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Chemical cloaking

Francesco Avanzini ,* Gianmaria Falasco,† and Massimiliano Esposito ‡

Complex Systems and Statistical Mechanics, Department of Physics and Materials Science,
University of Luxembourg, L-1511, Luxembourg

(Received 20 November 2019; accepted 22 May 2020; published 9 June 2020)

Hiding an object in a chemical gradient requires one to suppress the distortions it would naturally cause on it.
To do so, we propose a strategy based on coating the object with a chemical reaction-diffusion network which can
act as an active cloaking device. By controlling the concentration of some species in its immediate surrounding,
the chemical reactions redirect the gradient as if the object was not there. We also show that a substantial fraction
of the energy required to cloak can be extracted from the chemical gradient itself.
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Inhomogeneous concentrations are a hallmark of out-of-
equilibrium phenomena and not surprisingly play a funda-
mental role in biology. Common examples are pattern forma-
tion in morphogenesis [1,2], chemical waves in signaling [3],
and chemotaxis [4,5] where single cells [6–8] or cell clusters
[9,10] sense gradients to detect energy sources or hazards.
White blood cells, for instance, exploit chemical gradients
to detect unidentified substances, generic wounds, and cancer
cells [11]. One strategy to avoid being detected is to avoid the
distortions on the gradient that any generic object embedded
into it would produce. In this Rapid Communication, we
propose an active strategy to leave the chemical gradient
unchanged: By coating an object with a reaction-diffusion
system, the chemical gradient around the object is restored
as if the object was not there. Previous works on cloaking
adopted a very different strategy based on coating the object
with a metamaterial [12,13] with transport properties tuned in
such a way as to direct the field around the object. This was
initially conceived to achieve optical invisibility [14,15] by
tuning the permittivity and permeability of the material, and
was also experimentally realized [16–19]. Similar strategies
[20–22] were later used to tune diffusion tensors and cloak
either heat or mass flows [23–26]. Cloaking from quantum
matter waves [27,28] or a hydrodynamic environment was
also considered [29,30]. Crucially, however, all these works
share the same fundamental approach: They design the space
variation of a tensor transport property (e.g., permittivity,
permeability, diffusion) and thus correspond to passive mech-
anisms of cloaking. Our approach is instead based on an active
process using chemical reactions which leaves the diffusion
coefficients unchanged. One may speculate about whether
such a strategy is or could be implemented in biosystems
where chemical reactions are ubiquitously present.

Let us consider a two-dimensional region of space � in
which a species Z freely diffuses, ∂t Zo = −∇ · Jo

Z with the
Fick’s diffusion flux Jo

Z = −D∇Zo, and D the scalar (and
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constant) diffusion coefficient. Two-dimensional space will
enable analytical treatment and is also common in biology
where surface processes are ubiquitous. At steady state, the
concentration profile is thus given by the Laplace equation
∇2Z

o = 0, complemented by boundary conditions on the
contour ∂�. If an impermeable object is introduced in �,
the steady-state profile will be distorted. Our main finding in
this Rapid Communication is to design a ring-shaped cloaking
device which, when surrounding the object, can restore the
outer steady-state profile to its pristine state Zo (i.e., the
one in the absence of the object). The outer (inner) surface
of the ring at radius R2 (R1) is permeable (impermeable) to Z .
The region between the outer and the inner surface is denoted
�i and chemical reactions take place in it. The region inside
the inner surface is the core that will embed the object. To
enable analytical calculations, we will focus on a setup where
� is a vertical stripe of width 2L centered around the origin
with concentration z1 on the left and z2 on the right boundary.
As illustrated in Fig. 1(a), in its pristine state this setup gives
rise to a linear steady-state profile,

Z
o
(x, y) = βx + z0, (1)

with β = (z2 − z1)/2L the slope of the gradient and z0 =
(z2 + z1)/2 the concentration at x = 0. We exemplify in
Fig. 1(b) how a circular object of radius R1 distorts this profile.

We now explain how our ring-shaped cloaking device
center around the origin can be used to restore any pristine
concentration profile outside R2 by enclosing an arbitrary
object within R1. To cloak and be compatible with matter
conservation, the steady-state concentration of Z inside the
ring, Z

i
, must obey the following boundary conditions. The

internal concentration and its gradient must be continuous at
R2 with the outer pristine profile,

Z
i
(R2, θ ) = Z

o
(R2, θ ), (2)

∇Z
i
(R2, θ ) = ∇Z

o
(R2, θ ). (3)

Furthermore, the gradient must be tangent to the inner bound-
ary at R1 due to its impermeability,

∇Z
i
(R1, θ ) · r̂ = 0. (4)
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FIG. 1. Steady-state concentration and diffusion flow field in
a vertical stripe domain of width 2L maintained at two different
concentrations z1 and z2 on each side (a) in the absence of an object,
(b) in the presence of that object of radius R1, and (c) when the
object is coated by a ring-shaped cloaking device of width R2 − R1.
Here, L = 2.8, z1 = 15.8 z2 = 10.2, D = 1, R1 = 1, and R2 = 2.
We use k+/k−, k−/(k+)2, and

√
Dk−/k+ as units of measure for

concentration, time, and space, respectively.

We introduced polar coordinates (r, θ ) and the radial unit
vector r̂. The boundary conditions Eqs. (2)–(4) constitute the
cloaking conditions. At the end of this Rapid Communication,
we show that a possible steady-state profile inside the cloaking
device able to restore an arbitrary pristine profile Z

o
is

Z
i
(r, θ ) = ∂rZ

o
(R2, θ )

drR(R2)
[R(r) − R(R2)] + Z

o
(R2, θ ), (5)

with R(r) = (r − R1)2. In the case of the vertical stripe model
producing the pristine profile (1), Z

i
is shown in Fig. 1(c).

Since our strategy makes use of chemical reactions,
Z

i
(r, θ ) must now be obtained as a steady-state solution of

the reaction-diffusion equation

∂t Z
i(x, y; t ) = ji(x, y; t ) − ∇ · Ji

Z (x, y; t ), (6)

where ji is the net current of Z produced by all the chemical
reactions according to the mass-action kinetics [31,32] and
Ji

Z is the Fick’s diffusion flux Ji
Z = −D∇Zi. We assumed that

the diffusion coefficient inside the ring is identical to the one
outside, D. We therefore need to specify the net reactions that

at steady state will give rise to j
i = ∇ · J

i
Z = −D∇2Z

i
, where

Z
i
is our cloaking profile given in (5). In general, this problem

has multiple solutions, as multiple sets of chemical reactions
may lead to the same steady-state profile.

To proceed we will now focus on our vertical stripe model.
Using (1) in (5), the steady-state concentration becomes

Z
i
(r, θ ) = β cos θ

2

{
(r − R1)2

R2 − R1
+ R2 + R1

}
+ z0. (7)

After a simple manipulation, we find that the net steady-state
reaction current, j

i = −D∇2Z
i
, can be expressed as

j
i
(r, θ ) = k+A(r)Z

i
(r, θ ) − k−B(r, θ )[Z

i
(r, θ )]2, (8)

where

k+A(r) = D

r2
, (9)

k−B(r, θ ) = D
βr(2r − R1) cos θ + z0(R2 − R1)

r2(R2 − R1)[Z
i
(r, θ )]2

. (10)

This current can be interpreted as the mass-action reaction
current produced by the reaction

A + Z
k+−⇀↽−
k−

B + 2Z, (11)

provided that B(r, θ ) is non-negative in �i. Indeed, in this case
both A and B can be interpreted as imposed concentrations
which do not enter the dynamics, i.e., as chemostatted species
[33]. This means that external mechanisms must actively
maintain these concentrations and that the cloaking device
must be fueled to operate. The non-negativity condition on
B holds if

z0 � |β|R2(2R2 − R1)

R2 − R1
. (12)

This constraint connects the properties of the pristine gradient,
z0 and β, to the geometry of the cloaking device, R1 and
R2. However, as discussed at the end of this Rapid Commu-
nication, a linear stability analysis of the reaction-diffusion
equation in � shows that the cloaking solution is stable only
if the stronger constraint

z0 � |β|R2(3R2 − R1)

R2 − R1
(13)

is satisfied. The chemostatted concentrations (9) and (10)
corresponding to the vertical strip model used for Fig. 1 are
plotted in Fig. 2. One observes that the angular dependence
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FIG. 2. Chemostatted species concentrations, (a) k+A(x, y) and
(b) k−B(x, y), corresponding to Fig. 1(c).

of B(r, θ ) is weak. Indeed, for large values of z0, B(r, θ ) �
D/z0r2. We thus designed a ring-shaped cloaking device
containing the simple reaction (11) kept out of equilibrium
by the chemostatted species (9) and (10). This device would
make any object in its core undetectable via concentration
profile measurements by preserving the pristine concentration
profile (1).

We will now assess the energetic cost needed to maintain
the cloaking state. While part of the energy is provided by
the chemostats, we will see that another part can be extracted
from the chemical gradient. The entropy production rate in
an isothermal system quantifies the energy dissipation. For a
reaction-diffusion system at steady state, it is given locally
by [34]

T σ̇ = ẇchem − ∇ ·
∑

α

(μαJα ) � 0, (14)

where α labels the different species (for our model α =
A, B, Z), Jα their Fick fluxes, and μα = μθ

α + RT ln [α] their
chemical potentials. Here, R is the gas constant, T is the
temperature of the solvent, μθ

α is the standard chemical

potentials, and [α] is the steady-state species concentrations.
The chemical work rate ẇchem is given by

ẇchem =
∑

α∈chemstat

μαIα (15)

and represents the chemical energy entering the system from
the chemostats via the currents Iα . For our model IA = j

i −
DA∇2A and IB = − j

i − DB∇2B.
Let us first introduce the dissipation for the pristine profile

occurring in the region �C that will be later occupied by the
cloaking device (ring and core). Since it is caused purely by
the diffusion of Z in �C , integrating (14) with ẇchem = 0 over
�C and using Gauss’s theorem, it is given by

T 
̇
o = −

∫
∂�C

da · (
μo

Z J
o
Z

)
� 0. (16)

It can be interpreted as the energy entering the region �C

through its boundary. Turning back to the cloaking device, its
dissipation is obtained by integrating (14) over �i and can be
written as

T 
̇
i = Ẇ

i + T 
̇
o
� 0. (17)

The total work rate Ẇ
i

performed by the chemostats is
given by

Ẇ
i = Ẇ chem −

∫
∂�i

da ·
∑

α=A,B

μαJα. (18)

The first term comes from the direct integration of ẇchem

over �i and represents the chemical energy provided by the
chemostats inside the cloaking device. The second term is
obtained using Gauss’s theorem from the diffusion part of
A and B in (14). It represents the energy provided by the
chemostats to maintain a heterogeneous concentration of A
and B on the inner and outer boundary ∂�i of the device
against diffusion. The second contribution in (17) is obtained
using Gauss’s theorem from the diffusion of Z inside �i and

is thus given by − ∫
∂�i

da · (μi
ZJ

i
Z ), which, using the cloaking

condition (2)–(4), has the transparent interpretation of being
the chemical energy provided by the pristine profile through
the boundaries of the cloaking device (16). Equation (17) is
a key result of this Rapid Communication. It shows that the
dissipation of the cloaking device can be expressed as the
energy provided by the chemostats on the one end and by
the external pristine profile on the other end. While the latter
is always non-negative, the former has no predefinite sign.
When negative, the cloaking device is fully propelled by the
energy provided by the external gradient. However, we did not
find such a regime. We now reproduce the typical dissipative
contributions observed by considering a given cloaking device
(defined by the parameters R1, R2, DA, and DB) as a function
of the features of the pristine profile (z0 and β). As a function
of z0, Fig. 3(a) shows that for a given slope of the gradient the
total work rate to operate the cloaking device is a significant
fraction of the total dissipation. Furthermore, as z0 increases,

the energy provided by the gradient, T 
̇
o
, tends to zero

and the energy to operate the device is fully provided by
the chemostats. However, in Fig. 3(b), when increasing β

and choosing the corresponding minimum z0 [according to
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(a)

(b)

FIG. 3. Thermodynamic quantities as a function of (a) z0 (with
β = −1) and (b) |β|, corresponding to Fig. 1(c). Here, k+ = k− = 1,
DA = DB = 1, and we use RT as units of measure for the energy.

(13)], the energy is predominantly provided by the gradient
of pristine profile. In that limit the energy provided by the
chemostats to cloak reaches approximatively 20% of the total
dissipation.

Proof of Eq. (5). We describe the procedure to find the
steady-state profile satisfying the cloaking conditions (2)–(4).
One first notes that the cloaking conditions impose three and
not four constraints because the equality at r = R2 between
the concentrations Z

i
(R2, θ ) = Z

o
(R2, θ ) [Eq. (2)] ensures the

equality between the tangential component of the concentra-
tion gradients at r = R2, ∂θZ

i
(R2, θ ) = ∂θZ

o
(R2, θ ) [Eq. (3)].

Motivated by this, we make the following ansatz,

Z
i
(r, θ ) = ζ (θ )R(r) + �(θ ), (19)

with a radial function R(r) and two angular functions ζ (θ )
and �(θ ) to be determined by the three cloaking conditions.
Using the radial component r̂ of Eq. (3), we find

ζ (θ ) = ∂rZ
o
(R2, θ )

drR(R2)
, (20)

while Eq. (2) specifies �(θ ) as

�(θ ) = Z
o
(R2, θ ) − ζ (θ )R(R2). (21)

We now impose drR(R1) = 0 to ensure that the constraint (4)
is satisfied. A possible solution that we will use is R(r) =
(r − R1)2, but other choices could be R(r) = (r − R1)n with
n ∈ N>2 or R(r) = r + R2

1/r. This last result combined with
the substituting of (20) and (21) in Eq. (19) finally gives the
steady-state concentration (5).

Linear stability analysis. We perform a linear stability
analysis by perturbing the concentration Z (r, θ ; t ) around the
steady-state solution (7) inside the cloaking device, �i, and
the pristine profile (1) outside it, �o, overall denoted by Z .
Extending the reaction-diffusion dynamics (6) to the outside
of the cloaking device by assuming that

ji(r, θ ; t ) = k+A(r)Zi(r, θ ; t ) − k−B(r, θ )[Zi(r, θ ; t )]2 (22)

is vanishing outside the device, and linearizing for the pertur-
bation Zp(r, θ ; t ) = Z (r, θ ; t ) − Z (r, θ ), we get

∂t Z
p(r, θ ; t ) = − [−D∇2 + V (r, θ )]︸ ︷︷ ︸

=:L̂

Zp(r, θ ; t ), (23)

where V (r, θ ) = 2k−B(r, θ )Z
i
(r, θ ) − k+A(r) inside the de-

vice and vanishes outside. The perturbation vanishes at the
boundaries by construction and is assumed to be square-
integrable. The operator L̂ is Hermitian, and its eigenvalues
are thus real. Stability can be proven if all eigenvalues are also
positive to ensure the decay of the perturbation. A sufficient
condition for this to happen is that V (r, θ ) is always positive
because in this case

∫
�i∪�o

dxdy ψ (r, θ )L̂ψ (r, θ ) � 0 (24)

for every square-integrable function ψ . A positive V (r, θ ) is
granted when the condition (13) is satisfied.

Conclusions. We considered a simple linear profile and a
spherical geometry in two dimensions (2D) which enabled
a full analytical treatment that was crucial to identify the
reaction network achieving cloaking. Our work provides a
proof of principle that chemical cloaking is possible and opens
many future research avenues. Can one design a general pro-
cedure to identify the chemical reactions cloaking in a generic
gradient? Is there an optimal shape for the cloaking device
which could be used to design self-powered devices? How fast
can the cloaking conditions be established? Are there chem-
ical processes in biosystems (e.g., self-quorum quenching in
bacteria colonies [35]) acting as cloaking devices? We leave
the questions to future investigations.

Acknowledgments. We acknowledge funding from the Eu-
ropean Research Council project NanoThermo (ERC-2015-
CoG Agreement No. 681456).

060102-4



CHEMICAL CLOAKING PHYSICAL REVIEW E 101, 060102(R) (2020)

[1] S. Kondo and T. Miura, Science 329, 1616 (2010).
[2] S. Kretschmer and P. Schwille, Curr. Opin. Cell Biol. 38, 52

(2016).
[3] V. E. Deneke and S. Di Talia, J. Cell Biol. 217, 1193

(2018).
[4] K. F. Swaney, C.-H. Huang, and P. N. Devreotes, Annu. Rev.

Biophys. 39, 265 (2010).
[5] H. Levine and W.-J. Rappel, Phys. Today 66(2), 24 (2013).
[6] H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).
[7] W. Bialek and S. Setayeshgar, Proc. Natl. Acad. Sci. USA 102,

10040 (2005).
[8] R. G. Endres and N. S. Wingreen, Proc. Natl. Acad. Sci. USA

105, 15749 (2008).
[9] B. A. Camley and W.-J. Rappel, Proc. Natl. Acad. Sci. USA

114, E10074 (2017).
[10] B. A. Camley, J. Phys.: Condens. Matter 30, 223001

(2018).
[11] M. Eisenbach, Chemotaxis (Imperial College Press, London,

2004).
[12] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305,

788 (2004).
[13] M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, Rep.

Prog. Phys. 76, 126501 (2013).
[14] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780

(2006).
[15] U. Leonhardt, Science 312, 1777 (2006).
[16] J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat.

Mater. 8, 568 (2009).
[17] L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, Nat.

Photonics 3, 461 (2009).
[18] B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, Phys. Rev. Lett.

106, 033901 (2011).

[19] T. Ergin, J. Fischer, and M. Wegener, Phys. Rev. Lett. 107,
173901 (2011).

[20] V. M. Shalaev, Science 322, 384 (2008).
[21] H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
[22] J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Science

337, 549 (2012).
[23] S. Guenneau, C. Amra, and D. Veynante, Opt. Express 20, 8207

(2012).
[24] S. Guenneau and T. M. Puvirajesinghe, J. R. Soc. Interface 10,

20130106 (2013).
[25] J. M. Restrepo-Flórez and M. Maldovan, Appl. Phys. Lett. 111,

071903 (2017).
[26] S. Guenneau, A. Diatta, T. M. Puvirajesinghe, and M. Farhat,

J. Opt. 19, 103002 (2017).
[27] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Phys.

Rev. Lett. 101, 220404 (2008).
[28] S. Zhang, D. A. Genov, C. Sun, and X. Zhang, Phys. Rev. Lett.

100, 123002 (2008).
[29] J. Park, J. R. Youn, and Y. S. Song, Phys. Rev. Lett. 123, 074502

(2019).
[30] S. Zou, Y. Xu, R. Zatianina, C. Li, X. Liang, L. Zhu, Y. Zhang,

G. Liu, Q. H. Liu, H. Chen, and Z. Wang, Phys. Rev. Lett. 123,
074501 (2019).

[31] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics
(Dover, New York, 1984).
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