michaelis–Menten function (differently from M1).

y = n1 × PU ×
k̂m0 +

(
k̂m0 × K1

)
× L +

(
k̂m0 × K2

1/4 + k̂mL × K2
1/4× K5 × n2 × rT

)
× L2

1 + K1 × L +
(

K2
1/4 + K2

1/4× K5 × n2 × rT

)
× L2

(37)

Without the P << R assumption, the expressions of circuit output become more complex.
By following the same steps previously done in Section 2.2.3 for M2, the final model (M2T) is described
by the following expressions (Equations (38)–(40)).

y = P×
(

k̂m0 + k̂mL ×
K2

1
4
× K5 × R2 × L

)
(38)

(
K2

1
4 × K5 × L2 +

K3
1

4 × K5 × L3 +
K4

1
16 × K5 × L4

)
× R2

2 + (1 + K1 × L +
K2

1
4 × L2 + . . .

. . . K2
1

4 × K5 × n1 × PU × L2 − K2
1

4 × K5 × n2 × rT × L2)× R2 − n2 × rT = 0
(39)

(
K2

1
4 × K5 × L2

)
× P2 +

(
1 + K1 × L +

K2
1

4 × L2 +
K2

1
4 × K5 × n2 × rT × L2 − K2

1
4 × K5 × n1 × PU×

L2

)
·P− . . .

. . . n1 × PU ×
(

1 + K1 × L +
K2

1
4 × K5 × L2

)
= 0

(40)
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2.2.5. Modeling Cell Load (M1L, M2L)

Assumptions

Unless differently indicated, in the two-gene circuit considered in this work (Figure 1a) we assume
that only the protein with expression regulated by Plux is characterized by a relevant resource usage,
while LuxR does not cause relevant burden. Since LuxR is constitutively expressed, thereby giving
constant load, this assumption will not affect any HSL-dependent function, as previously discussed
for genes with constant resource usage acting as background [23].

Derivation

A mechanistic model has been recently proposed to describe the effects of cell load
caused by the expression of proteins with high resource demand [12,36]. In such context of
transcriptional/translational resource limitation, the synthesis rates of all the proteins of a synthetic
circuits are globally scaled by a factor D (Equation (41)).

D = 1 +
c

∑
i=1

Ji × si (41)

where c indicates the number of expressed proteins in the synthetic circuit, si represents the synthesis
rate of the i-th protein and Ji its resource usage parameter. Model derivation is extensively discussed
in the original publications [12,36], while in this study only the expression with lumped parameters is
reported and used (Equation (41)).

Final Expression

The final expression of model output in presence of cell load is reported in Equations (42)–(44).

D(L, n1, n2,b) = 1 + E + J ×
(

σ + γX
σ

)
× y(L, n1, n2,b) (42)

n2,b(L, n1, n2,b) =
n2

D(L, n1, n2,b)
(43)

yb(L, n1, n2,b) =
y(L, n1, n2,b)

D(n1, n2,b)
(44)

where yb and n2,b indicate the model output and the LuxR scale factor affected by cell load, y is the
output of one of the models described in Sections 2.2.1–2.2.4, n1 and n2 have the same meaning as
before, and J is the resource usage parameter (in min/AU) associated to the output protein. Finally,
the contribution of an external constant load (E) was studied analogously, with the exception that the
value of E was added to Equation (42).

2.3. Model Analysis

2.3.1. Model Parametrization

Models were parametrized using plausible values, according to available biological knowledge
(e.g., DNA/protein concentrations) and previously published experimental data (e.g., Plux activation
curve, resource usage [23,31,37]). A summary of parameters is provided in Table 1 for each model used
in this work. When indicated, structural parameters were fixed to the reported values in simulations
and they were assumed to be unknown during parameter estimation tasks (e.g., when studying a
posteriori identifiability). E. coli cell volume was assumed to be 1 µm3, corresponding to 10−15 L.
Under this assumption, the concentration of one molecule of promoter DNA or protein corresponds
to 1.66 nM [38]. A variation of the average E. coli cell volume has been previously reported in the
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range 0.5–2 µm3 for different growth rates and conditions [38]. This variation is expected to affect
the absolute values but not the trends of the numerical simulations shown of this work, thereby not
affecting the drawn conclusions. Nonetheless, the variation of cell volume will be highly relevant in
the analysis of real data, in which model parameters have to be estimated based on the knowledge of
this value.

Table 1. Model parameters. The indicated values were used for simulation and, unless differently
indicated, for the study of a posteriori identifiability.

Parameter Units Models Value

PU nM All 1.66
rT nM a All 1.66
n1 - All 5 b

n2 - a All 301 b

γX min−1 All 0.01 c

σ min−1 All 0.0167
k̂m0 AU nM−1 min−1 All 0.0192
k̂mL AU nM−1 min−1 All 1.907

K1 nM−1 M1, M1L, M2, M2L 0.001
M1T, M1TL, M2T, M2TL 0.0055

K3 nM−1 M1, M1L, M2, M2L 0.2
K4 nM−1 M1T, M2T, M1TL, M2TL 0.001375
K5 nM−1 M1T, M2T, M1TL, M2TL 0.2

JRFP min AU−1 M1L, M2L, M1TL, M2TL 0.04
E - M1L, M2L, M1TL, M2TL 0 d

a During the study of a posteriori identifiability, n2 was expressed as AU with known value, while rT was expressed
as nM/AU with unknown value; b When indicated, a range of copy number values was spanned; c Typical value of
E. coli growth rate, which is used as the rate of intracellular protein dilution; d A value of 2 was used to simulate the
presence of external load where indicated.

As anticipated in Section 2.2.2, to enable the application of the models in popular situations
occurring in synthetic biology (i.e., model identification with the data routinely measured in fluorescent
reporter protein-based assays) promoter copy number (n1) was assumed to be available; on the other
hand, the actual LuxR protein concentration (dependent from luxR DNA copy number, transcription
rate, translation rate, dimerization, and mRNA/protein degradation) is harder to measure. While in
simulation the R2T quantity was spanned to explore the effects of having wide ranges of LuxR values,
its value was assumed to be unavailable during model identification. Nonetheless, the relative strength
of the promoter expressing the luxR gene is commonly known, thereby enabling to approximate the
relative level of LuxR. For model amenability reasons, in estimation steps we parametrized n2 as the
(known) relative strength of this promoter (in AU) and rT as the (unknown) scale factor between
protein concentration (in nM) and AU, in which all the biologically occurring processes, described
above, are lumped without any loss of generality and maintaining the mechanistic nature of the model.
In M1, the rT quantity always appears multiplied by K3 (Equation (27)) and, for this reason, only their
product is identifiable. By defining K̂3 = K3 × rT (in AU−1), the M1 model can be re-parametrized as
Equation (45)

y = n1 × PU × k̂m0 +
n1 × PU ×

(
k̂m0 + k̂mL

)
/
(
1 + 1/

(
K̂3 × n2

))
1 + 1/

(
K1 ×

(
1 + K̂3 × n2

)
× L

) (45)

Analogously, the K5 × rT product in M1T (Equation (37)) can be re-parametrized as K̂5 = K5 × rT
(in AU−1), thereby yielding the model in Equation (46)
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y = n1 × PU ×
k̂m0 +

(
k̂m0 × K1

)
× L +

(
k̂m0 × K2

1/4 + k̂mL × K2
1/4× K̂5 × n2

)
× L2

1 + K1 × L +
(

K2
1/4 + K2

1/4× K̂5 × n2

)
× L2

(46)

2.3.2. A Priori Identifiability

Given a circuit output expression with known form (e.g., a Michaelis–Menten or a rational
function) with specific coefficients that could be estimated from data, an expression for each parameter
of the model was found as a function of the theoretically known coefficients. If the system can be
solved uniquely, the model was considered as structurally (or a priori) identifiable.

2.3.3. A Posteriori Identifiability

Given a model, simulated data were generated and parameters were estimated. Different
experiments were simulated varying n2 as required, while the other structural parameters were
kept constant to the values in Table 1, unless differently indicated. Proportional Gaussian random
noise was added to the simulated data with a coefficient of variation (CV) of 5% as default value; other
values were also evaluated (0, 1, 2.5, and 10%). A limited number of data points (12) was assumed
to be available, resembling a realistic dose–response experimental setup. Parameter estimation was
performed via least squares method with the MATLAB R2017b (MathWorks, Natick, MA, USA)
lsqnonlin routine. If the estimated parameters are consistent with the ones used to generate the
data, the model is considered as practically (or a posteriori) identifiable. For each proportional error
entity, 200 simulation and estimation steps were carried out, thereby identifying the model using
different synthetic data with random noise. Relative estimation error (REE = 100·|pest − ptrue|/ptrue,
where pest and ptrue are the estimated and true parameter values, respectively) was used to express
parameter consistency. Uncertainty of parameter estimates, in terms of CV, was also computed as
reported previously [39]. For each run, the maximum REE and CV among all the estimated parameters
was considered.

2.3.4. Simulations

The MATLAB roots function was used to find P and R2 as polynomial roots to solve the M2, M2T,
and M2L model equations. Implicit equations, commonly occurring in models including cell load
terms, were solved using the fixed point method, as previously described [23].

2.3.5. Analysis of Activation Curves

Hill function parameters, described in Equation (5), were calculated for each activation curve: δ

and α were computed as the y values at lowest and highest L value, respectively; κ was computed as
the value of L corresponding to half-maximum activation; η was computed according to Equation (47).

η = log(81)/log(L90/L10) (47)

where L90 and L10 are the L values corresponding to 90% and 10% of the maximum value of y.
On the other hand, in vivo measured activation curves were fitted with Equation (5) to estimate

its parameters, as described in Section 2.2.3.

2.3.6. In Vivo Experiments

Circuit output, i.e., RFP synthesis rate per cell (Scell) at steady-state, was measured for recombinant
MG1655-Z1 strain [31] bearing the low-copy plasmid pSB4C5 with X3r as insert [23]. In this construct,
previously described in [23] and with sequence available as BBa_J107032 code in the Registry of
Standard Biological Parts (http://parts.igem.org), luxR is under the control of an anhydrotetracycline
(ATc) inducible promoter, which works as gene expression knob in Escherichia coli strains overexpressing
TetR, like the one used in this study.

http://parts.igem.org
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The detailed experimental protocol for Scell measurement was previously described [23]. Briefly,
0.5 ml of M9 medium (11.28 g/L M9 salts, 1 mM thiamine hydrochloride, 2 mM MgSO4, 0.1 mM CaCl2,
0.2% casamino acids and 0.4% glycerol) were inoculated with a colony from a freshly streaked LB
agar plate in a 2-ml tube and the culture was incubated at 37 ◦C, 220 rpm for at least 16 h. The grown
culture was 100-fold diluted in 200 µL of M9 in a 96-well microplate. ATc and HSL (2 µl) were added to
the microplate wells to reach the desired concentrations. The microplate was incubated at 37 ◦C in the
Infinite F200 (Tecan) microplate reader and an automatic measurement procedure was programmed
via the i-control software v.2.0.10 (Tecan, Switzerland): shaking (15 s, 3-mm amplitude), wait (5 s),
optical density (600 nm) acquisition, red fluorescence (excitation: 535 nm, emission: 620 nm, gain = 50)
acquisition, sampling time = 5 min. Raw data time series were background-subtracted using sterile
medium (absorbance) and a non-fluorescent culture (fluorescence), incubated in the same experiment.
The resulting data were used to compute Scell as the numeric time derivative of fluorescence, divided
by absorbance over time. Scell was averaged in the exponential growth phase, typically occurring at
absorbance values between 0.05 and 0.18 [32]. Finally, the average Scell values of the X3r strains at the
desired inductions were normalized by the Scell value of a reference culture (MG1655-Z1 bearing the
BBa_J107029 constitutive RFP expression cassette in the pSB4C5 plasmid) as internal control to obtain
Scell in standardized relative units.

The resulting dose–response curves were fitted using the MATLAB lsqnonlin routine to estimate
Hill function parameters. For each HSL and ATc condition, at least three independent experiments
were carried out.

3. Results

3.1. Simulated Output for Different Model Assumptions

The effect of different model assumptions on the transfer functions shape was studied via
numerical simulations. The considered assumptions were on LuxR abundance (Section 3.1.1), cell load
(Section 3.1.2) and LuxR-HSL binding mechanism (Section 3.1.3). We evaluated if such assumptions
exert a relevant contribution to output variation and, in some cases, if their inclusion contributes to the
superior descriptive power of preliminary experimental data.

3.1.1. Effect of LuxR Abundance Assumption: M1 vs. M2

We compared the simulated outputs of M1 and M2, for different DNA/protein copy number
situations, to evaluate the effect of the assumption of LuxR concentration abundance over Plux
(Figure 2).

As expected from Equations (25) and (26) and previous works [20], for different values of R2T
(equal to n2 × rT) the output curves generated by M1 showed diverse maximum (α) and switch point
(κ) values, increasing and decreasing respectively as a function of R2T (Figure 2a,c,e). On the other
hand, for increasing values of plasmid copy number (n1), the values of α showed a linear increase and
κ remained constant (Figure 2b,d,f) as expected from Equation (24). In both cases, the Hill coefficient
was always equal to 1 as expected (Figure 2g,h). While the M1 model was able to capture the effects of
LuxR level variation in some experimentally tested model systems, as previously demonstrated [20],
the effect of changes in plasmid copy number are intuitively non-realistic since M1 assumes that the
concentration of LuxR is much higher than the one of the promoter, thereby resulting in an unlimited
increase of protein synthesis rate for high DNA copy numbers, with unchanged shape of the curve in
terms of κ and η. Since LuxR may be expressed over a wide range of values to tune the sensitivity of
the inducible device [17], the removal of its abundance assumption can be of interest and led us to
develop M2.
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Assuming that a constant load (𝐸) also affects protein expression, α showed a further decrease, 
and κ showed an increase compared with M1, that is, activation curves showed a systematically 
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In all the described cases, the Hill coefficient showed values slightly lower than 1 upon plasmid 
copy number increase and almost unchanged values (close to 1) in case of 𝑅ଶ் variation. 

Figure 2. Comparison between M1 and M2. Panels (a,b) report the output activation curves of M1
(solid lines) and M2 (dashed lines) for different values of R2T (panel (a), as indicated in the legend,
expressed as nM) and PT (panel (b), as indicated in the legend, expressed as per cell copy number).
The (c)–(d), (e)–(f), and (g)–(h) panel pairs report the R2T- and PT-dependent trend of α, κ and η,
respectively, with solid and dashed lines representing M1 and M2, respectively. In panels (a,c,e,g) the
promoter copy number value was set to 5, while in panels (b,d,f,h) the LuxR concentration was set to
500 nM.

The M2 model was investigated in the same situations considered for M1 (Figure 2). Upon changes
of LuxR values, the relationship between R2T and α or κ were qualitatively analogous to M1. However,
when R2T decreases below the promoter concentration value (about 8 nM) the output of M2 showed
both lower α and κ levels compared to M1, with the decrease of κ showing the highest-entity effect
(>2-fold with the used parameters, Figure 2e). When plasmid copy number is varied in a range below
a constant LuxR concentration value (500 nM), α still showed a linear increase as observed in M1, but,
differently from M1, κ showed a low-entity increase (less than 2-fold). For concentrations of promoter
higher than LuxR, the α value showed saturation, intuitively because all the Plux promoters in the cell
cannot be occupied by the limiting amount of LuxR, and as a result RFP synthesis cannot increase
anymore for higher concentrations of promoter. Although in this latter condition RFP maximum
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expression is constant, an increase in plasmid copy number results in a decrease of κ (about 2-fold).
Also, in the M2 model, the Hill coefficient was equal to 1 upon R2T variation. However, interestingly,
it decreased to values slightly lower than 1 (up to 0.8) upon variations of plasmid copy number
(Figure 2g,h).

The illustrated results demonstrate that the removal of the LuxR abundance assumption can
affect all the parameters of a Hill function, even when R2T and PT are tuned over ranges of values not
violating this assumption.

3.1.2. Effects of Cell Load

The M1L model was simulated to investigate the effects of cell load, which was assumed to derive
from RFP expression alone, or from both RFP and a constant load outside the inducible circuit, caused
by the expression of another heterologous protein (Figure 3).
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Figure 3. Comparison between M1 and M1L. Panels (a,b) report the output activation curves of M1
(solid lines) and M1L (dashed lines) and M1L with external load, indicated as M1L+E (dotted lines),
for different values of R2T (panel (a), as indicated in the legend, expressed as nM) and PT (panel (b),
as indicated in the legend, expressed as per cell copy number). The (c)–(d), (e)–(f), and (g)–(h) panel
pairs report the R2T- and PT-dependent trend of α, κ and η, respectively, with solid, dashed, and dotted
lines representing M1, M1L, and M1L+E, respectively. In panels (a,c,e,g) the promoter copy number
value was set to 5, while in panels (b,d,f,h) the LuxR concentration was set to 500 nM.



Processes 2019, 7, 119 16 of 24

If the load was caused by RFP, its expression affected both LuxR and RFP itself when induction
levels became high upon HSL addition. As expected, the maximum level of RFP expression reached
by M1L was lower than the respective levels reached by M1 (Figure 3c,d) upon changes of both
R2T and plasmid copy number. In particular, the increase of DNA copy number resulted in a
saturated maximum RFP expression, which was much lower than in the no-burden model (Figure 3d).
The burden effect on κ resulted in a slight decrease compared with M1 upon R2T variation (Figure 3e),
while the decreasing effect on κ was more relevant upon plasmid copy number increase (Figure 3f).

Assuming that a constant load (E) also affects protein expression, α showed a further decrease,
and κ showed an increase compared with M1, that is, activation curves showed a systematically higher
switch point than in a situation without load.

In all the described cases, the Hill coefficient showed values slightly lower than 1 upon plasmid
copy number increase and almost unchanged values (close to 1) in case of R2T variation.

We then analyzed the in vivo data from a previously published experiment, in which the activation
curve of a medium copy plasmid-borne lux inducible device was characterized in absence and presence
of a second co-transformed plasmid, considered as an additional constant load for the host [31].
Transfer functions were measured in four conditions (with/without load, low/high expression of
IPTG-driven LuxR) and a summary of the resulting Hill function parameters is reported in Table 2.
As the M1L model predicts, the additional load affects the transfer function parameters upon both low
and high LuxR expression level conditions: α showed a decrease in presence of E, while κ increased.
It is worth noting that a simpler model including cell load only on RFP expression (and not on LuxR),
as previously adopted to analyze in vivo data [23], fails to describe the joint increase of α and decrease
of κ upon LuxR overexpression, captured by the M1L model and observed in experimental data
resembling the modeled situation (data not shown).

Analogous results were obtained from the simulations via M2L (data not shown).
The reported simulations showed that cell load can quantitatively affect all the Hill parameters of

the activation curves, thereby demonstrating the relevance of model assumptions in the analysis of
dose–response curves of inducible systems.

Table 2. Parameters estimated from in vivo experiments. Measurements were carried out using
MG1655-Z1 as host strain.

Condition α (%) a κ (nM) η (-) Reference

Medium copy b, no IPTG 47 194.01 1.01 [31]
Medium copy + E c, no IPTG 27 474.1 0.98 [31]

Medium copy, IPTG = 500 µM 100 0.77 1.54 [31]
Medium copy + E, IPTG = 500 µM 68 0.99 1.29 [31]

Low copy d, no ATc 83 34.29 0.98 This study
Low copy, ATc = 2.5 ng/ml 92 11.32 1 This study
Low copy, ATc = 5 ng/ml 97 3.73 1.15 This study

Low copy, ATc = 50 ng/ml 100 1.52 1.39 This study
a Percent expression, relative to the maximum expression value obtained in the same study; b BioBrick™ construct
BBa_J107063 in the pSB3K3 medium-copy vector, IPTG-inducible LuxR expression cassette; c Additional load
provided by the OL1 low-copy plasmid, described in the same paper; d BioBrick™ construct BBa_J107032 in the
pSB4C5 low-copy vector, ATc-inducible LuxR expression cassette.

3.1.3. Evaluation of LuxR-HSL Complex Formation Assumptions: M(1-2) vs. M(1-2)T

By assuming that the LuxR dimer has two binding sites for HSL molecule, we defined models
including a hetero-tetramer formation step (M1T and M2T, depending on the LuxR abundance
assumption as above). We also assumed a non-cooperative behavior for the HSL ligand binding, i.e.,
the two successive HSL binding events occur with the same probability and K4 = K1/4, as described
in Equations (34)–(36). Considering the Adair equation (Equation (48)), describing the fraction (F) of
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HSL-bound sites of LuxR over the total number of sites [40], the resulting Hill coefficient (computed as
in Equation (47)) is always 1 under the non-cooperativity assumption, for any parameter and R2T value

F =
Q + 2×Q2

2× R2 + 2×Q + 2×Q2
=

1
2
×

K1 × L + 0.5× K2
1 × L2

1 + K1 × L + 0.25× K2
1 × L2

(48)

Differently from Equation (48), the expressions of Q2 (which can be calculated from Equations (17),
(31) and (33)) and y show LuxR level-dependent Hill coefficients. For both Q2 and y, such features
can be observed in the closed-form expressions which can be obtained from M1T (Section 2.2.4).
In particular, model simulations of M1T showed that the Hill coefficient increases as a function of R2T ,
which represented the main difference from the respective model without hetero-tetramerization
assumption (M1), while the other parameters showed analogous trends as above (Figure 4).
The simulation of M2T also showed this feature on the Hill coefficient, together with the same trends
described in Section 3.1.1 due to the removal of LuxR abundance assumption.
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Figure 4. Comparison between M1T and M2T. Panels (a,b) report the output activation curves of M1T
(solid lines) and M2T (dashed lines) for different values of R2T (panel (a), as indicated in the legend,
expressed as nM) and PT (panel (b), as indicated in the legend, expressed as per cell copy number).
The (c)–(d), (e)–(f), and (g)–(h) panel pairs report the R2T- and PT-dependent trend of α, κ and η,
respectively, with solid and dashed lines representing M1T and M2T, respectively. In panels (a,c,e,g)
the promoter copy number value was set to 5, while in panels (b,d,f,h) the LuxR concentration was set
to 500 nM.
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Although a number of previous experimental works on the lux system showed a Hill coefficient
around 1 or slightly lower in the tested conditions [20,33,37], in some works a higher number was
reported [31,41]. While Hill coefficient values lower than 1 could be due to burden effects and/or
violation of the LuxR abundance assumption, as described by the models illustrated in Sections 3.1.1
and 3.1.2, higher values could not be described by those models in any tested case. Using preliminary
data from a previous study [31] and a novel ad-hoc experiment (Table 2), we showed that the Hill
coefficient increases upon increase of LuxR level, consistently with the simulations of M1T and M2T.

By also considering cell load in these more detailed models (obtaining the M1TL and M2TL
models), the same trends and conclusions illustrated in Section 3.1.2 could be observed (data not
shown). Importantly, the resulting Hill coefficient value, as well as the other parameter values, could
be tuned by the joint contribution of different effects, e.g., cell load, LuxR abundance assumption
violation, and hetero-tetramerization, with the latter exerting an increase of η for increasing R2T levels,
and the other effects causing a decrease of its value.

3.2. Model Identifiability

The usability of the M1 (Section 3.2.1), M2 (Section 3.2.2), M1T (Section 3.2.3), and M2T
(Section 3.2.4) models was evaluated by studying their structural and practical identifiability,
to eventually understand if their parameters can be reliably estimated and which experiments are
needed for this task.

3.2.1. M1

The M1 model is a priori identifiable: two experiments, in which the transfer function is measured
for different LuxR levels (tuned by n2), are needed to properly estimate model parameters in Equation
(23). In particular, assuming that the Michaelis–Menten function parameters defined in Equations
(24)–(26) are known from the fitting of experimental data, the following expressions can be written
(Equations (49)–(54))

δ = PU × n1 × k̂m0 (49)

α =
PU × n1 ×

(
k̂m0 + k̂mL

)
1 + 1/

(
K̂3 × n2

) (50)

κ = 1/
(
K1 ×

(
1 + K̂3 × n2

))
(51)

·
δ = PU × n1 × k̂m0 (52)

·
α =

PU × n1 ×
(

k̂m0 + k̂mL

)
1 + 1/

(
K̂3 ×

=
n2

) (53)

·
κ = 1/

(
K1 ×

(
1 + K̂3 ×

=
n2

))
(54)

where the single and double bars on Hill function parameters and copy numbers indicate the
parameters of the first and second experiment, respectively. These expressions demonstrate that LuxR
must not be very low or very high (compared with 1/K̂3) in both experiments to enable identifiability
(n2 << 1/K̂3 or n2 >> 1/K̂3). These expressions also demonstrate that two or more experiments in
which n1 changes (while keeping n2 constant) do not lead to a structurally identifiable model.

The a posteriori identifiability was also confirmed by fitting synthetic data generated from
parameters in Table 1 (for n2 = 50 and 500 AU, and rT = 1) and a realistic number of data points.
As expected, this model is practically identifiable since it led to reasonably low estimation errors and
CV for its four unknown parameters (Figure 5).
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Figure 5. Relative estimation error (REE) and uncertainty of parameter estimates (CV) in a posteriori
identifiability. Panels (a,b) report the distribution of REE (a) and CV (b) among 200 runs starting
from different simulated data, with a 5% proportional error. The model and the number of LuxR
levels included in the fitted data are specified for each boxplot. The red line represents the median of
the distribution. Panels (c,d) report the median of the REE (c) and CV (d) distribution as a function
of the proportional error entity, from 0 to 10%. The models and specific LuxR levels are described
in the legend. In all the panels, the dashed horizontal line indicates the 100% value to facilitate the
interpretation of the graphs.

3.2.2. M2

The a priori identifiability of the M2 model could not be studied due to its complex expression.
Only a posteriori identifiability could be addressed. Since M2 has the same parameters as M1 with
the addition of rT (which cannot be estimated separately from K3 in M1), its proper estimation in
M2 is intuitively possible only when LuxR is not abundant compared with promoter concentration,
otherwise the M2 expression would become identical to M1. Accordingly, the synthetic experiments
were simulated with n2 = 0.005, 0.5, and 5 AU (with rT = 100 nM/AU). The simultaneous estimation
of its five parameters did not lead to a structurally identifiable model due to the high REE and CV,
even by considering more activation curves with different LuxR levels (e.g., n2 = 0.05 which was
added to the ones above—data not shown). For this reason, we investigated a two-stage procedure in
which synthetic data obtained by setting n2 = 0.5 and 5 AU (corresponding to R2T = 50 and 500 nM)
were fitted with M1 (first stage). This fitting is expected to provide reliable estimates (as shown in
Section 3.2.1) because LuxR is highly abundant and the assumptions of M1 are not violated. Since M1
and M2 share the same k̂m0, k̂mL and K1 parameters, their estimated values were fixed in the second
stage, in which the M2 model was used to fit the data with n2 = 0.005 (corresponding to R2T = 0.5 nM)
and, as before, 0.5 and 5 AU, to estimate K3.and rT , exploiting at least one condition in which LuxR
is not abundant compared with the Plux promoter. This procedure led to a structurally identifiable
condition for the M2 model, since it could estimate its parameters with reasonably low estimation
error and CV, even if it had higher REE compared with M1 but much lower CV (Figure 5).



Processes 2019, 7, 119 20 of 24

3.2.3. M1T

The M1T model is a priori identifiable from only one experiment. In particular, assuming that the
coefficients of the rational function in Equation (37) are known (Equation (55)), the Equations (56)–(60)
system can be solved, with the only constraint that no solution is obtained for n2 << 1/K5

y =
a′ + b′ × L + c′ × L2

1 + d′ × L + e′ × L2 (55)

a′ = PU × n1 × k̂m0 (56)

b′ = PU × n1 × k̂m0 × K1 (57)

c′ = PU × n1 × k̂m0 × K2
1/4 + PU × n1 × k̂mL × K2

1/4× K̂5 × n2 (58)

d′ = K1 (59)

e′ = K2
1/4 + K2

1/4× K̂5 × n2 (60)

The a posteriori identifiability was investigated by using only one activation curve with n2 = 50 AU
(with rT = 1). Despite the identifiability was successfully confirmed, the REE and CV were both
higher than in M1 (Figure 5). We also investigated the availability of a second activation curve with
n2 = 500 AU, as in the case of M1. In this case, REE and CV (Figure 5) were systematically lower than
in M1T with one LuxR level and also in M1.

3.2.4. M2T

Since the M2T model structure did not enable the study of a priori identifiability, only the a
posteriori one was investigated. Similar consideration to M2 also persist for M2T when different
activation curves were fitted with this model to estimate its five parameters, leading to an a posteriori
non-identifiability (data not shown). For this reason, the same two-stage identification procedure
described in Section 3.2.2 was adopted, with the exception that the first estimation step was carried
out via M1T to estimate its four parameters, and then M2T was used to estimate K5 and rT from the
synthetic data as described in Section 3.2.2 by fixing the k̂m0, k̂mL, and K1 parameters to the previously
estimated values. Results showed that, following the described procedure, the model is a posteriori
identifiable with low REE and CV (Figure 5).

4. Discussion

Accurate predictive mathematical models are needed to support the bottom-up design of complex
biological systems in synthetic biology. In an effort towards the development of computational tools to
overcome this need, different mechanistic models were herein proposed for the lux inducible system.
Their mechanistic structure was expected to increase the details of the described system, thereby
making the model more generalizable to context variations than traditional empirical equations.

Eight different mechanistic models, based on different assumptions on regulatory protein
abundance, ligand binding, and resource usage (and their combinations), were studied in silico
and compared, with the final goal of understanding the impact of the underlying assumptions on the
transfer function of the circuit. One of the models was strongly inspired by a previously published
work [20], while the others represent novel computational tools.

The different assumptions summarized above affected the simulated output of the models (i.e.,
dose–response curve of recombinant protein production as a function of inducer concentration),
thereby demonstrating that significant diversity in model output could be generated by different
features. The initially considered model (M1) assumed that one HSL binding event to the LuxR dimer
occurred for the activation of the complex, and that LuxR concentration was much higher than the one
of Plux, with a resulting mathematical expression equivalent to a Michaelis–Menten function model.
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When the assumption on the LuxR abundance was removed (M2), the model gave different
outputs compared with M1 when the assumption was violated. In particular, the increase of Plux
copy number was predicted to result into a linearly increasing expression by M1, while M2 showed a
saturating trend, thereby demonstrating that the removal of this simplifying assumption can lead to
an intuitively more realistic behavior of the inducible system upon DNA copy number changes. In this
situation and with the structural parameter values used in our study, the output showed maximum
activity variations up to 2.3-fold between M1 and M2 for biologically plausible values of DNA and
protein concentrations.

When a limited resource framework was assumed (M1L), the expression of LuxR and output
protein were globally affected by cell load due to the expressed output protein (in an HSL-dependent
fashion) and/or to a load outside the inducible circuitry. As previously demonstrated in vivo and
in silico, the output of inducible systems is affected by the resource usage of the expressed proteins [23].
In the M1L model, we showed that an external load causes a decrease in maximum output and an
increase of the half-maximum HSL concentration. This result could not be predicted by some of the
traditionally used models in which the transcriptional regulator is assumed to be constant and is not
modeled [23,34,42]. In this situation and with the structural parameter values used in our study, the
output showed parameter variations up to 2.5-fold between M1 and M1L for biologically plausible
values of resource usage parameters, and DNA and protein concentrations. The predicted effects were
consistent with previously published experimental data of our group, in which the same inducible
system with and without cell load (due to the presence of an additional co-transformed plasmid)
showed the same effect on maximum activity and activation curve sensitivity [31].

In both M2 and M1L models, we also showed that the Hill coefficient of the output curve could
decrease (compared to 1, i.e., the one of M1) up to 0.8 with the parameters used in our study.

When a different ligand binding reaction was considered (M1T), i.e., two HSL molecule binding
to the LuxR dimer non-cooperatively, the output expression introduced a power over the HSL
concentration term. As a result, output curves had a Hill coefficient greater than one, even if the
described binding mechanism was assumed to be non-cooperative. To our knowledge, this is the
first study explicitly highlighting that a Hill coefficient greater than one could occur in absence
of cooperative binding in the transcriptional activator. This effect was consistent with previously
published experimental data from our group [31] and others [41], as well as novel preliminary
experimental data explicitly measured in this work: the Hill coefficient of the output curve increased
as a function of LuxR level. In our M1T model, an increase up to 2-fold was observed for the Hill
coefficient compared to M1, which relied on a different assumption on HSL binding.

The behavior of the remaining models, including combinations of the described assumptions
(M2L, M2T, M1TL, M2TL), showed more complex features, but similar conclusions on the effects of the
investigated assumptions could be drawn.

The M1, M2, M1T, and M2T models were also studied in terms of usability, by investigating their
identifiability, to eventually understand if their parameters could be estimated from experimental
data and which experimental design is recommended. In fact, in addition to simulation, parameter
estimation is a crucial step in model usability that enables the re-use of well-characterized regulatory
components in synthetic biology. All the models enabled parameter estimation with reasonably low
error and a few constraints (described in Section 3). In general, as expected, by increasing the random
noise affecting experimental data REE and CV increase. As for the individual models, M1 required
two experiments with different LuxR levels, while M1T required only one experiment with a single
LuxR expression value, despite its parameters could be estimated much more reliably by adding a
second experiment, like in the M1 case. The M2 and M2T models required an additional experiment,
compared to M1 and M1T, respectively, to be properly identified, in which a curve obtained with
a LuxR level that is not much higher than Plux concentration had to be measured. Considering a
proportional error model for the generated data (5% CV), all the models enabled the estimation of
structural parameters within 2-fold compared with the true value (considering interquartile ranges
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of REE distribution). The M2 model showed the highest estimation error (>100%, median among
200 runs with different datasets simulated with a 10% proportional error), making it the less robust
model among the tested ones in estimation tasks. The M1T model with a single LuxR level showed
similar drawbacks, which could be overcome by adding activation curve data with more LuxR levels,
while M2 could not be improved following the same procedure.

If used to fit the data in real experimental works, a major advantage of the M2 and M2T models is
that they potentially enable the estimation of the actual LuxR intracellular concentration, which could
not be estimated with the LuxR abundance assumption (M1 and M1T). However, the simultaneous
estimation of all the parameters of M2 and M2T failed, thereby leading to the definition of an alternative
procedure for the identification of such models: first, M1 (or M1T) was identified by fitting two
activation curves data that conformed to the LuxR abundance assumption to estimate all model
parameters; then, M2 (or M2T) was identified by fixing three parameters, previously estimated via
M1 (or M1T), and estimating the two remaining ones by fitting the two activation curves data used
in the first stage, together with an additional curve obtained for a low LuxR level. Given the same
number of experiments, M1T and M2T could be identified with lower estimation error and parameter
uncertainty than M1 and M2, respectively. The identifiability of models including cell load was
not herein addressed, but their usability with real data was investigated previously [23]; they are
not expected to include additional identifiability issues, since resource usage parameters could be
estimated separately if required [23,43] and their identification can rely on a second output of the
system, i.e., a cell burden monitor which acts as a proxy of cell load.

A number of limitations may affect the usability and predictive performance of the studied
models against in vivo data. In fact, although mechanistic details have been herein added to traditional
models to improve their generalization performance, other assumptions may still be inaccurate in
capturing the real behavior of a synthetic circuit. Among the potential crucial aspects, it is worth
noting that cell systems are inherently stochastic and when the reacting molecules are present at small
intracellular copy numbers stochasticity can result in large fluctuations in the behavior of single cells
in a population. In addition, the non-cooperativity of the inducer-regulator binding, herein assumed,
should be further investigated. More in general, despite preliminary data have been used to confirm
some of the transfer function variations found in this work, a larger-scale experimental validation
should be required to investigate and confirm the described effects. Such effort should experimentally
validate the impact of the individual assumptions. The different LuxR-HSL binding assumptions
will need such validation to select the one best describing experimental measures. However, the
validation of the other assumptions (LuxR abundance and cell load) should not lead to the selection of
a best-performing model since it is expected to be application-specific, e.g., a no-burden model may
have high predictive power if all the genes of a circuit have low resource usage.

In summary, we have proposed different usable mechanistic models that had a significant impact
on the predicted output of an inducible system, and they were also consistent with a set of preliminary
experimental data. In the future, the reported models may support synthetic circuits output prediction
in practical situations with unprecedented details, also facilitating the bottom-up design of complex
circuits due to their generalization power. In this framework, highly relevant applications of such
models in synthetic biology are, e.g., the prediction of circuit output as a function of unseen DNA,
protein and inducer concentrations; estimation of protein regulator abundance; investigation of
different binding mechanisms for subsequent model selection.

The proposed model definition and analytic procedures may be used to study other systems
different from the LuxR/Plux module, considered in this work. The underlying binding reactions could
be known, or they might be investigated by testing different model assumptions against experimental
data for model parametrization and mechanistic understanding.
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