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A B S T R A C T   

Multi-objective design approaches can help identify future infrastructure system designs that appropriately 
balance different engineering, environmental, and other societal goals. Planners benefit from assessing the trade- 
offs implied by the best-performing infrastructure system solutions. However, a large number of possible efficient 
system designs, obtained when using multi-objective optimization, can be overwhelming to interpret. This study 
attempts to aid decision-making in multi-criteria infrastructure system design by reducing the complexity of the 
identified set of efficient infrastructure designs, i.e., the Pareto-front. A soft clustering algorithm is applied, 
which identifies similarities between solutions, partitions the front accordingly, and selects a set of representative 
solutions while preserving the multi-dimensional structure of the solutions on the efficiency frontier. Three post- 
optimization decision-making metrics are introduced to help quantify the overall performance of the Pareto- 
optimal designs to further summarize design process outputs for decision-makers. We apply the method to an 
illustrious urban drainage network case study. Results show how the approach can simplify Pareto-fronts with 
thousands of solutions into sets of highlighted designs that aid interpreting the trade-offs implied by the best- 
performing simulated systems.   

1. Introduction 

The design of urban infrastructure generally benefits from consid-
ering several goals. Whilst informative, this raises the issue of how to 
select a design given multiple performance criteria and the many 
possible different packages (combinations) of infrastructure options to 
consider. Heuristic multi-objective optimization algorithms (Maier 
et al., 2019) have been widely used by researchers for over a decade to 
tackle this task. This is due to their ability in dealing with multiple ob-
jectives to be minimized or maximized at the same time, resulting in a 
set of Pareto-optimal solutions (‘Pareto-front’). In this context, a 
Pareto-front refers to a set of efficient solutions, in which there is not 
even a single solution with one better objective and other non-inferior 
objectives. This special decision-relevant set of designs contains all the 
future systems where performance cannot be improved in any dimen-
sion without simultaneously reducing performance in one or more other 
dimensions. The term ‘many-objective optimization’ is also sometimes 
used for design problems with more than three objectives (Fleming 

et al., 2005) where the heuristic search is used. This is a posteriori 
optimization, where planners evaluate the trade-offs between the opti-
mized design objectives and select one or more solutions based on their 
engineering insight, past experience, and evaluation of costs and bene-
fits; there is no need a priori of providing different priorities or weights 
between objectives. 

However, documented use of multi-objective design methods by 
practitioners is more limited. Selecting or justifying an appropriate 
design, given the trade-offs they imply between several design objec-
tives, remains a complex task (Blasco et al., 2008). Its complexity can 
increase with the number of optimized objectives, especially when the 
agreement must be achieved between several decision-makers who may 
have conflicting objectives. This process can be difficult if 
decision-makers lack relevant expertise or have time constraints. 
Moreover, in optimization problems, there is a general expectation that 
the number of optimal solutions will increase as the optimizer model 
approaches the final solution set with small steps. In other words, the 
higher the accuracy of a search algorithm, the larger the number of 
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solutions in the resultant Pareto-approximate set (Hadka and Reed, 
2013), implying that a high degree of accuracy in an optimization 
problem corresponds to a denser sampling of the non-dominated solu-
tion space. Pareto-fronts with many solutions make it harder to visualize 
and interpret trade-offs between design objectives, making it more 
difficult for decision-makers to use results to inform their selection of a 
particular portfolio of options (a design). The psychology literature has 
pointed out that decision-makers have difficulties in processing large 
data sets and using them to take decisions (Duro et al., 2014; Kaplan, 
1995). 

Urban drainage infrastructure design is an example where this topic 
is of relevance. Urban drainage systems protect cities from the risk of 
flooding and protect their downstream environments and ecosystems 
from pollution (Butler and Davies, 1999). However, climate change and 
rapid urban expansion have made some existing drainage infrastructure 
insufficient to protect cities from intense rainfall events (Huang et al., 
2020). Potential solutions include expansion and refurbishment of 
traditional grey drainage infrastructure (Barreto Cordero, 2012), 
real-time flow control of drainage systems (Abou Rjeily et al., 2018), and 
applying sustainable urban drainage systems (SuDS) (Elliott and Trow-
sdale, 2007; Li et al., 2022; Shojaeizadeh et al., 2021; Torres et al., 2020) 
to reduce surface runoff. The latter have received attention in recent 
years because of their multi-functional properties such as improvement 
of water quality in receiving water bodies by promoting sediment 
settling, filtering, and biological breakdown of pollutants (Woods Bal-
lard et al., 2015), improving biodiversity (Wright, 2011), delivering 
recreational opportunities, improving the mental and physical health of 
the residents (Mell, 2010), and turning floods into alternative water 
supplies. The various advantages of using SuDS (co-benefits), compared 
to the first two methods, can complicate their design-related decision--
making process. 

Several studies have used multi-objective optimization methods for 
SuDS design (Eckart et al., 2018; Huang et al., 2022; Koc et al., 2021; 
Macro et al., 2019; Mani et al., 2019; Seyedashraf et al., 2021a). For 
example, Eckart et al. (2018) applied the Borg multi-objective evolu-
tionary algorithm (MOEA) (Hadka and Reed, 2013) to a SuDS design 
problem in Windsor, Canada. The model was used to find efficient sur-
face areas of four types of sustainable urban drainage facilities, 
including infiltration trenches, rain gardens, permeable pavements, and 
rain barrels. Seyedashraf et al. (2021a) found Pareto-optimal designs of 
SuDS to reduce risk of flooding in urban areas with different surface 
slopes. The promotion of adaptivity and resilience of urban drainage 
infrastructure services, in response to variabilities in future climate, 
urbanization, and population growth, has also resulted in several studies 
in this field. For instance, Casal-Campos et al. (2018) considered model 
robustness in delivering long-term and resilient sustainable urban 
drainage infrastructure services. Babovic and Mijic (2019) used an 
adaptation tipping points approach to investigate how urban drainage 
systems respond to climate variability, in terms of depth and intensity of 
future rainfall events, in the Cranbrook urban catchment, London. 

Although there are several studies on the use of multi-objective 
optimization models to assist the design of urban drainage systems, 
the literature on aiding the use and interpretation of optimized design 
results in the decision-making process is sparse. In the area of designing 
urban water networks, this paper’s intended contribution is to help 
narrow the number of optimization outputs down to a handful of solu-
tions while preserving the distributional structure of the full Pareto- 
fronts, thereby making them easier to interpret and use. An illustrative 
urban drainage system was considered for generating a sample of effi-
cient system designs, and a soft clustering algorithm was used, which 
partitions the Pareto-front into a number of clusters, each of which in-
cludes solutions that behave similarly in terms of fulfilling the design 
goals. A representative solution is then assigned to each cluster, making 
it possible to reduce a Pareto-front with several solutions to a smaller 
number of similar infrastructure designs. In this way, the representative 
solutions highlight designs that behave roughly similarly, hence 

preserving the distributional structure of the Pareto-front like its orig-
inal version, yet helping stakeholders identify and differentiate between 
subgroups of similar efficient designs. Moreover, since overall perfor-
mance metrics can in some cases assist decision-makers (Duro et al., 
2014), we introduced three post-optimization metrics that look at 
classes of data sets to evaluate the overall performance of the efficient 
designs. These can be used when decision-makers have achieved their 
major design goals and need an objective way to distinguish between a 
shortlist of designs. The metrics were used to rank clusterized solutions 
as a decision-making aid when there is no further preference for any of 
the design objectives because the essential design requirements have 
been met. 

2. Methodology 

The proposed framework seeks both to simplify the analysis of multi- 
objective optimization outputs and help to bring consistency in decision- 
making when planners might be overwhelmed by the number of 
different combinations of design options. It aims to simplify decision- 
making in multi-objective urban water infrastructure design problems 
by reducing the complexity of Pareto-fronts and helping decision- 
makers focus their attention on groups of similar system designs 
rather than having to evaluate an overwhelming number of marginally 
different designs. 

A simulation-optimization framework was applied with a set of 
decision-making tools to evaluate the resultant Pareto-front. Flow 
routing simulations were carried out using the Storm Water Manage-
ment Model (SWMM) (Gironás et al., 2010), whereas Borg MOEA was 
employed for model optimization and to generate sets of SuDS designs 
with best trade-offs between the objective functions. The metaheuristic 
multi-objective search process we use is a posteriori optimization, where 
prior preferences on design objectives are not defined, and decisions are 
made based on the performance trade-offs implied by efficient solutions 
of the Pareto-set (Coello et al., 2007). A fuzzy data clustering algorithm 
was used to explore data structure in the resultant Pareto-front and 
classify designs in a trial-and-error fashion by calculating the global 
silhouette index for each clustering scheme as a measure to evaluate 
quality of the clusters. Subsequently, additional metrics were used to 
quantify the overall performance of the representative solutions. 

2.1. Many-objective optimization 

In many-objective optimization problems, one or several search al-
gorithm/s may be implemented to reduce the decision space to a set of 
solutions that maximize and/or minimize multiple design objectives 
subject to a given set of design constraints (Maier et al., 2019). This 
process can be mathematically described as follows: 

Minimize :
l ε φ

F(l) = (F1(l),F2(l),…,FNo (l)) (1)  

Subject to :

{
Ceq,j(l) = 0j = 1,…,Nq
Cin,k(l) ≤ 0k = 1,…,Nr

(2)  

where F(l) is a vector of objective functions, Fi(l), which characterizes 
performance of the vector of decision variables, l, with No number of 
objectives in the decision space, φ. Moreover, Ceq,j(.) and Cin,k(.) are 
equality and inequality functions with Nq and Nr constraints, respec-
tively. 

2.2. Data clustering 

Data clustering algorithms help discover groupings of data points in 
large datasets based on measures of similarity. They can be used to 
organize, compress, and categorize large amounts of data for diverse 
applications, including image segmentation, text mining, speech 
recognition, and health monitoring (Bezdek et al., 1984; Mitra et al., 
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2004; Ng et al., 2006; Satour et al., 2020). In the past years, such al-
gorithms have also been applied in the context of urban water infra-
structure design to investigate spatial characteristics of system 
components (Huang et al., 2015; Liu et al., 2016; Muhammed et al., 
2017). Various clustering algorithms have been introduced based on the 
three main data partitioning approaches, including: (1) hierarchical, e.g. 
clustering using representatives (CURE) (Guha et al., 1998); (2) exclu-
sive, e.g. k-means clustering algorithm (MacQueen, 1967); and (3) 
overlapping clustering approaches, such as the fuzzy c-means clustering 
algorithm (Bezdek, 1981). The hierarchical clustering algorithms oper-
ate by successive clustering of initially partitioned data points via a 
dendrogram in which the root of all subsets corresponds to the main data 
set. The exclusive clustering algorithms partition datasets into a number 
of groups with crisp boundaries where each data point belongs to only 
one cluster (MacQueen, 1967). The overlapping clustering algorithms, 
however, allocate membership grades to each data point allowing them 
to fit in multiple groups (Bezdek, 1981; Bezdek et al., 1984; Zadeh, 
1965), for which the membership values can range between 0 and 1 and 
sum up to 1 for all clusters. The closer the membership values to 1 the 
better the clustering process. In this category, the fuzzy c-means clus-
tering algorithm is the most widely used method, which groups similar 
data objects into clusters. 

In the fuzzy c-mean data clustering method, the final groupings of a 
dataset into different groups are not as clear as in the case of k-means 
clustering where each data in the dataset is assigned to only one cluster. 
In fuzzy c-means clustering, however, each object belongs to all clusters 
to a degree of membership. Fuzzy c-means is based on the fuzzy theory 
where the membership value of an object is not explicitly assigned to a 
value of 1 or 0, representing a member or not of a cluster, respectively. 
Using this technique, the centroid of each cluster corresponds to the 
center of the data to which each object contributes with its own degree 
of membership. The algorithm operates by selecting and iteratively 
updating hypothetical cluster centers, Ck as follows: 

Ck =

∑Nc

i=1
(dmik)

w
× Di

∑Nc

i=1
(dmik)

w
(3)  

so as to minimize a loss function, L, 

L=
∑Nc

i=1

∑Np

k=1
(dmik)

w
× Rik (4)  

subjected to the following constraint (Bezdek, 1981): 

∑Ns

k=1
dmik = 1 (5)  

where dmik is the membership degree of the ith data point to the kth 

cluster, Np is the number of data points, Nc is the number of clusters, w is 
a weighting factor, Di is the ith data point, and Rik is the distance between 
the ith data point and kth cluster center, which must be minimized by an 
integrated optimization model. 

Here, the degree of membership depends on the closeness of each 
data object to the respective cluster center, hence, the higher the degree 
of membership value of a data object the greater its association with a 
particular cluster center. The fuzzy c-means clustering algorithm was 
used in this study with its weighting factor and number of clusters to be 
determined based on a trial-and-error method that calculates the global 
silhouette index for each clustering scheme as a measure to evaluate 
quality of the generated clusters (Sun et al., 2015; Zio and Bazzo, 2011). 
The silhouette index, s, ranges between − 1 and + 1, where s = + 1 
implies that a solution is distant from other designs in the nearest 
cluster, s = − 1 indicates that the solution is assigned to a wrong parti-
tion, and s = 0 implies that the solution is not distinctly assigned to a 

particular partition. Accordingly, the larger the silhouette value, the 
better the clustering and consistency among the cluster data objects. 

The global silhouette index, GS, is calculated as follows: 

GS=
1

Nc

∑Nc

j=1

(
1

Ne

∑Ne

i=1
s(i)

)

(6)  

where Ne is the number of SuDS designs in each cluster, and s(i) is the 
silhouette index of the ith design solution defined as follows: 

s(i)=
Da(i) − Db(i)

max{Da(i),Db(i)}
(7)  

where Da(i) and Db(i) are average distances of the ith solution from other 
solutions in the same and nearest clusters, respectively. 

2.3. Ranking design portfolios 

While the decision-making process is often based on subjective views 
and previous experiences (Duro et al., 2014), the assessment of the 
performance of the optimized designs can be aided by decision support 
tools. In this study, three decision support metrics were used to provide a 
measure of the overall performance of the Pareto-optimal solutions. 
Once planners have achieved their major objectives but several possible 
designs are still left, an objective way to further distinguish between a 
shortlist of designs can be helpful. Generally, the measures can be 
defined based on normalized distances of objective function values from 
the minimum values obtained. Accordingly, the overall performance of 
each design can be quantified using the 1-norm (‖N‖1), 2-norm (‖N‖2), 
and the infinity norm (‖N‖∞) of the vectors of normalized objectives 
(Reynoso-Meza et al., 2013; Sánchez-Orgaz et al., 2015). 

In this regard, the 1-norm ‖N‖1 corresponds to the summation of the 
normalized objectives for a particular design solution (Zio and Bazzo, 
2011), and is calculated as follows: 

‖N‖1 =
∑No

k=1
|Fk| (8)  

where No is the number of designs in the reduced front and the kth 

normalized objective in the ith solution, Fk(i), is defined as: 

Fk(i)=
Fk(i) − Fk,min

Fk,max − Fk,min
, k = 1, 2,…, 4andi = 1, 2,…, 5 (9)  

where Fk(i) is the kth objective of the ith SuDS solution and Fk,min and 
Fk,max are the maximum and minimum values of the kth objective in the 
Pareto-front. 

Alternatively, the 2-norm can be used to find the normalized 
Euclidian distance between a point in the objective function space and 
the point corresponding to the best objective function values obtained. 
The 2-norm is calculated as follows: 

‖N‖2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑M

i=k
|Fk|

2

√
√
√
√ (10) 

Another performance metric can be defined using the infinite norm, 
which gives the maximum value of the normalized objective functions in 
the available designs. This metric is helpful to find a solution with the 
least-worst objective function values, i.e.: 

‖N‖∞ =max (|F1|, |F2|, |F3|, |F4|) (11) 

When put side by side in a parallel axes plot, these metrics can help 
decision-makers evaluate the overall performance of each solution and 
identify the best solutions within their design preferences 

Fig. 1 summarizes the proposed workflow for many-objective opti-
mization of SuDS. This involves using SWMM for evaluating system 
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performance coupled with the Borg MOEA to obtain a set of Pareto- 
optimal SuDS designs, and with the fuzzy c-mean clustering algorithm 
to determine a smaller set of representative solutions. In the latter stage, 
additional metrics were used to quantify the overall performance of the 
representative solutions. 

3. Application of the proposed approach 

3.1. Case study 

An illustrative urban drainage system, comprising 7 subcatchments, 
11 junctions, and 11 conduits (Fig. 2), was considered to demonstrate 
application of the proposed decision-making framework. 

This case study is a modified version of the model presented by Lewis 
A Rossman (2017) and used as a standard benchmark in different 
drainage design studies considering urban flooding both in terms of 
water quantity and quality (Giacomoni and Joseph, 2017; Nehrke and 
Roesner, 2002, 2004; Sambito et al., 2020). To reduce model 
complexity, it was assumed that there are no restrictions on placing 
different types of sustainable urban drainage components in the sub-
catchments. Moreover, the pipe diameters were halved, compared to the 
original case study presented by Rossman (2017), in order to generate a 
scenario where additional drainage infrastructure would be needed to 
avoid flooding in the region of interest. 

SWMM (Gironás et al., 2010) was used to simulate drainage pro-
cesses in the study area. SWMM incorporates three flow routing models, 
including steady flow, kinematic wave, and dynamic wave models, to 
simulate the flow of runoff through the drainage network (Rossman, 
2017). The dynamic wave flow routing model was used in this study due 
to its ability to reproduce pressurized and backwater flow conditions by 
solving the Saint-Venant equations (Meza and Oliva, 2003). SWMM can 
also simulate pollution build-up and transport; and in its latest versions, 
it allows simulation of best management practices such as rain gardens, 
bio-retention cells, green roofs, permeable pavements, infiltration 
trenches, rain barrels, rooftop disconnections, and vegetative swales 
(Gironás et al., 2010). In this study, the first six sustainable urban 
drainage components were used to decrease stormwater runoff, how-
ever, further preferences to certain types of SuDS may be applied by the 
decision-makers in terms of optimization constraints throughout the 
search process. 

3.2. Optimization model 

A many-objective optimization and decision-making approach 
developed to find efficient drainage system designs where the decision 
variables include types, combinations, surface areas, and spatial distri-
bution of SuDS components in the catchment. The search algorithm 
considers simultaneous minimization of average flood duration, total 

Fig. 1. Flowchart of the proposed many-objective optimization approach for design of sustainable urban drainage infrastructure.  
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flood volume, total suspended solids (TSS), and capital cost of SuDS 
components for balanced design objectives. Accordingly, the optimiza-
tion objectives were considered as follows: 

Minimize F(l) = (FC(l),FFD(l),FFV(l),FTSS(l)) (12)  

where FC is capital cost, FFD is average flood duration, FFV is overall flood 
volume, and FTSS is TSS load at system outfall. The capital cost function 
is defined as: 

FC =
∑Ns

i=1

∑2

j=1

(
cij × aij

)
(13)  

where Ns is the number of subcatchments, aij and cij are respectively the 
surface area and capital cost of each SuDS component extracted from 
cost databases published by the Washington State Department of Ecol-
ogy & Herrera Environmental Consultants (2012) and online vendors. 

The overall TSS at the system outfall was extracted from numerical 
simulations whereas the average flood duration, FFD, and overall flood 
volume, FFV , for each SuDS design were calculated as follows: 

FFD =

∑Nj

i=1
fdi

nj
(14)  

FFV =
∑Nj

i=1
fvi (15)  

where Nj is the number of system junctions, and fdi and fvi are flood 
duration and flood volume for each system junction, respectively. 

In this study, the Borg MOEA was used (Hadka and Reed, 2013) for 
the optimization due to its proven performance in dealing with 
multi-criteria water system design, planning, and management (Li et al., 
2021; Seyedashraf et al., 2021b; Zatarain Salazar et al., 2017). Borg 
benefits from a combination of various search algorithms, which operate 
by evolving an initial population of solutions towards solutions with 
higher fitness values. Moreover, a random seed analysis was performed 
by a total of 30 optimization runs each of which started with a random 
initial population to ensure a sufficient level of diversity in the final set 
of Pareto-optimal solutions. To verify convergence of the optimization 
process, the evolution of the hypervolume indicator was evaluated for 

each optimization run against the number of objective function evalu-
ations across the initial populations (Appendix A). 

4. Results and discussion 

This section illustrates the results obtained from applying the pro-
posed multi-criteria system design assistance method to an illustrative 
case study involving sustainable urban drainage infrastructure. A real- 
world case study might have better helped demonstrate its ability to 
assist decision-making but this case study system, widely used in the 
literature as a benchmark provides an accessible example of use (Nehrke 
and Roesner, 2002; Sambito et al., 2020; Seyedashraf et al., 2022). 

4.1. Pareto-optimal solutions 

A reference set was generated by combining solutions from optimi-
zation runs resulting in the roughly 15,000 Pareto-optimal solutions 
shown in a parallel coordinate plot (Fig. 3). Parallel axis plots (Inselberg, 
2009) (also named parallel coordinate plots) have been widely used in 
multi-objective optimization problems relating to water management 
and water infrastructure design to support decision-making and explo-
ration of relationships between design goals (Matteo et al., 2016; 
Seyedashraf et al., 2021a). Here, the vertical axes represent design ob-
jectives and each colored line connecting the axes represents an infra-
structure system design implying different trade-offs between the design 
objectives. 

4.2. Clustering the pareto-front 

In this study, a decision-making framework for many-objective 
optimization of SuDS is proposed that narrows down the Pareto (effi-
cient) fronts to a handful of designs while preserving their distributional 
structure. The data clustering technique applied here groups similar 
SuDS design according to their performances and in terms of the pre-
viously defined objective functions. Here, we assume that the designs 
are acceptable to planners if the capital cost is less than 1.5 M$. 
Accordingly, any arrangement of weighting factors and numbers of 
clusters covering this range may be considered suitable to narrow down 
the Pareto-front. The number of data clusters can be determined by 
experience or based on the expertise/knowledge of the decision-makers 
or even determined automatically by an optimization method or trial- 
and-error. In this study, it is assumed that decision-makers have 
agreed to analyze 5 SuDS designs in the Pareto-front. Fig. 4 illustrates 
the trial-and-error process carried out to select the best fuzzy c-means 
clustering scheme with a maximum possible global silhouette index, 
which in this case was 0.68 for 5 data clusters and a weighting factor of 
2. In this figure, marker sizes represent the global silhouette value for 
each trial, where the larger a marker the more successful the clustering 
scheme. 

Fig. 5 depicts the 2D scatter plots of the primary Pareto-front (shown 
in Fig. 3) along with their cluster centers (hypothetical points) and 
cluster representatives (the existing designs nearest to cluster centers). 
Here, the cluster centers are synthetic data objects that do not belong to 
the Pareto-front, yet, imply where a good representative of a cluster can 
be. The designs closest to the cluster centers (red circle markers in Fig. 5) 
were selected as cluster representatives (black triangle markers in 
Fig. 5). The figure shows the degree of consistency among data points in 
each cluster where the larger the silhouette value, the better the clus-
tering. In this figure, the color range indicates the extent to which the 
designs belong to each cluster. 

It can be seen in Fig. 5 that the fuzzy c-means algorithm used in this 
study has successfully clustered solutions according to their perfor-
mance relative to each objective function. This is especially noticeable in 
the scatter plots in Fig. 5 illustrating the trade-offs between capital costs 
and flood volumes, capital costs and TSS values, flood volumes and TSS 
values, and flood volumes and average flood duration. However, 

Fig. 2. Schematic map of the synthetic case study.  
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shortcomings can be seen in clusters representing trade-offs between the 
average flood durations and TSS values, as well as capital costs and 
average flood durations, which can be inevitable when dealing with 
many-objective optimization problems with conflicting design 
objectives. 

Fig. 6 shows the trade-offs between optimized performance objec-
tives of the cluster representatives. In this figure, selection filters are 
defined as grey boxes which act as post-optimization constraints to 
reflect decision-makers’ preferences and/or requirements by removing 
undesired solutions from further evaluations (the www.polyvis.org 
website allows making interactive parallel coordinate plots). Here, 
each colored line represents a particular cluster representative solution, 
dashed lines are SuDS designs that do not fit in the post-optimization 
constraints, while the solid line (yellow in this case) represents a 
design that meets the filters imposed by decision-makers. 

A linear relationship between flood volume and TSS as well as a 
conflicting trade-off between capital costs and other three objective 
functions are evident in Fig. 6. Using the proposed Pareto-front simpli-
fication approach allows decision-makers easy exploration of the solu-
tions as well as the trade-offs between optimization objectives, thus 
providing decision-makers easy-to-understand information about the 
solution space. Moreover, from Figs. 3 and 6 it follows that when 
working on a subset of multivariate data in the design of urban water 
systems, Pareto-front clustering in a parallel coordinate plot can help 
decision-makers better focus their exploration of efficient alternative 
designs. The decision-making process can be further aided by decision 
support that ranks the overall performance of each design once planners 
have already achieved their major design goals. Here the 1-norm (‖N‖1), 
2-norm (‖N‖2), and the infinity norm (‖N‖∞) of the vectors of normal-
ized objectives were applied to help decision-makers evaluate the 

Fig. 3. Parallel axis plot of around 15,000 Pareto-optimal sustainable urban drainage system designs showing trade-offs between the optimization objectives, 
including capital cost, flood volume, average flood duration, and TSS. Here, the arrows show the direction of preference, the vertical axes represent design objectives, 
and each colored line connecting the axes represents a sustainable urban drainage infrastructure design implying different trade-offs between the design objectives. 

Fig. 4. The trial-and-error process used to find an efficient Pareto-front clus-
tering scheme to compress and categorize Pareto-optimal designs of sustainable 
urban drainage infrastructure. Here, marker sizes represent their global 
silhouette values where the larger a marker the more successful the clus-
tering scheme. 
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overall performance of each solution and rank solutions that all fall 
within their preferred design parameter preferences (Fig. 7). 

Fig. 7 can help decision-makers select SuDS design alternatives that 
fulfill the project requirements while providing three measures of the 
overall performance of the Pareto-optimal solutions. According to the 
results, the 3rd cluster representative is a relatively economic design, and 
its non-monetary objectives roughly fall in the middle of the vertical 
axes, which is consistent with its 1-norm value. Although the 3rd and the 
5th cluster representatives almost share identical 2-norm values, there is 
a noticeable difference between their infinity norm values as the 5th 

solution has at least one worst-case objective value. Moreover, the 2nd 

solution comprises objective values with the second-highest values of 
flood volume and infinity norm. Furthermore, the 4th solution is 40% 
more costly compared to the 3rd solution and performs best with respect 
to non-monetary objectives while sharing an identical infinity norm of 
0.60. 

5. Conclusions 

Decision-makers may find it difficult to process and make decisions 

based on the results of design studies that produce large numbers of 
alternative designs. The new crop of multi-objective a posteriori opti-
mization methods used in infrastructure system engineering fit in this 
category by typically resulting in large numbers of alternative ‘efficient’ 
designs. In this paper, we propose a new framework for narrowing down 
the number of Pareto-optimal infrastructure designs to a more parsi-
monious summarized set while preserving the multi-dimensional 
structure of the full set of optimized solutions. To this end, a soft clus-
tering algorithm was used to aggregate Pareto-optimal solutions based 
on performance similarities. The algorithm was able to narrow down a 
Pareto-front of around 15,000 efficient sustainable urban drainage sys-
tem designs to 5 designs within the range of acceptable cost and benefit. 
For each cluster, the design closest to each virtual cluster center is 
chosen as the representative solution of the cluster. The proposed 
method can help urban drainage infrastructure planners more easily and 
effectively interpret and learn from efficient system designs and the 
trade-offs and synergies they imply. The evaluation of the performance 
of different design solutions can be further complicated by the need to 
consider the effects of parameter uncertainty and climate change, which 
were not addressed in this study. 

Fig. 5. 2D scatter plot of Pareto-optimal designs of sustainable urban drainage infrastructure along with their cluster centers (red circle markers) and cluster 
representatives (black triangle markers). The color range represents silhouette indices of the solutions according to the clusters they belong to. The figure shows the 
degree of consistency among data points in each cluster where the larger the silhouette value, the better the clustering. 
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Fig. 6. Parallel axes plot of the reduced Pareto-front 
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solutions from further analysis.   

Fig. 7. Parallel axes visualization of Pareto-optimal sustainable urban drainage infrastructure designs. This figure illustrates trade-offs between the design objectives 
and ranks each solution in terms of its 1-norm, 2-norm, and infinity norm values. The arrows show the direction of preference, and each colored line represents a 
sustainable urban drainage system design. 
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Appendix A. Convergence of the optimization process 

In this study, 30 many-objective sustainable urban drainage infrastructure optimizations were carried out each of which initialized with different 
random populations to reduce randomness dependency of the implemented search algorithms. Fig. A1 depicts the hypervolume evolution across 
initial populations over the number of objective function evaluations. The shaded area bounds the hypervolume indicators of the Pareto-fronts and the 
solid curve represents the mean hypervolume of the different runs. The hypervolume indicator is a commonly used quality measure for evaluating the 
performance of multi-objective search algorithms. According to the hypervolume evolution in this figure, the Pareto-front stabilizes after completing 
around 20,000 objective function evaluations.

Fig. A1. Hypervolume evolution across 30 random initial populations over the number of objective function evaluations. The shaded area bounds the hypervolume 
of the Pareto-optimal sustainable urban drainage infrastructure designs and the solid line represents the mean hypervolume indicator reached through the 
experiments. 
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