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A B S T R A C T

Data-driven modeling has significantly transformed problem-solving in the process industry, especially in
designing new products digitally by finding the process conditions that are required to manufacture a product
with assigned quality. This can be achieved by utilizing historical process data via latent-variable model
inversion, notably through the extensively used partial least-squares (PLS) regression model. Despite the
development of numerous PLS model-inversion techniques, from straightforward algebraic manipulation of the
model equations to the formulation and solution of complex nonlinear optimization problems, there lacks a
comprehensive discussion on their comparative benefits and limitations. This paper offers a systematic analysis
of PLS model inversion strategies, especially those based on optimization problems. We delve into aspects such as
optimization in the latent or input variable spaces, the nature of constraints (soft vs. hard), and the feasibility of
analytical solutions. We outline a clear hierarchical structure of the available methods based on the successive
inclusion of constraints, and propose a general formulation of the PLS model inversion by optimization problem
that encompasses all available methods. We support our theoretical analysis with a numerical case study, and
provide the code to reproduce it and to solve general latent-variable model inversion problems according to the
proposed formulation.

1. Introduction

Data-driven modeling has become a valuable asset in the toolbox of
process systems engineers due to the ever-growing availability of data
from manufacturing processes, computational infrastructures, and effi-
cient data analytics methods (Reis and Saraiva, 2021). Latent-variable
models, such as principal component analysis (PCA; Wise and Gal-
lagher, 1996; Wold et al., 1987) and partial least-squares (PLS) regres-
sion (Geladi and Kowalski, 1986; Wold et al., 2001), are attractive
modeling platforms due to their architectural simplicity, ability to deal
with a massive number of (possibly strongly correlated) variables,
computational efficiency, and straightforward interpretability. These
features make latent-variable models particularly attractive to tackle
industry-relevant problems regarding, e.g., process understanding
(Camacho et al., 2010; García-Muñoz et al., 2003; Kosanovich et al.,
1996; Vitale et al., 2021), soft sensing (Arnese-Feffin et al., 2024;

Philippe et al., 2013), and process monitoring (Kourti and MacGregor,
1995; Qin, 2003; Reis and Gins, 2017).

PLS is used to build a regression model between a set of input vari-
ables (e.g., those representing process operating conditions and/or raw
materials properties) and a set of output variables (e.g., those quanti-
fying the product quality), while simultaneously providing models for
the spaces of input and output variables. The model is calibrated using
historical data and can be applied to a given set of new process condi-
tions to predict the product quality. However, it can also be used “in
reverse mode” to address product design problems, i.e., to estimate the
process conditions that are required to manufacture a product with an
assigned target quality. This is the principle of latent-variable model
inversion (LVMI; Ferrer, 2021; Jaeckle and MacGregor, 2000; Tomba
et al., 2012). A schematic representation of LVMI is illustrated in Fig. 1.

LVMI was first proposed based on algebraic manipulation of the PLS
model equations, also referred to as direct inversion (DI; Jaeckle and
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MacGregor, 2000, 1998). Shortly thereafter, PLS model inversion was
re-formulated as an optimization problem (inversion by optimization,
IbO; Yacoub and MacGregor, 2004). In IbO, the optimization problem is
formulated in the space of latent variables, which offers advantages in
that the optimization variables are few in number and independent
(Ferrer, 2020); furthermore, IbO allows one to set soft and hard con-
straints on latent and output variables (García-Muñoz et al., 2006). To
set hard constraints on the designed process conditions, IbO was
generalized by formulating the optimization problem in the space of
input variables by a two-step optimization strategy (García-Muñoz et al.,
2008). The method was later extended to a single-step optimization
problem (Tomba et al., 2012), which allows one to handle cases in which
not all output variables have an assigned target. In a further general-
ization, LVMI was re-formulated as a multi-objective optimization
problem, which is referred to as inversion by multi-objective optimiza-
tion (Arce et al., 2021; Ruiz et al., 2018); however, this latter approach is
not addressed by this study.

Besides the main developments described above, the research on
LVMI focused also on the extension of DI to specific cases, e.g., targets
set on linear combinations of the quality variables (Palací-López et al.,
2019) and existence of correlated output variables (Arnese-Feffin et al.,
2022). Finally, LVMI has been extended to other PLS-based methods, e.
g., joint-Y PLS (García-Muñoz et al., 2005), total PLS (Zhao et al., 2019),
kernel PLS (Zhu et al., 2021), and sequential-multiblock PLS (Borràs-
Ferrís et al., 2023). Reported applications of LVMI are numerous, and
the interested reader may find details elsewhere (Arnese-Feffin et al.,
2022).

Although various seemingly alternative versions of LVMI exist in the
literature, there is no systematic discussion regarding their merits and
limitations. There is also a lack of clarity on whether to use soft or hard

constraints, or whether to formulate the optimization problem in the
latent space or the input variables space. While a recent discussion of
inverse design using PLS modeling by Palací-López et al. (2024) touches
on these points, it does not provide detailed guidance. Additionally, the
extent to which DI can be considered a special case of IbO remains un-
clear. Finally, there are no clear guidelines for formulating the optimi-
zation problem.

This study provides a systematic analysis of the existing approaches
for the formulation of latent-variable model-inversion problems. We
discuss the merits and drawbacks of formulating the model-inversion
problem in the space of latent variables or in the space of inputs. We
show how the solution of the IbO problem can be obtained by compu-
tationally efficient methods, sometimes even in analytical form, by
properly formulating the constraints on the model validity region. We
outline a well-defined hierarchical structure in the formulation of the
LVMI problem based on the successive inclusion of constraints, which
results in clear guidelines for the solution algorithm to be used and,
consequently, determines the computational demand of the solution. We
finally identify a general form of the LVMI problem and highlight how
all the cases in the proposed hierarchical structure can be derived from
such general problem. Our reasoning is supported by subsequent simu-
lations on a case study, which is used throughout the entire discussion to
support our theoretical derivations.

The rest of this paper is organized as follows. We describe the
mathematical background used in this study in Section 2, introducing
PLS modeling, the algebraic formulations of LVMI, and the formalism of
optimization we adopt; we provide further details on mathematical
methods relevant to the discussion in Appendix A, Appendix B, and
Appendix C. In Section 3 we introduce the case study, which we use to
illustrate our theoretical analysis throughout Section 4, where we

Fig. 1. Schematic workflow of latent-variable model inversion. Process conditions (X) are used in the prediction path to estimate the product quality (Y). In the
inversion path, a target quality is set, and the model is inverted to find the process conditions that allow one to manufacture a product with the desired quality.
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discuss several properties of IbO and develop a clear hierarchical
structure, highlighting the consistency of the simplest cases with alge-
braic solution methods. In Section 5 we propose a general formulation
for the IbO problem, which encompasses all cases investigated in Section
4. We draw the conclusions of this study in Section 6.

2. Mathematical background

In this section, we introduce the mathematical methods used in this
study. We first describe PLS model regression, then introducing the
algebraic methods for PLS model inversion. Finally, we describe the
general form of the optimization problem we will refer to throughout
our analysis of IbO. Upright bold uppercase symbols indicate matrices,
upright bold lowercase symbols denote vectors, and symbols in italics
refer to scalars. Vectors are arranged column-wise.

2.1. Partial-least squares regression

PLS regression (Geladi and Kowalski, 1986; Wold et al., 2001) is
typically described based on a matrix X ∈ RN × RVX , collecting N ob-
servations of VX input (predictor) variables, and a matrix Y ∈ RN × RVY ,
gathering corresponding observations of VY output (response) variables.
However, for the purpose of the theoretical analysis to be outlined in
Section 4, it is convenient to adopt an alternative description of the PLS
model, namely, based on random vectors of input and output variables,
x ∈ RVX and y ∈ RVY , respectively, which offers a more straightforward
interpretation of the PLS model in terms of linear operators. We describe
the random-vector form of PLS in this Section, referring the readers to
the literature for the classical sample form (Geladi and Kowalski, 1986;
Wold et al., 2001).

PLS regression establishes a linear regression model between the
spaces of input and output variables, while at the same time providing
models for the spaces themselves. This is done by identifying two se-
quences of A≪VX mutually orthogonal latent variables (LVs), one for the
inputs and one for the outputs, defined as linear combinations of the
input and output variables, respectively. LVs are formulated to maxi-
mize the modeled cross-covariance between x and y, while at the same
time retaining as much of the variances of x and y as possible.

Under the assumption that x and y follow multivariate standard
normal distributions (i.e., their means are null vectors, and their
covariance matrices are identity matrices), the models for input and
output spaces are provided as:

x = P⋅t+ e, (1)

y = Q⋅u+ f, (2)

where t ∈ RA and u ∈ RA are the vectors of input and output LVs,
respectively, i.e., the projections of input and output vectors onto the
spaces of input and output LVs, respectively; matrices P ∈ RVX × RA and
Q ∈ RVY × RA (typically called loading matrices) are linear reduced-
rank projection operators from the spaces of input and output LVs,
respectively, to the spaces of input and output variables, respectively;
e ∈ RVX and f ∈ RVY are the vectors of projection residuals of x and y.
The symbol ⋅ is the row-by-column matrix product.

Concerning the PLS regression model, input LVs can be computed
from the input variables as:

t = (W*)
⊤⋅x. (3)

where ⊤ denotes the matrix transpose operator. Matrix W* ∈ RVX × RA

is a linear reduced-rank projection operator from the space of input
variables to the space of input LVs (also called the matrix of corrected, or
rotated, input weights), which is related to the model of the input space
as:

W* =W⋅(P⊤⋅W)
− 1
. (4)

Matrix W ∈ RVX × RA is the input weight matrix, the columns of which
are computed one at the time in PLS calibration to maximize cross-
covariance between x and y retained by the model1 (Wold et al.,
2001). This operation results in the input and output LVs being as lin-
early correlated as possible, while at the same time maximizing the
variances of input and output variables retained by the PLS model (i.e.,
the variances of input and output LVs, respectively). Input and output
LVs are connected by a sequence of A additive linear regression models
between pairs of corresponding LVs, expressed in compact notation as:

u = diag(b)⋅t+v, (5)

where vector b ∈ RA, the PLS inner regression coefficients, lays on the
diagonal of matrix diag(b) ∈ RA × RA, acting as a linear projection
model between the spaces of input and output LVs; v ∈ RA is the vector
of inner regression residuals.

The number A of LVs is usually set to maximize the predictive per-
formance of the PLS model, e.g., by cross-validation (Bro et al., 2008;
Louwerse et al., 1999). All the operators in the PLS model (P, Q, W, and
b) can be computed by any PLS calibration algorithm to satisfy all model
equations. Readers are referred to literature resources for additional
information (Geladi and Kowalski, 1986; Wold et al., 2001).

Once calibrated using historical data on x and y, the PLS model can
be applied to a new input vector xnew ∈ RVX (assumed to follow the same
distribution as x) to obtain ŷnew, an estimate of the corresponding (un-
known) true output vector ynew ∈ RVY . The input vector is first projected
onto the space of input LVs by (3):

tnew = (W*)
⊤⋅xnew, (6)

Upon definition of a modified output loading matrix:

Q̃ = Q⋅diag(b). (7)

the estimate of the output observation is computed according to the
output space model, (2):

ŷnew = Q̃⋅tnew. (8)

Equations (6) and (8) can be summarized in a single equation directly
relating xnew and ŷnew:

ŷnew =
(
Q̃⋅(W*)

⊤
)

⋅xnew = B⊤⋅xnew, (9)

where B ∈ RVX × RVY is the matrix of PLS (outer) regression coefficients.
If ynew is unknown, the principle of the PLS model can be leveraged

to define statistics to assess the reliability of predictions:

T2 = t⊤new⋅Λ− 1⋅tnew = x⊤new⋅W*⋅Λ− 1⋅(W*)
⊤⋅xnew, (10)

Q = e⊤new⋅enew = x⊤new⋅(IVX − P⋅(W*)
⊤
)
⊤⋅(IVX − P⋅(W*)

⊤
)⋅xnew, (11)

where T2 measures the squared distance of the projection of xnew from
the center of the space of input LVs, Λ being a diagonal matrix con-
taining unscaled variances of the LVs from the calibration dataset
defined as Λ = T⊤⋅T, while Q measures the squared orthogonal distance
between xnew and the space of input LVs, being defined based on
enew ∈ RVX , i.e., the reconstruction residual of xnew based on the model
of the input space, (1). The prediction of the PLS model is deemed

1 Note that, in the matrix-based description of PLS, this operation amounts to
the solution of an eigenvalue problem: the first column of W is the eigenvector
of the cross-covariance matrix X⋅Y⊤⋅Y⋅X⊤ corresponding to the largest eigen-
value of the same matrix.
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reliable (and the model is deemed valid for the given xnew) if both sta-
tistics fall below appropriate confidence limits (Jackson, 1959; Jackson
and Mudholkar, 1979; Martin and Morris, 1996; Nomikos and Mac-
Gregor, 1995a; Qin, 2003; Tracy et al., 1992). We provide details on
estimators for the confidence limits of T2 and Q in Appendix A.

The reliability of the PLS predictions can be assessed also considering
the uncertainty in the estimated ŷnew (Faber and Kowalski, 1997;
Nomikos and MacGregor, 1995b; Zhang and García Muñoz, 2009). De-
tails on the estimation of PLS prediction uncertainty are provided in
Appendix B.

2.2. Algebraic inversion of PLS models

The rationale of PLS model inversion is to set a vector ydes ∈ RVY of
desired output variables (i.e., the inversion target), and to estimate the
vector x̂des of input variables that allows one to obtain the given target
by PLS regression. The simplest way to achieve such an objective is to
algebraically manipulate the equations of the PLS model, which is the
principle of DI (Jaeckle and MacGregor, 2000, 1998). Note that we will
consider only input LVs when describing PLS model inversion, therefore
we will refer to t simply as to LVs.

Once the target ydes has been set, the first step in DI is to invert (8),
setting ŷnew = ydes, to estimate t̂des, i.e., the vector of LVs corresponding
to the output target. We note that this operation is equivalent to solve
the linear system defined by (8), where the vector of LVs is the unknown.
Three cases may arise (Jaeckle and MacGregor, 1998) depending on the
relative dimensions of the spaces on LVs and output variables.

1. If A < VY , no exact solution exists, but an optimal solution (in the
least-squares sense) can be obtained by inverting (8) using the left
generalized inverse of Q̃ (Rao and Mitra, 1971):

t̂des =
(
Q̃

⊤
⋅Q̃
)− 1

⋅Q̃
⊤

⋅ydes. (12)

2. If A = VY , matrix Q̃ is square and a unique solution to the inversion
of (8) exists:

t̂des = Q̃
− 1

⋅ydes. (13)

3. If A > VY , an infinite number of solutions to the inversion of (8)
exists. A particular solution (i.e., the one with the minimum
Euclidean norm) can be obtained using the right generalized inverse
of Q̃ (Rao and Mitra, 1971):

t̂des, p = Q̃
⊤

⋅
(
Q̃⋅Q̃

⊤
)− 1

⋅ydes. (14)

while the complete set of solutions can be obtained considering the
null space of Q̃, i.e., its kernel. The kernel of Q̃ is implicitly defined as
the subspace of LVs which projection through Q̃ is the null vector:

Q̃⋅t̂des, n = 0VY , (15)

where 0VY ∈ ℝVY is the null vector and t̂des, n represents the null
space. We note that:

Q̃⋅
(
t̂des, p + t̂des, n

)
= ydes, (16)

therefore, the complete set of solutions to the inversion of (8) in the
case A > VY can be expressed as:

t̂des = t̂des, p + t̂des, n. (17)

We remark that the DI equations rely on the assumption that the
covariance matrix of the distribution y is drawn from is diagonally
dominant, i.e., the output variables are independent or barely corre-
lated. If this condition is not met, matrix inversion operations in (12),
(13), and (14) might not be possible due to rank deficiency of the
matrices therein. Such an issue can be addressed by regularizing the
inversion (Arnese-Feffin et al., 2022).

Regardless of the relationship between A and VY , the second step of
DI is to project t̂des back onto the space of input variables by means of
(1) to obtain x̂des:

x̂des = P⋅̂tdes, (18)

where x̂des is clearly a unique solution if A ≤ VY , while it is an
(A − VY)-dimensional subspace of the space of input variables if A > VY .

The reliability of the PLS model inversion solution can be evaluated
in the same way as for regression, i.e., by computing the T2 and Q sta-
tistics based on t̂des and x̂des, respectively. However, note that in DI x̂des
is a rank-A reconstruction of the “true” xdes, being derived based a
reduced-rank linear projection operator from the space of LVs. This
implies that x̂des is perfectly compliant with the correlation structure of
the input variables modeled by PLS; therefore, its Q statistic is null.

2.3. The null space

The concept of null space is particularly important when LVMI is
used to design process conditions to achieve a given target quality (i.e.,
in product design). In fact, any feasible x̂des (or t̂des) falling on the null
space should yield the same product quality according to the model
(Jaeckle and MacGregor, 1998), a property of the null space that has
been demonstrated also experimentally (Tomba et al., 2014). In this
context, the null space constitutes a degree of freedom to tune the PLS
model inversion solution in such a way as to satisfy additionally con-
straints (e.g., minimization of the processing cost) while still achieving
the desired product quality (Jaeckle and MacGregor, 2000). However,
one must bear in mind that the estimated null space gets more and more
uncertain when moving away from the center of space of LVs, i.e., the
region wherein the calibration data used to build the PLS model are
available (Tomba et al., 2014). Therefore, it is crucial to account for the
null space uncertainty when performing such an additional fine tuning
of the PLS model inversion solution. We provide details of analytical
approaches to estimate the null space uncertainty (Facco et al., 2015;
Palací-López et al., 2019) in Appendix C.

2.4. Formalism of a general optimization problem

In this study, we will adopt the following a general formalism to
formulate an optimization problem:

ẑ = argmin
z

[J(z) ], (19)

subject to:

zLB ≤ z ≤ zUB, (20)

A⋅z ≤ b, (21)

Aeq⋅z = beq, (22)
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C(z) ≤ 0, (23)

Ceq(z) = 0, (24)

where J is the objective function to be minimized, which depends on the
vector of optimization variables, z. The optimization problem might be
subject to several hard constraints; namely: zLB and zUB are the lower
bounds and the upper bounds, respectively, for the optimization vari-
ables; A and b are (respectively) the matrix and vector of linear
inequality constraints; Aeq and beq are (respectively) the matrix and
vector of linear equality constraints; C(z) is the nonlinear inequality
constraint function; and Ceq(z) is the nonlinear equality constraint
function. The solution of the problem is denoted as ẑ, i.e., the vector of
variables minimizing the objective function while simultaneously
satisfying all the hard constraints.

In the following, we will assume that J(z) is formulated as a standard
quadratic function (Flores-Cerrillo and MacGregor, 2004):

J(z) =
1
2
z⊤⋅H⋅z+ f⊤⋅z+ c, (25)

where H is the matrix of the quadratic term (i.e., the Hessian matrix of
J(z)), f is the vector of the linear term, and c is the constant term;
however, since c is irrelevant for the optimization, it will be neglected in
the following. Note that the use of (25) implies that (19) is a quadratic
programming (QP) problem if nonlinear constraints are omitted, while it
is a nonlinear programming (NLP) problem otherwise.

Matrix H is assumed to be symmetric and at least positive-
semidefinite. If H is positive definite, J(z) is a strictly convex function
of z and the problem admits a unique global minimum (Bard, 1974; Rao,
2009). We also note that if no constraint is set in (19), the problem is an
unconstrained QP and admits an analytical solution. The gradient ∇z of
the objective function (25) is:

∇z[J(z) ] = z⊤⋅H+ f⊤, (26)

which can be nulled to obtain the solution:

ẑ = H− 1⋅( − f). (27)

On the other hand, if H is positive-semidefinite, then J(z) is still convex,
although not strictly, therefore the problem admits an indefinite number
of equivalent global minima (an infinite number, in principle). It can be
proved (Nocedal and Wright, 2006) that a positive-semidefinite matrix
features at least one null eigenvalue, therefore it is rank-deficient. Ma-
trix H is thus non-invertible, and the problem does not admit an
analytical solution in the form of (27). Analytical solution methods exist
nonetheless (Nocedal and Wright, 2006), for example based on matrix
factorization of H.

Finally, we remark the difference between soft and hard constraints.
Soft constraints are additional terms included in the objective function
J(z) and are satisfied by compromising the achievement of the target on
the optimization variables with the minimization of the soft constraint
function. Hard constraints are limits sets on the optimization problem to
restrict the feasible space, i.e., the portion of the domain of the opti-
mization variables in which the solution is deemed feasible.

3. Illustrative case study

To support our theoretical analysis in Section 4, we discuss a nu-
merical case study alongside the derivation. We use MATLAB R2022a
(The Mathworks, 2022) to carry out all the computations to follow,
using a set of functions for PLS modeling and inversion developed in-
house. The code is freely available for download and use (see the Data
availability statement).

We use the “Example dataset” provided by Palací-López et al. (2019).
Namely, we consider a dataset comprising N = 6 old (historical)

products; each product is characterized by VY = 1 single quality attri-
bute, and the historical products were obtained using different combi-
nations of VX = 5 process variables. Our purpose is to find the
combination of process variables that returns a new product, i.e., one
that was not manufactured in previous production campaigns.

The input (process) and output (quality) variables are related by the
following true model (Facco et al., 2015):

y = − 21+4.3x1 +0.022x2 − 0.0064x3 +1.1x4 − 0.012x5, (28)

where x1 and x2 are the independent inputs obtained by a two-level full
factorial design with two replicates of the center point, while:

x3 = x2
1, (29)

x4 = x2
2, (30)

x5 = x1x2, (31)

are the dependent inputs. After data generation, x3, x4, x5, and y are
each corrupted with independent Gaussian noise with zero mean and
standard deviation equal to 5% of the one of the uncorrupted variable.
The dataset is reported in Table 1.

Note that the relationship among input variables, e.g., (29), in-
troduces correlation between them. Furthermore, nonlinear relation-
ships are introduced to mimic a typical real-world scenario in which the
underlying process is nonlinear, but it is modeled by a linear model
(namely, the PLS model). This implies that part of the variability of the
data cannot be explained by the model, thus will be left in the Q statistic;
this is relevant for the discussion in Section 4.2.

A PLS model with A = 2 LVs is calibrated on the dataset in Table 1
after autoscaling the data (i.e., variables are centered on zero mean and
scaled to unit variance). The performance of the PLS model in terms of
explained variances of the input and output spaces are reported in
Table 2.

We define a target output by setting ( x1 x2 ) = ( 10 10 ), which
yields ydes = 119.58; no Gaussian noise is added in this case. Note that,
having assigned the target output based on a known set of independent
inputs, we can compute the true vector of input variables corresponding
to ydes, therefore the true vector of LVs, by (6). These vectors can be used
as references in evaluating the results of PLS model inversion. We will
label such vectors as “Target” in the following. The DI solution is
computed for reference and comparison against the IbO solutions in our
analysis (note that ydes must be scaled on the means and standard de-
viations of the columns of the calibration matrix Y, and that x̂des is
returned as scaled on the means and standard deviations of the columns

Table 1
Example dataset from Palací-López et al. (2019). The data comprise N = 6 ob-
servations of VX = 5 input variables (x1, x2, x3, x4, and x5) and VY = 1 output
variable (y).

Observation x1 x2 x3 x4 x5 y

1 5.43 7.54 125.64 58.51 50.49 61.85
2 5.43 15.97 126.20 258.48 74.44 278.99
3 99.23 7.54 9893.38 59.29 737.15 307.89
4 99.23 15.97 9765.16 254.11 1576.28 436.40
5 52.33 11.76 2787.64 139.21 583.76 266.08
6 52.33 11.76 2849.95 135.67 630.73 260.52

Table 2
Performance of the PLS model. EVX and EVY are the explained variances of
input and output variables, respectively.

LV EVX EVY

1 0.5670 0.9223
2 0.4044 0.0136
Total 0.9174 0.9359
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of the calibration matrix X). A 1-dimensional null space exists (recall
that A = 2 and VY = 1). The results of DI are illustrated in Fig. 2.

Fig. 2(a) highlights that the DI solution matches quite well the true
vector of LVs. The solution is fully within the model validity region, as
observed in Fig. 2(b); we can also see that Q is null for the DI solution, as
expected. Being a purely algebraic procedure, the DI solution can match
the output target exactly, as shown in Fig. 2(c). The solution appears to
be reasonable also in terms of estimated input variables, as shown in
Fig. 2(d).

4. Systematizing the formulation of PLS model inversion
problems by optimization

In this Section, we outline our theoretical analysis of IbO of PLS
models. We use a hierarchical approach, starting with the simplest case
and gradually adding constraints to make the optimization problem and
its solutions progressively more complex. We start by stating the opti-
mization problem in the space of LVs in Section 4.1: we first analyze an
unconstrained problem, then add linear constraints, and finally consider
a problem with nonlinear constraints. In Section 4.2, we repeat the
analysis formulating the problem in the space of input variables. We
highlight the consistency with the algebraic inversion methods
described in the Section 2.2, and we clearly state which solutions al-
gorithm should be used for each step in our hierarchical structure of IbO.
We also provide some recommendation on which constraints it is

convenient/necessary to include and on how to do it. Note that in the
following we will assume that output variables are independent,
coherently with DI.

4.1. Optimization in the space of latent variables

One of the most prominent advantages of using a PLS model derived
from daily production data to formulate the objective function of an
optimization problem is that the optimization itself can be set in the
space of LVs. This offers several advantages, including the implicit
incorporation of process constraints and production policies within the
problem, which are automatically respected (Ferrer, 2021; Jaeckle and
MacGregor, 1998), and the fact that optimization variables (i.e., the
LVs) are few in number and independent (Flores-Cerrillo and Mac-
Gregor, 2004). Therefore, we consider this case by first setting z = tdes in
(19) and solving the optimization problem to obtain ẑ = t̂des. The input
vector is then obtained by (18), as in DI, which implies that the Q sta-
tistic of x̂des is null.

4.1.1. Consistency with the DI solution
In its simplest formulation, IbO relies on an unconstrained optimi-

zation problem that minimizes the quadratic difference between the
desired output vector, ydes, and the prediction of the PLS model by
adjusting the latent variables:

Fig. 2. Results of the PLS model inversion by DI: (a) space of LVs; (b) diagnostic plot; (c) space of output variables; (d) space of input variables. In all plots, the
crosses represent the calibration data, the red star identifies the true solution, and the blue circle is the DI solution. The black solid line in (a) is the null space; the red
dash-dotted lines in (a) and (b) delimit the validity region of the PLS model based on χ2 confidence limits of T2 and Q.
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t̂des = argmin
tdes

[(
ydes − Q̃⋅tdes

)⊤
⋅
(
ydes − Q̃⋅tdes

) ]
, (32)

which is an unconstrained QP problem. The objective function can be
expressed as in (25) with:

H = 2Q̃
⊤

⋅Q̃, (33)

f = − 2Q̃
⊤

⋅ydes. (34)

The problem in (32) admits an analytical solution:

t̂des =
(
Q̃

⊤
⋅Q̃
)− 1

⋅Q̃
⊤

⋅ydes. (35)

We note that such elementary formulation of IbO is consistent with DI,
as we can see from (12), a connection already realized by Flores-Cerrillo
and MacGregor (2004).

However, we shall point out that the consistency holds true only if
A ≤ VY . In this case, matrix H ∈ RA × RA is a positive-definite sym-
metric matrix, therefore J(tdes) is strictly convex and admits a unique
global minimum, as can be seen in Fig. 3(a). If A > VY , matrix H is only
positive-semidefinite, therefore the problem is convex and admits an
infinite number of equivalent global minima. Fig. 3(b) makes intuitively
clear that the locus of minima is an (A − VY)-dimensional subspace of

the space of LVs, which corresponds to the null space found in DI
(compare Fig. 3(b) with Fig. 2(a), for example).

If A > VY , the analytical solution (35) does not apply as matrix Q̃
⊤

⋅Q̃
is non-invertible. In DI, this case is handled by using the right general-
ized inverse to compute a particular solution to the inversion problem (i.
e., t̂des, p). An equivalent approach exists for IbO, as QP problems
involving positive-semidefinite matrices can be handled by matrix
factorization methods (Nocedal and Wright, 2006). However, an alter-
native, more intuitive way relies on incorporating a penalty term in the
objective function of problem (32).While any penalty term is in principle
admissible, a popular choice (García-Muñoz et al., 2006) is to state a soft
constraint on the T2 statistics of tdes. A generalized form of the problem
is therefore:

t̂des = argmin
tdes

[ (
ydes − Q̃⋅tdes

)⊤
⋅Γ1⋅

(
ydes − Q̃⋅tdes

)
+ γ2t⊤des⋅Λ

− 1⋅tdes

]
.

(36)

The first addendum in the objective function aims at pushing the
solution as close as possible to the target output. The diagonal weight
matrix Γ1 assigns different weights to the output variables in the
multivariate case. A reasonable choice (García-Muñoz et al., 2006) is to
set the diagonal of Γ1 as the determination coefficients (in calibration) of
the output variables, to account for the different degrees of confidence of
the model in predicting each output; alternatively, setting Γ1 = IVY , with

Fig. 3. Quadratic objective functions of IbO of PLS models for the example dataset. (a) Model with 1 LV (A = VY). (b) Model with 2 LVs (A > VY): the objective
function is not strictly convex in this case and admits an infinite number of global minima. (c) Convex penalty term defined as the T2 of the solution for a model with
2 LVs. (d) Penalized objective function for a model with 2 LVs obtained by addition of the objective function in (b) and the penalty term in (c), which regularizes the
objective function making it strictly convex again.
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IVY ∈ RVY × RVY the identity matrix, gives equal weights to all outputs, as
in (32). The second addendum constitutes a soft constraint on the T2

statistic of tdes, i.e., a penalty term added to the objective function; in this
case, the penalty term pushes the solution towards the origin of the
space of LVs. Factor γ2 is a weight for the soft constraint. A reasonable
choice (Tomba et al., 2012) is γ2 = 1/T2

lim, where T2
lim is confidence limit

of T2 at significance level α (see Appendix A for details); note that the
numerator of the γ2 expression can be increased or decreased to control
the weight of the soft constraint. We note that the soft constraint is al-
ways strictly convex as Λ− 1 is a diagonal matrix containing only positive
elements. Fig. 3(c) shows the penalty term obtained by setting γ2 =

2/T2
lim and using the χ2 approach to estimate T2

lim at α = 0.05 significance
level. Fig. 3(d) visualizes the overall objective function in (36) (setting
Γ1 = IVY ), which illustrates the role of the soft constraint in restoring the
strict convexity of J(tdes) even if A > VY .

We remark that (36) is still an unconstrainted QP problem, therefore
the penalty term enables formulating analytical solutions. The objective
functions can be manipulated to prove that:

H = 2
(
Q̃⊤⋅Γ1⋅Q̃+ γ2Λ− 1

)
, (37)

f = − 2Q̃⊤⋅Γ1⋅ydes, (38)

therefore, the analytical solution is:

t̂des =
(
Q̃⊤⋅Γ1⋅Q̃+ γ2Λ− 1

)− 1
⋅Q̃⊤⋅Γ1⋅ydes. (39)

In light of (39), it is apparent that the soft constraint can be inter-
preted as a regularization term for the matrix inversion involved in the
analytical solution of the IbO problem. This makes H diagonally domi-
nant, therefore “fixing” the rank deficiency in the case A > VY. We can
also recognize the similarity of (39) with the familiar form of ridge
regression (Hoerl and Kennard, 1970), which is known for its ability to
solve ill-conditioning problems by continuous shrinkage (Hastie et al.,
2009).

However, note that the regularization term is introduced as a soft
constraint, therefore it is weighted directly in the objective function,
effectively “pushing” the estimated ŷdes = Q̃⋅t̂des away from the target
and towards the average value of the outputs in the calibration dataset.
This effect is shown in Fig. 4 in the spaces of LVs and output variables:

four solutions of (36) are reported, setting γ2 ∈

{

0, 1
T2

lim
, 3
T2

lim
, 9
T2

lim

}

and

Γ1 = IVY . Note that the case γ2 = 0 yields the same solution as DI, as
shown in Fig. 2. Additional details on the effect of the soft constraint can

be found in García-Muñoz et al. (2006).

4.1.2. Including linear constraints
DI is a simple algebraic method for PLS model inversion. While

exploiting the correlation structure extracted from data by algebraic
inversion offers confidence on physical constraints being respected by
the solution of PLS model inversion (Ferrer, 2021), it might be desirable
to set those constraints explicitly. This can be done by re-formulating the
IbO problem as a constrained optimization.

The simplest constraints that one can add to the problem in (36) are
linear equality and inequality hard constraints:

A⋅tdes ≤ b, (40)

Aeq⋅tdes = beq, (41)

Note that including hard constraints turns IbO into a constrained QP
problem, thus implying that a numerical solution method is required
with consequent increase in the computational demand, which scales
with the problem dimensionality (i.e., the number of LVs). Furthermore,
note that we have neglected the bounds for optimization variable tdes in
the constraints (40) and (41), as compared to z in (19), due to the fact

Fig. 4. Effect of the weight γ2 given to the soft constraint on T2 in the IbO problem in (36) shown as solutions in (a) the space of LVs and (b) the space of
output variables.

Table 3
Meaningful linear inequality and equality constraints for IbO of PLS models in
the space of LVs stated as A⋅tdes ≤ b and Aeq⋅tdes ≤ beq, respectively. If some of
the variables are not to be constrained, remove the relevant rows from A (or Aeq)
and b (or beq). To constraint linear combinations of the variables, pre-multiply
matrix A (or Aeq) by the matrix of linear combinations coefficients, L, and
replace the relevant bound (or value) by replacing b (or beq).

Constraint A or Aeq b or beq

Inequality constraints
Upper bounds on outputs Q̃ yUB

Lower bounds on outputs − Q̃ − yLB

Upper bounds on inputs P xUB

Lower bounds on inputs − P − xLB

Upper bounds on LVs IA tUB

Lower bounds on LVs − IA − tLB

Upper bounds on UCLof the null space Q̃ UCL
(
ydes

)

Lower bounds on LCLof the null space − Q̃ − LCL
(
ydes

)

Equality constraints
Value of output Q̃ yeq

Value of inputs P xeq

Value of LVs IA teq

Null space Q̃ ydes
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that such bounds can be incorporated using the inequality constraints
(40). In Table 3, we give an overview of some meaningful constraints,
and briefly discuss them in the following.

We consider linear inequality constraints first. In (40), A represents
the constraint matrix: it must have A columns and can have as many
rows as constraints to be stated; b represents the constraint vector,
which contains the values of the constraints. Inequality constraints can
be used to bound the output variables: upper bounds can be stated by
setting A = Q̃ and b = yUB, while lower bounds can be stated by setting
A = − Q̃ and b = − yLB. Upper and lower bounds can be stated simul-
taneously by stacking the respective constraint matrices and vectors.
Note that not all variables need to be constrained: if the v-th variable is
not to be bounded, the corresponding rows from A and b are removed.
One may also bound linear combinations of output variables by setting,
for example,A = L⋅Q̃ and b = lYUB . The rows of L contain the coefficients
to formulate the linear combination of output variables to be bound,
while lYUB contains the corresponding upper bounds; a similar formu-
lation exists for lower bounds. Similarly, bounds can be set on input
variables, LVs, and their linear combinations.

Equality constraints (41) can be stated setting matrix Aeq in the same
way as for the inequality constraints discussed above, while vector beq

must be set to the value variables must be constrained to. A particularly
relevant equality constraint is stated by setting Aeq = Q̃ and beq = ydes.
Recalling (15), this constraint “snaps” the solution of IbO to the null
space (if it exists), thus allowing the optimizer to manipulate the solu-
tion based on other soft/hard constraints while not compromising the
output, thus effectively offering a solution to the problem illustrated in
Fig. 4. This approach is also discussed by García-Muñoz et al. (2006).

However, stating an equality constraint on the null space (i.e., on the
desired output) might make the problem infeasible as the constraint
requires the first addendum in the objective function (36) to be exactly
zero, which might not be possible, especially if other hard constraints
are specified. As the null space is affected by uncertainty, one might
prefer to account for such uncertainty and bound the solution within the
confidence interval of the null space by means of inequality constraints.
The approach proposed by Facco et al. (2015) can be used to this end
(see Appendix C for details): the upper bound is set as A = Q̃ and b =

UCL
(
ydes

)
, while the lower bound is set as A = − Q̃ and b =

− LCL
(
ydes

)
, where UCL

(
ydes

)
and LCL

(
ydes

)
are derived from (C.3) by

using the + and − signs, respectively.
Fig. 5 illustrates three solutions of (36) subject to constraints (40)

and (41) in the spaces of LVs and output variables, to illustrate the effect
of hard constraints. In all cases, Γ1 = IVY and γ2 = 3/T2

lim. No hard

constraint is stated on Case A (blue circle). In Case B (orange square),
ŷdes = Q̃⋅t̂des is upper-bounded to yUB = 140. Finally, t̂des is constrained
to the null space in Case C (green triangle).

Hard constraints are particularly relevant when some of the com-
ponents of ydes are unspecified, i.e., desired values are not specified for
all output variables. In such a case, the diagonal elements of Γ1 corre-
sponding to the unspecified outputs are set to 0, in such a way that such
outputs will not have any weight on the objective function of the opti-
mization problem (García-Muñoz et al., 2006; Tomba et al., 2012). The
unspecified outputs can be left free or simply subject to equality or
inequality constraints.

However, we must note that nulling one or more diagonal elements
of Γ1 has implications on the optimization problem itself and on the
possible constraints stated on the null space. We consider a case in which
γ2 = 0, therefore H = 2Q̃⊤⋅Γ1⋅Q̃. If all the diagonal elements of Γ1 are
non-null, then rank(H) = min{VY ,A}; H is invertible (i.e., an analytical
solution to the unconstrained QP, in the form of (27), exists) as long as
VY ≤ A, while a null space of dimensionality A − VY exists otherwise, and
therefore (if Γ1 = IVY ) the correspondence with DI holds entirely.
However, if Nunsp diagonal elements of Γ1 are null, then rank(H) =

min
{
VY − Nunsp,A

}
, which implies that H is invertible only if

VY − Nunsp ≤ A, and this causes the dimensionality of the null space in
IbO to increase to A − VY + Nfree, thus breaking the correspondence with
DI.

If equality constraints on the null space are to be set, then the rows
corresponding to the unspecified output variables must be removed
from Aeq and beq, in order to keep consistency between the objective
function and the constraints. We also note that the null space uncer-
tainty cannot be estimated due to the inconsistency with DI, as both the
analytical methods discussed in Appendix C rely on DI. A quite tricky
solution is to define a “reduced” output loading matrix in which the rows
corresponding to the unspecified outputs have been nulled, using then
such a matrix to estimate the null space uncertainty. However, in gen-
eral we recommend not to set constraints on the null space confidence
region if some output variables are unspecified.

4.1.3. Including nonlinear constraints
Data-driven models are valid only in the vicinity of the data used for

calibration, i.e., the validity region covers only small portions of the
spaces of input, output, and latent variables. The confidence limits of the
model diagnostics can be used to restrict the region in which the model
is trustworthy, also known as the knowledge space (Facco et al., 2015;
Palací-López et al., 2019). It is common throughout the LVMI literature
to incorporate this knowledge into the IbO problem formulation by

Fig. 5. Effect of the hard constraints in the IbO problem in shown as solutions in (a) the space of LVs and (b) the space of output variables. Case A: unconstrained
solution. Case B: the output is upper bounded at 140. Case C: the solution is constrained to the null space.
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stating a nonlinear hard constraint on the T2 statistic of the solution,
therefore formulating the optimization problem as in (36)(subject to
constraints (40), (41), and additionally to:

C(tdes) = t⊤des⋅Λ
− 1⋅tdes − T2

lim ≤ 0, (42)

where C(tdes) represents a nonlinear constraint function. The effect of
such a constraint is to bound the solution of the IbO problem within the
confidence (hyper-)ellipse of the A-dimensional space of LVs (whose
representation in the bidimensional score space of the illustrative case
study is the dash-dotted line in Fig. 5(a)). Note that no hard constraint is
set on Q because such statistic is always null when the optimization is
formulated in the space of LVs.

While it appears reasonable to include by default the nonlinear
constraint on T2, we argue that it may represent an unnecessary
complication under several points of view. Regardless of the objective
function being quadratic, nonlinear constraints turn the optimization
into an NLP problem, which require gradient-based search methods.
This implies a remarkable increase in the computational burden to solve
the problem and a decrease in the solution accuracy due to the iterative
search method. However, we note that the constraint is convex (Nocedal
and Wright, 2006), and therefore the overall NLP is still a convex
problem and will eventually converge (within the given tolerance) to the
global optimum. We also note that the nonlinear constraint is redundant
with the soft constraint on T2 included in the objective function. We
discussed the importance of the soft constraint in Section 4.1.1 and
believe that it naturally belongs to the formulation of the IbO problem. If
properly weighted, the soft constraint will ensure the solution to fall
within the model validity region, therefore rendering unnecessary the
statement of an additional hard constraint (García-Muñoz et al., 2006).
Last, but not least, the hard constraint would be active (i.e., bounding
the solution) only if the target output to be achieved was projected
outside of the model validity region (e.g., outside of the confidence el-
lipse). However, in such a case the validity of the quality target might be

questioned in the first place, as it could not conform to the PLS model
(Jaeckle and MacGregor, 1998). In summary, we deem the nonlinear
constraint on T2 not necessary in most cases of practical interest.

However, one particular nonlinear constraint could be worth
considering in IbO of PLS models. In the previous Section, we proposed
to bound the solution within the confidence region of the null space by
imposing linear constraints (see Table 3). The method proposed by
Facco et al. (2015) would be used by virtue of its linearity. If one wishes
to consider also the observation leverage in the null space uncertainty
estimation, the method proposed by Palací-López et al. (2019) has to be
used. This method is nonlinear in the optimization variables tdes (see
Appendix C for details), therefore it can be used to formulate a nonlinear
constraint function:

C(tdes) =

(
− Q̃
Q̃

)

⋅tdes −

(
− LCL(ŷdes, tdes)

UCL(ŷdes, tdes)

)

, (43)

where the first block of A rows of the constraint function refers to the
lower confidence limit of the null space, while the second block bounds

the upper confidence limit; LCL
(
ŷdesl , tdes

)
and UCL

(
ŷdesl , tdes

)
derive

from (C.11) by considering the − and + signs, respectively, and
considering the generic point tdes as starting point of the method (i.e., by
setting t̂desl = tdes in (C.6) and thereafter, see Appendix C for details).
Note that LCL

(
ŷdes, tdes

)
and UCL

(
ŷdes, tdes

)
are nonlinear functions of

tdes, thus making (43) a nonlinear function. However, one should bear in
mind the remark on unspecified output variables mentioned in Section
4.1.2, if constraints on the null space are to be stated. We summarize
meaningful nonlinear constraint functions in Table 4.

In order to illustrate the effect of nonlinear constraints, we deliber-
ately misspecify the target for PLS model inversion by setting
( x1 x2 ) = (0 1 ) as the independent inputs, which, by (28), yields
ydes = − 19.878. This can happen when one wants to design a product
that is very different from those that have been manufactured histori-
cally. It is immediately clear that such values are unacceptable given the
range of calibration data reported in Table 1. We solve four cases of the
PLS model inversion problem with such a target, and visualize the so-
lutions in the space of LVs in Fig. 6(a), while Fig. 6(b) reports the cor-
responding model diagnostics. Note that in Fig. 6(a) we also visualize
the null space and its upper confidence limit (α = 0.05) estimated by the
method by Palací-López et al. (2019). Fig. 6(b) makes clear that the
target is misspecified, as the model diagnostics fall beyond the confi-
dence limits. Concerning the four solutions, we set Γ1 = IVY in all cases.
Case A (blue circle) is a QP problem with γ2 = 0.3/T2

lim and no hard

Table 4
Meaningful nonlinear inequality constraint functions for IbO of PLS models in
the space of LVs stated as C(tdes) ≤ 0.

Constraint C(tdes)

Confidence limit of T2 t⊤des⋅Λ
− 1⋅tdes − T2

lim
Upper bounds on UCLof the null space Q̃⋅tdes − UCL

(
ŷdes, tdes

)

Lower bounds on LCLof the null space − Q̃⋅tdes + LCL
(
ŷdes, tdes

)

Fig. 6. Effect of the nonlinear hard constraints in the IbO problem (42) shown as (a) solutions in the space of LVs and (b) PLS model diagnostics. Case A: un-
constrained solution with low γ2. Case B: a nonlinear constraint on T2 is added. Case C: unconstrained solution with high γ2. Case D: a nonlinear constraint on the null
space confidence region is added.
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constraint. In Case B (orange square), the problem in turned into an NLP
by stating a hard constraint on T2, which “snaps” the solution to the
confidence ellipse. The solution can also be forced to fall within the
confidence ellipse by increasing the γ2: Case C (green triangle) is again
QP problem with γ2 = 9/T2

lim and no hard constraint. Finally, Case D
(violet diamond) is an NLP problem with the same γ2 used in Case C, but
with an additional constraint on the null space confidence region.

4.2. Optimization in the space of input variables

Formulating the optimization problem in the space of LVs offers
several advantages, as elucidated in the previous Section. Constraints
can be stated also on input variables by exploiting (18). However, this
strategy implicitly sets a requirement on the constraint values, which
must satisfy (18), i.e., the constraints must conform to the correlation
structure of the space of input variables captured by the PLS model.
While this requirement seems reasonable, it might not be easy to satisfy
in some cases, e.g., when the dimensionality of the space of input vari-
ables is very large (as may occur in several industrial cases) and/or the
PLS model does not explain most of the variance of that space. This
situation has been addressed by reformulating the PLS model inversion
problem in such a way as to adjust the input variables directly (García-
Muñoz et al., 2008; Tomba et al., 2012), therefore setting z = xdes in (19)
and solving the optimization problem to obtain ẑ = x̂des. The vector of
latent variables can be computed by the PLS regression model, i.e., (3).

4.2.1. Inconsistency with the DI solution
IbO has originally been extended to use input variables as optimi-

zation variables by a two-step optimization strategy (García-Muñoz
et al., 2008): first, the IbO problem is solved in the latent space to obtain
t̂des; then, t̂des is used as target in a second optimization problem
formulated in the input space. The simplest, unconstrained formulation
of the latter problem is:

x̂des = argmin
xdes

[(t̂des − (W*)
⊤⋅xdes )

⊤⋅(t̂des − (W*)
⊤⋅xdes ) ]. (44)

In general, the two-step optimization approach entails several
drawbacks. Most notably, if any constraints on the output variables have
been set in the first optimization, there is no guarantee that these con-
straints will be satisfied in the second step, except in the case where the
very same constraints are set in the second problem as well. Therefore,
formulating a single optimization problem directly in the space of input
variables seems a preferable alternative (Tomba et al., 2012).

However, the formulation in (44) highlights a very important point
of IbO in the space of input variables. The objective function can be
expressed as in (25) with:

H = 2W*⋅(W*)
⊤
, (45)

f = − 2W* ⋅̂tdes, (46)

and, therefore, the analytical solution is:

x̂des = (W*⋅(W*)
⊤
)
− 1⋅W*⋅t̂des. (47)

Comparison of (47) and (18) reveals a crucial difference in the
inversion routes taken by IbO formulated in the spaces of input variables
and LVs, respectively: formulating the IbO problem in the space of LVs
implies that the input data model (1) is used to project the LVs back onto
the space of input variables by a simple matrix multiplication; on the
other hand, when IbO is formulated in the space of input variables the
regression model (3) is inverted to project the LVs onto the space of
input variables.

We can visualize the relationships among the spaces of input vari-
ables, output variables and LVs established by the PLS model as in Fig. 7:
the three spaces are connected by three “one-way bridges”, which are
the projections models. The spaces of LVs and output variables are
connected by a bridge enabling one to move from the former to the
latter, i.e., (2) or, in a regression setting, (8). On the other hand, the
spaces of LVs and input variables are connected by two bridges, i.e., (1)
and (3) or, equivalently, (6), enabling one to move in either direction. In
PLS model inversion, the first step is always to move from the space of
output variables to the space of LVs. As there is no direct path for such
operation, one has to cross the only available bridge in the wrong di-
rection, i.e., to invert (8). Once there, the natural way to return to the
space of input variables is to cross a bridge in its natural direction, i.e., to
exploit the input space model (1) as happens in DI and IbO formulated in
the space of LVs. However, formulating IbO in the space of input vari-
ables implies that the second step is done by crossing the regression
model bridge in the wrong direction, i.e., by inverting (6).

The different route taken by IbO in the space of input variables has
several implications on PLS model inversion. The most apparent one is
the loss of consistency with the DI solution; therefore, problem (44) will
yield a (possibly only slightly) different solution with respect to DI even
in the unconstrained case. The key difference is, however, that the
optimization algorithm can now explore the whole space of input vari-
ables, not being constrained by the correlation structured modeled by
PLS. This in turn implies that the Q statistic of the solution is not 0
anymore, which is a remarkable advantage and allows one to state
constraints on the input variables with (in principle) arbitrary flexibility,
while still obtaining a feasible solution. The price to pay for such addi-
tional flexibility is a (possibly) massive increase in the computational
demand to solve the IbO problem, as the dimensionality of the optimi-
zation variables is now VX, which is typically much larger than A. This
point becomes particularly relevant in light of one severe limitation of
IbO in the space of input variables discussed in Section 4.2.2: the
possible ill-conditioning of the analytical solution procedure.

We note that the consistency of DI and IbO in the space of LVs can be
restored by subjecting the problem in (44) to a special linear equality
constraint:

(IVX − P⋅(W*)
⊤
)⋅xdes = 0VX , (48)

where 0VX ∈ ℝVX is the null vector. The left-hand-side of (48) is the
reconstruction residual of the input observation (see (11)), which is
defined as the difference between xdes and its rank-A reconstruction
obtained by first projecting xdes onto the space of LVs by (3), and then
back onto the space of input variables by (1). Constraint (48) forces the
solution to (44) to be a rank-A reconstruction of a (possibly) full-rank
xdes, which can be formulated as x̂des = P⋅t̂des, thus restoring the con-
sistency with DI. Under a different interpretation, constraint (48) re-
stricts the solution to lie on an A-dimensional subspace of the space of
input variables (i.e., the space of LVs), allowing the optimizer to move

Fig. 7. Visualization of the relationships among the spaces of input variables,
LVs, and output variables established by the PLS model.
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the input variables only along the A directions defined by the constraint.
However, note that, while the solution obtained in this way is again
consistent with DI and IbO in the space of LVs, the computational cost to
obtain it is still much larger due to the dimensionality of the optimiza-
tion variables. Therefore, for practical cases we recommend using the
IbO problem formulation described in Section 4.1 rather than using
constraint (48).

4.2.2. Ill-conditioning and importance of soft constraints
The optimization problem of IbO can be formulated in the space of

input variables as a single-step optimization problem (Tomba et al.,
2012). In its simplest form:

x̂des = argmin
xdes

[(ŷdes − B⊤⋅xdes)
⊤⋅(ydes − B⊤⋅xdes) ]. (49)

which is an unconstrainted QP problem. The matrix and vector of the
objective function can be formulated as:

H = 2B⋅B⊤, (50)

f = − 2B⋅ydes, (51)

which yield the analytical solution:

x̂des = (B⋅B⊤)
− 1⋅B⋅ydes. (52)

However, this analytical solution can never be computed because B is a
matrix with VX rows and VY columns, thus B⋅B⊤ is a matrix in RVX × RVX

with rank VY . In virtually all product design applications of PLS, VX≫VY ,
therefore B⋅B⊤ can never be inverted analytically, although matrix
factorization (Nocedal and Wright, 2006) or regularized inversion
(Arnese-Feffin et al., 2022) methods could be used. A null space would
still have to be accounted for, in this case of very large dimensionality, i.
e., VX − VY , leading to a non-trivial complication.

In this case, it is convenient to use soft constraints in the objective
function to regularize the inversion, similarly to what was done Section
4.1.1. In light of the discussion in Section 4.2.1, we can include soft
constraints for both T2 and Q, thus formulating the IbO problem as:

x̂des = argmin
xdes

[
(ŷdes − B⊤⋅xdes)

⊤⋅Γ1⋅(ydes − B⊤⋅xdes)

+ γ2x⊤des⋅W
*⋅Λ− 1⋅(W*)

⊤⋅xdes + γ3x⊤new⋅(IVX − P⋅(W*)
⊤
)
⊤⋅(IVX

− P⋅(W*)
⊤
)⋅xnew

]
. (53)

which yields an unconstrainted QP problem. In (53), Γ1 is the weight
matrix for the targets on output variables, while γ2 and γ3 are weights for
the soft constraints on T2 and Q, respectively. A good choice for γ3
(Tomba et al., 2012) is γ3 = 1/Qlim, where Qlim is the confidence limit of
Q at significance level α (see Appendix A for details). The matrix and
vector of the objective function are:

H = 2
(
B⋅Γ1⋅B⊤ + γ2W*⋅Λ− 1⋅(W*)

⊤
+ γ3(IVX − P⋅(W*)

⊤
)
⊤⋅(IVX

− P⋅(W*)
⊤
)
)
, (54)

f = − 2B⋅Γ1⋅ydes, (55)

which can be used to obtain an analytical solution for the problem.
We remark that soft constraints are essential if IbO is formulated in

the space of input variables to regularize the inversion of matrix H, thus
operating a similar effect as the one illustrated in Fig. 3, although in a
space of much larger dimensionality. The solution can therefore be
computed analytically, which entails significant advantages from the
computational point of view. The effect of γ3 is comparable to the effect
of γ2 discussed in Section 4.1.1: the greater γ3, the smaller theQ statistics
of the solution. Note that in the limit of γ3→ + ∞, x̂des would be forced
to conform to the correlation structure of the input space.

4.2.3. Including hard constraints
Constraints can be incorporated in IbO also when the problem is

formulated in the space of input variables. Considering both linear and
nonlinear constraints, the problem can be formulated in (53) and subject
to:

A⋅xdes ≤ b, (56)

Aeq⋅xdes = beq, (57)

C(xdes) ≤ 0, (58)

If only linear constraints (56) and (57) are set, the problem is a
constrained QP, which ca be solved with reasonable efficiency by nu-
merical methods. Linear constraints can be stated similarly to IbO in the
space of LVs, as outlined in Section 4.1.2. Meaningful linear constraints
are summarized in Table 5.

On the other hand, the inclusion of nonlinear constraints (58) turns
the problem into an NLP. The computational burden to solve the prob-
lem is remarkably high in this case, as the optimization variables can
have a very high dimensionality (possibly hundreds, or even thousands
of input variables in the case of batch processes). Therefore, we
recommend not using nonlinear constraints unless it is crucial to do so;
their soft/linear counterparts should be used instead whenever possible.
If deemed essential, nonlinear constraints can be set on the T2 and Q
statistics, and on the confidence region of the null space. Meaningful
nonlinear constraint functions are summarized in Table 6.

Finally, note that target values of some output variables may not be
specified, similarly to IbO in the space of LVs, i.e., the corresponding
diagonal element of Γ1 can be nulled. In this respect, the discussion at
the end of Section 4.1.2 applies entirely also in the case of IbO formu-
lated in the space of input variables.

In Fig. 8, we illustrate some characteristics of the IbO problem (53)

Table 5
Meaningful linear inequality and equality constraints for IbO of PLS models in
the space of input variables stated as A⋅xdes ≤ b and Aeq⋅xdes ≤ beq, respectively.
If some of the variables are not to be constrained, remove the relevant rows from
A (or Aeq) and b (or beq). To constraint linear combinations of the variables, pre-
multiply matrix A (or Aeq) by the matrix of linear combinations coefficients, L,
and replace the relevant bound (or value) by replacing b (or beq).

Constraint A or Aeq b or beq

Inequality constraints
Upper bounds on outputs B⊤ yUB

Lower bounds on outputs − B⊤ − yLB

Upper bounds on inputs IVX xUB

Lower bounds on inputs − IVX − xLB

Upper bounds on LVs (W*)
⊤ tUB

Lower bounds on LVs − (W*)
⊤ − tLB

Upper bounds on UCLof the null space B⊤ UCL
(
ydes

)

Lower bounds on LCLof the null space − B⊤ − LCL
(
ydes

)

Equality constraints
Value of output B⊤ yeq

Value of inputs IVX xeq

Value of LVs (W*)
⊤ teq

Null space B⊤ ydes

Table 6
Meaningful nonlinear inequality constraint functions for IbO of PLS models in
the space of input variables stated as C(xdes) ≤ 0.

Constraint C(xdes)

Confidence limit of T2 x⊤
des⋅W

*⋅Λ− 1⋅(W*)
⊤⋅xdes − T2

lim
Confidence limit of Q x⊤des⋅(IVX − P⋅(W*)

⊤
)
⊤⋅(IVX − P⋅(W*)

⊤
)⋅xdes − Qlim

Upper bounds on UCLof the null
space

B⊤⋅xdes − UCL
(
ŷdes, (W*)

⊤⋅xdes
)

Lower bounds on LCLof the null
space

− B⊤⋅xdes + LCL
(
ŷdes, (W*)

⊤⋅xdes
)
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subject to (56), (57), and (58) in the input space by solving five different
cases. Namely, we visualize the solutions in the space of input variables
in Fig. 8(a), with their corresponding diagnostics in Fig. 8(b). We set
Γ1 = IVY in all cases and use the reasonably assigned target output
introduced in Section 3. Cases A and B (blue circle and orange square,
respectively) elucidate the effect of the different routes taken by IbO
when formulated in the spaces of LVs and input variables, respectively,
with γ2 = 0 and γ3 = 0. Despite of the two cases both achieving the
target quality exactly, the designed input variables are slightly different
(Fig. 8(a)). This is due to the different routes taken by the two ap-
proaches (Section 4.2.1), which implies that the solution of the IbO
problem in the space of input variables has a non-null Q, as can be seen
in Fig. 8(b). In Case C (green upwards triangle), we set γ2 = 1/T2

lim and
γ3 = 0, and we state two hard constraints on the input variables: x1 is
lower bounded by x1,LB = 20, and x2 is upper bounded by x2,UB = 7.
Note that these constraints force the solution against the correlation
structure captured by the PLS model, causing the Q statistic to be well
beyond the confidence limit in Fig. 8(b). We fix this issue in Case D
(violet diamond) by setting γ3 = 0.05/Qlim, which effectively takes the
Q statistics below the control limit by adjusting the input variables, as
we see in Fig. 8(a). Case D is still a computationally tractable QP
problem; on the other hand, Case E (brown downwards triangle) is a
computationally burdensome NLP problem in which we again set γ3 = 0
and we state a nonlinear constraint on Q, effectively bounding the so-
lution within the confidence limit of the statistic in Fig. 8(b). Note that,
in Fig. 8(a), the solutions of Cases D and E do not differ significantly,
thus reinforcing the suggestion to use soft constraints instead of hard
constraints to keep the optimization problem simpler and computa-
tionally tractable.

5. General formulation of PLS model inversion problems

The objective functions used in the formulation of the IbO problem in
the spaces of LVs and input variables, e.g., in (36) and (53), share
remarkable similarities, yielding very similar matrices H and vectors f.
Furthermore, the structure of linear constraints is identical, the only
difference being in how the constraint matrices are calculated (e.g.,
compare Table 3 and Table 5). A similar observation can be done for
nonlinear constraints, where the functions in Table 4 and Table 6 differ

only in the matrices multiplying the optimization variables. Based on
these observations, in this Section we propose a general formulation of
IbO problems that can be adapted to both the spaces of LVs and input
variables.

Our formulation relies on three domain matrices: OO, OL, and OI,
which we can interpret as linear operators projecting the vector of
generic optimization variables, z, onto the spaces of output variables,
LVs, and input variables, respectively, according to the equations:

ydes = OO⋅z, (59)

tdes = OL⋅z, (60)

xdes = OI⋅z. (61)

The form of the domain matrices depends on the domain of the IbO
problem: if the optimization is to be carried out in the space of LVs, then
z = tdes; on the other hand, z = xdes if the optimization is set in the space
of input variables. The domain matrices in the three cases are reported in
Table 7.

We also formulate two scale matrices (Φ and Ψ), which depend on
the domain matrices:

Φ = O⊤
L ⋅Λ− 1⋅OL, (62)

Ψ = O⊤
I ⋅(IVX − P⋅(W*)

⊤
)
⊤⋅(IVX − P⋅(W*)

⊤
)⋅OI, (63)

and can be used to compute the T2 and Q statistics of z to set soft or hard
constraints:

T2 = z⊤⋅Φ⋅z, (64)

Fig. 8. Some characteristics of the IbO problem visualized as (a) solutions in the space of input variables, and (b) PLS model diagnostics. Case A; unconstrained and
unweighted solutions with problem formulated in the space of LVs. Case B: unconstrained and unweighted solutions with problem formulated in the space of input
variables. Case C: linear hard constraints on inputs. Case D: hard constraints on inputs may cause a large Q statistic, which can be remedied by stating soft constrains
on Q. Case E: hard constraints on Q.

Table 7
Domain matrices for the general formulation of IbO of PLS models.

Domain matrix z = tdes z = xdes

OO Q̃ B⊤

OL IA (W*)
⊤

OI P IVX
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Q = z⊤⋅Ψ⋅z. (65)

Note that, if z = tdes, then xdes = P⋅tdes is a rank-A projection of tdes onto
the space of input variables. Therefore, the projection of xdes onto the
space of LVs is (W*)

⊤⋅xdes = tdes, which causes (65) to always yield 0,
thus proving that (63) is a general form of the scale matrix for Q.

We can then leverage the domain and scale matrices to define a
general optimization problem in the form of (19), where the objective
function is:

J(z) = (ydes − OO⋅z)⊤⋅Γ1⋅(ydes − OO⋅z) + γ2z⊤⋅Φ⋅z+ γ3z⊤⋅Ψ⋅z, (66)

which can be expressed as in (25) with matrices:

H = 2
(
O⊤

O ⋅Γ1⋅OO + γ2Φ + γ3Ψ
)
, (67)

f = − 2O⊤
O ⋅Γ1⋅ydes. (68)

Linear equality and inequality constraints on input variables, LVs, and
output variables can be stated by using the domain matrices as shown in
Table 8. Nonlinear constraints can be generalized in a similar way, as
shown in Table 9.

We remark that the only decision required to the user of the proposed

general formulation of IbO problems is the domain in which the opti-
mization should be performed. If constraints on inputs, LVs, or outputs
are to be stated, only the constraint values (i.e., bounds and equalities)
are to be set by the user and assigned to the vectors b and beq, respec-
tively, while the relevant constraint matrices A and Aeq are adapted
automatically based on the selected optimization domain. Constraints
on “abstracted” entities, such as the model validity region, or the null
space and its confidence region, can be stated by fully automated pro-
cedures, therefore requiring a simple logical indicator to decide whether
to consider or neglect them.

We also remark that all the considerations on the computational
costs of the solution procedures required by the various cases of IbO
outlined in Sections 4.1 and 4.2 apply entirely to the proposed general
formulation. Namely, the problem admits an analytical solution if no
constraint is stated; a computationally efficient QP numerical solver can
be used if only linear constraints are stated; a gradient-based NLP solver
must be used if nonlinear constraints are considered. Furthermore, the
computational demand increases with the dimensionality of the opti-
mization variables, making IbO in the space of input variables naturally
more demanding than its counterpart in the space of LVs. The cases are
graphically illustrated in Fig. 9, with a clear indication of the class of
problem and typical computational burden.

6. Conclusions

In this study, we thoroughly discussed latent-variable model inver-
sion, a data-driven method to find the process conditions that are
required to manufacture a product with assigned quality, by relying
solely on historical data acquired during routine process operation. In
particular, we considered inversion by optimization of partial least-
squares (PLS) regression models. We carried out a systematic discus-
sion of the available methods, elucidating the merits and drawbacks of
each one based on several factors. The optimization problem can be
formulated in the space of latent variables to force the solution to
conform to the correlation structure of the data used for model cali-
bration (i.e., to implicitly respect process constraints and/or production
policies) or in the space of input variables for a greater flexibility and
finer tuning of the solution. We analyzed the consistency of inversion by
optimization with algebraic inversion methods in each one of these
domains. We also extensively discussed the constraints that could
possibly be stated on the optimization problem, highlighting the
different effects of soft and hard constraints, and whether or not
nonlinear constraints should be stated in place of simpler linear con-
straints. For each case, we clearly identified the solution algorithms
required, discussing their computational burden and potential avail-
ability of an analytical solution. Finally, we proposed a general formu-
lation of the PLS model inversion-by-optimization problem, which
encompasses all the cases we have discussed throughout this study based
on one single choice: the domain of the optimization problem. We
supported our discussion with a numerical case study and provided the
code to reproduce it. The code can also be used a general MATLAB

Table 8
Meaningful linear inequality and equality constraints for the general formula-
tion of IbO of PLS models stated as A⋅z ≤ b and Aeq⋅z ≤ beq, respectively.

Constraint A or Aeq b or beq

Inequality constraints
Upper bounds on outputs OO yUB
Lower bounds on outputs − OO − yLB
Upper bounds on inputs OI xUB

Lower bounds on inputs − OI − xLB

Upper bounds on LVs OL tUB

Lower bounds on LVs − OL − tLB

Upper bounds on UCLof the null space OO UCL
(
ydes

)

Lower bounds on LCLof the null space − OO − LCL
(
ydes

)

Equality constraints
Value of output OO yeq

Value of inputs OI xeq

Value of LVs OL teq

Null space OO ydes

Table 9
Meaningful nonlinear inequality constraint functions for the general formulation
of IbO of PLS models stated as C(z) ≤ 0.

Constraint C(z)

Confidence limit of T2 z⊤⋅Φ⋅z − T2
lim

Confidence limit of Q z⊤⋅Ψ⋅z − Qlim
Upper bounds on UCLof the null space OO⋅z − UCL

(
ŷdes,OO⋅z

)

Lower bounds on LCLof the null space − OO⋅z + LCL
(
ŷdes,OO⋅z

)

Fig. 9. Classification of IbO problems based on the optimization domain and type of constraints stated, with indication of the computational burden to solve
the problem.
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toolbox for PLS model inversion.
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Appendix A. Estimators for confidence limits of PLS diagnostics

The PLS model diagnostics statistics, T2 and Q, can be compared to appropriate confidence limits to determine their significance (Martin and
Morris, 1996; Qin, 2003; Tracy et al., 1992). The confidence limit of the T2 statistic can be estimated by the F distribution method (Jackson, 1959) or
by the χ2 distribution method (Nomikos and MacGregor, 1995a). The confidence limit of the Q statistic can be estimated by the Jackson-Mudholkar
approach (Jackson and Mudholkar, 1979) or by the χ2 distribution method (Nomikos and MacGregor, 1995a).

We consider the T2 statistic first. The control limit of T2 at significance level α based on the F distribution is defined as:

T2
lim =

DOF(N − 1)(N+ 1)
N(N − DOF)

F(DOF,N − DOF) |1− α, (A.1)

where DOF represents the degrees of freedom of the PLS model, while F(DOF,N − DOF) |1− α denotes the value of a F-variable with DOF and N − DOF
degrees of freedom at the numerator and denominator, respectively, evaluated at probability 1 − α. According to the so-called naïve approach, DOF =

A; more sophisticated DOF estimators exist nonetheless (Krämer and Sugiyama, 2011; Van Der Voet, 1999). The control limit of T2 at significance
level α based on the χ2 distribution with matching moments is defined as:

T2
lim =

s2
T2

2T2
χ2
(

2
(
T2
/
sT2
)2
) ⃒
⃒
⃒
1− α

, (A.2)

where T2 and sT2 are the sample mean and standard deviation of T2, respectively, computed using the values of the statistic derived from the cali-

bration dataset, while χ2
(

2
(
T2/sT2

)2
) ⃒
⃒
⃒
1− α

is the value of a χ2-variable with 2
(
T2/sT2

)2 degrees of freedom evaluated at probability 1 − α. Both the

F-based and χ2-based limits rely on the normality assumption of the values of t obtained from the calibration dataset; however, the χ2 limit is rec-
ommended in general by virtue of its mild robustness to violations of the normality assumption (Qin, 2003).

According to the Jackson-Mudholkar approach, the control limit of Q at significance level α is defined as:

Qlim = θ1

(

1 +
z|1− αh0

̅̅̅̅̅̅̅̅
2θ2

√

θ1
+
h0(h0 − 1)θ2

θ2
1

) 1
h0

, (A.3)

where:

θi =
∑VX

j=A+1

(
σ2
j

)i
, (A.4)

h0 = 1 −
2θ1θ3

3θ2
2
. (A.5)

In (A.3), z|1− α is the value of a standard normal variable evaluated at probability 1 − α, while the σ2
j in (A.4) is the variance of the VX − A LVs not

considered in the PLS model. The control limit of Q at significance level α based on the χ2 distribution with matching moments is defined as:

Qlim =
s2
Q

2Q
χ2
(

2(Q/sQ)2
) ⃒
⃒
⃒
1− α

, (A.6)
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where Q and sQ are the sample mean and standard deviation of the Q, respecitvely, computed using the values of the statistic derived from the

calibration dataset, while χ2
(

2(Q/sQ)2
) ⃒
⃒
⃒
1− α

is the value of a χ2-variable with 2(Q/sQ)2 degrees of freedom evaluated at probability 1 − α. Similarly to

the limits for T2, both the Jackson-Mudholkar approach and the χ2-based limits rely on the normality assumption of the values of Q obtained from the
calibration dataset; the χ2 limit is recommended due to its robustness (Qin, 2003).

Appendix B. PLS prediction uncertainty

As the ŷnew computed by the PLS model applied to a new input observation is an approximation of the true output observation ynew, the value of
which is generally unknown, considering the prediction uncertainty is of paramount importance to assess the reliability of the estimate. The confi-
dence limit (CL) of the predicted value ŷnew at significance level α can be formulated as (Faber and Kowalski, 1997; Nomikos and MacGregor, 1995b;
Zhang and García Muñoz, 2009):

CL(ŷnew) = ŷnew ± sŷnew t(N − DOF) |α
2
, (B.1)

where t(N − DOF) |α
2

is the value of a t-distributed variable with N − DOF degrees of freedom evaluated at probability α
2. The standard deviation of ŷnew,

sŷnew ∈ RVY , is estimated as:

sŷnew = RMSE
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
N
+ hŷnew

√

, (B.2)

where hŷnew is the leverage of the estimated ŷnew on the model:

hŷnew = t⊤new⋅Λ− 1⋅tnew, (B.3)

while RMSE ∈ RVY is the vector of root mean-squared errors in calibration of output variables:

RMSE =

(∑N
n=1(yn − ŷn)

2

N − DOF

)0.5

. (B.4)

Appendix C. Null space uncertainty in LVMI

We consider two simple analytical approaches to estimate the null space uncertainty: the method proposed by Facco et al. (2015), which is based
on PLS prediction uncertainty, and its extension to include the effect of observation leverage proposed by Palací-López et al. (2019). We also point out
their properties when used as hard constraints in IbO.

The approach by Facco et al. (2015) assumes that the target quality, ydes, can be regarded as a prediction from the PLS model; its corresponding
projection onto the space of LVs in the presence of a null space, t̂des, p, is obtained from (14). Therefore, one sets ŷnew = ydes and first carries out the
procedure outlined in Appendix B. The leverage of ydes is computed by (B.3):

hydes = t̂⊤des, p⋅Λ− 1⋅t̂des, p, (C.1)

and used to estimate the standard deviation of ydes from (B.2):

sydes = RMSE
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
N
+ hydes

√

, (C.2)

which allows to compute the “confidence limit of ydes” at significance level α by (B.1):

CL(ydes) = ydes ± sydes t(N − DOF) |α
2
. (C.3)

The confidence limit of ydes is then “inverted” by means of (14) as the estimate the confidence limit of t̂des, p:

CL
(
t̂des, p

)
= Q̃

⊤
⋅
(
Q̃⋅Q̃

⊤
)

⋅CL(ydes), (C.4)

which is then “propagated linearly” as in (17) to estimate the confidence limit of t̂des, p, thus of the null space:

CL(t̂des) = CL
(
t̂des, p

)
+ t̂des, n. (C.5)

One may immediately see that the method proposed by Facco et al. (2015) relies on the simple inversion of a constant “prediction uncertainty”
estimated at ydes, thus with constant observation leverage estimated by t̂des, p. We remark that the estimated confidence limit for the null space depends
on the DI solution alone. Therefore, CL(ydes) can be incorporated in IbO to state linear inequality constraints on the confidence region of the null space,
being independent on the optimization variables in both cases z = tdes and z = xdes.
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On the other hand, the method proposed by Palací-López et al. (2019) adopts a more sophisticated approach, which also considers variable
observation leverage along the null space. Consider a generic point t̂desl along the subspace t̂des, defined as in (17). The corresponding output can be
computed as:

ŷdesl = Q̃
⊤

⋅
(
Q̃⋅Q̃

⊤
)

⋅t̂desl , (C.6)

which is then used to compute the residual associated with the considered point along the null space:

rdesl = ydes − ŷdesl . (C.7)

The residual is projected back onto the space of LVs and used to propagate the inversion uncertainty onto the considered point of the null space,
defining the “perturbated” scores as:

t̃desl = t̂desl + Q̃
⊤

⋅
(
Q̃⋅Q̃

⊤
)

⋅rdesl . (C.8)

The perturbated scores account for the error associated with the null space on the reconstruction of ydes, thus can be used to obtain the leverage of ŷdesl
as:

hŷdesl
= t̃⊤desl ⋅Λ

− 1 ⋅̃tdesl , (C.9)

which allows one to estimate the standard deviation of ŷdesl :

sŷdesl
= RMSE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
1
N
+ hŷdesl

√

. (C.10)

Finally, (B.1) is leveraged to compute the confidence limit of ŷdesl at a given significance level α:

CL
(
ŷdesl , t̂desl

)
= ŷdesl ± sŷdesl

t(N − DOF) |α
2
, (C.11)

and the confidence limit of the considered null space point, t̂desl , is obtained applying (14) to invert CL
(
ŷdesl , t̂desl

)
, which yields:

CL
(
t̂desl

)
= t̂desl ± Q̃

⊤
⋅
(
Q̃⋅Q̃

⊤
)

⋅sŷdesl
t(N − DOF) |α

2
. (C.12)

The procedure can be repeated for any generic points in the subspace t̂des to estimate the confidence limits of the whole subspace.
Note that we described the method with reference to a generic point along the null space, t̂desl . However, the method can be applied to any vector in

the space of LVs, tdes. In this case, t̃desl is interpreted as the orthogonal projection of tdes onto the null space (Palací-López et al., 2019). If tdes is the
vector of optimization variables in IbO, this makes the approach proposed by Palací-López et al. (2019) nonlinear in tdes for it involves a quadratic
function of the latent variables, as can be seen in (C.9), therefore it must be incorporated in the optimization problem as a nonlinear constraint. Note
that the approach can be used also when IbO is formulated in the space of input variables by simply computing tdes = (W*)

⊤⋅xdes.
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