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Abstract
This work proposes an original preconditioner that couples the Constrained Pressure Residual (CPR) method with block pre-
conditioning for the efficient solution of the linearized systems of equations arising from fully implicit multiphase flowmodels.
This preconditioner, denoted as Block CPR (BCPR), is specifically designed for Lagrange multipliers-based flow models,
such as those generated by Mixed Hybrid Finite Element (MHFE) approximations. An original MHFE-based formulation of
the two-phase flow model is taken as a reference for the development of the BCPR preconditioner, in which the set of system
unknowns comprises both element and face pressures, in addition to the cell saturations, resulting in a 3× 3 block-structured
Jacobian matrix with a 2× 2 inner pressure problem. The CPR method is one of the most established techniques for reservoir
simulations, but most research focused on solutions for Two-Point Flux Approximation (TPFA)-based discretizations that do
not readily extend to our problem formulation. Therefore, we designed a dedicated two-stage strategy, inspired by the CPR
algorithm, where a block preconditioner is used for the pressure part with the aim at exploiting the inner 2 × 2 structure.
The proposed preconditioning framework is tested by an extensive experimentation, comprising both synthetic and realistic
applications in Cartesian and non-Cartesian domains.

Keywords Constrained pressure residual · Block preconditioning · Two-phase flow in porous media · Mixed hybrid finite
elements

Mathematics Subject Classification (2010) 65F08 · 65M22 · 65N08

1 Introduction

The physical processes involving the flow of multiple fluids
in porousmedia aremathematically described by a set of cou-
pled nonlinear Partial Differential Equations (PDEs), which
are usually solved numerically. A typical solution approach
consists of addressing the PDEs’ inner coupling in a Fully
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Implicit (FI) manner, while a Newton scheme deals with the
intrinsic nonlinearity. Although this strategy is robust and
unconditionally stable, it demands the solution of several
large-size linearized systems of equations with the Jacobian
matrix at each time step, until satisfactory convergence is
attained. Numerical evidence shows that this is the most
time- and resource-consuming task in a simulation, typically
requiring between 60 and 80% of the total CPU time [1–3].
While the use of other solvers than iterative Krylov subspace
methods is in practice unfeasible, given the size of the sys-
tems generated in real-world applications, their performance
depends mainly on the robustness and efficiency of the pre-
conditioning strategy being supplied and the interplay that
develops with the solver itself. This observation explains the
importance of equipping Krylov solvers with efficient off-
the-shelf preconditioners or developing a customized tool
tailored to the application at hand whenever existing tech-
niques are not robust. Either way, achieving good efficiency
of the linear solver allows reducing the runtime and the
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consumption of computational resources, while attaining the
same solution accuracy.

The Constrained Pressure Residual (CPR) precondi-
tioner [4, 5] is one of the most established strategies for
both academic simulators and industrial software (see, for
instance, [3, 6–17]). In its original structure, CPR is a two-
stage technique based on the sequential application of two
preconditioners for the pressure subproblem (local stage) and
the whole Jacobian matrix (global stage), respectively. This
strategy is underpinned by a physics-based intuition, i.e., the
different characters of the pressure and saturation problems,
the former being nearly elliptic and the latter hyperbolic.
A consolidated scalable option for the preconditioning of
the pressure block is Algebraic MultiGrid (AMG) [18, 19],
which is very well-suited for elliptic problems, while incom-
plete factorization with zero fill-in (ILU(0)) is the usual
choice for the global stage. Preliminary decoupling of pres-
sure from saturation is also an option to improve the accuracy
of the algorithm, with the possible downside of undermining
the ellipticity of the original pressure problem [20].

Despite being almost forty-year-old, CPR is still the sub-
ject of extensive research (see, for instance, the recent review
in [21]). One of the main topics consists of extending the
CPR algorithm to general purpose reservoir simulators, e.g.,
[8, 22]. Roy et al. [22], in particular, developed a two-
stageCPR-like algorithm for the nonisothermal dead-oil flow
model, denoted as Constrained Pressure-Temperature Resid-
ual (CPTR).As the name suggests, temperature is elected as a
primary variable together with pressure, so a restricted pres-
sure/temperature problem is addressed in the local stage of
the CPTR algorithm. Because of the inner 2 × 2 structure
of this subproblem, a block preconditioner was developed,
instead of relying on a single AMG approximation that
can possibly prove ineffective. This is also pointed out in
the work by Cremon et al. [8], where such a precondition-
ing approach was tested. In this article, which focuses on
compositional simulations with thermal effects and reac-
tions, another CPR-like algorithm, denoted as CPTR3, was
proposed. It consists of three stages with two local AMGpre-
conditioners for temperature and pressure alone, followed by
a global ILU(0) sweep. The CPTR3 preconditioner has been
benchmarked against the standard CPR algorithm, showing
promising results.

Another research path fostering the integration of the CPR
method and block preconditioners concerns the precondi-
tioning of coupled flow/poromechanics problems addressed
in an FI fashion. In this context, CPR can be included as a
local preconditioner for the flow part within a global block
preconditioning framework (see, for instance, [23, 24]).

Although the two-phase isothermal flow problem was the
original target of the CPR development back in the 80s’,
it still represents a challenging bench test whenever novel
and advanced schemes are used for the discretization of the

problem PDEs. In this work, we considered a Mixed Hybrid
Finite Element (MHFE) [25] approximation of Darcy’s law,
coupled with a standard time-implicit Finite Volume (FV)
discretization of the mass balance. Following the approach
developed in [26], and further applied in [27] and [28], in
which the continuity of fluxes across the grid interfaces is
strongly imposed to ensure the mass balance, the result-
ing problem is characterized by a 3 × 3 block-structured
Jacobianmatrix, owing to the simultaneous presence of pres-
sure variables defined on both cells and faces, in addition to
the saturation unknowns computed on elements. This pecu-
liar matrix format differs from the usual 2 × 2 structure
generated by Two-Point-Flux-Approximation (TPFA)-based
discretizations.

Applying the classical two-stage CPR algorithm, which
was precisely designed for TPFA, to such a problem would
require approximating the non-symmetric 2×2 pressure sub-
problem with an AMG preconditioner, which is often not
expected to be a robust option. On the contrary, its internal
block structure can be exploited with the introduction of a
block preconditioner as a local stage within a broader CPR-
like algorithm.The resultingmethod is denoted asBlockCPR
(BCPR).A typical strategy for the preconditioning of the sys-
tems of equations stemming from single-phaseMHFE-based
flow simulations, whose 2×2 block structure resembles that
of our pressure subproblem, consists of eliminating the ele-
ment pressure unknowns by performing static condensation
(see, for instance, [29, 30]). Then, the resulting matrix can
be preconditioned bymeans of off-the-shelf preconditioners.
However, this strategy cannot be applied to our problem for-
mulation and,more generally, to problemswith compressible
fluids since, unlike the single-phase flow setting, the element
pressure block is not diagonal.

In this work, we propose an original approach for address-
ing the element and face pressure equations. Building on our
previous work on block preconditioners for the single-phase
flow problem [31, 32], we developed a tool based on the
exploitation of approximate versions of the Jacobian matrix
decoupling factors to obtain an inexact version of the Schur
complement. Although fully parallelizable, approximating
such factors is the most expensive task in our algorithm;
however, it does not need to be performed at each nonlin-
ear iteration, but only once at the outset of the simulation.
Therefore, the associated cost can be amortized throughout
the entire simulation.

This article extends the piece of work first presented
at the ECMOR 2022 conference in [33]. A breakdown
of the paper structure is as follows. The precondition-
ing methodology is described and tested in four applica-
tions after the mathematical and numerical model problems
are presented. The paper concludes with a discussion of
the findings and some preliminary suggestions for further
investigation.

123



Computational Geosciences (2024) 28:253–272 255

2 Mathematical problem: two-phase flow
in porousmedia

The two-phase flow in porous media, underpinned by some
simplifications of the physics, is the model problem consid-
ered in this study. The fluids (oil, o, and water, w), flowing
in a compressible medium under isothermal conditions, are
assumed to be immiscible and incompressible. Capillarity is
also neglected in the model, resulting in the equality of the
fluid pressures, i.e., po = pw = p. Pressure in the reser-
voir, p, the well flowing pressure, pw f , and saturation of the
wetting phase (water), Sw, are elected as model unknowns,
consistently with the natural variables’ formulation [34].

2.1 Governing equations

The set of PDEs describing the flow of multiple fluids in
porous media consists of the mass balance equation

∂φSα

∂t
+ ∇ · vα = fα, α = o, w in � × T, (1)

and Darcy’s law

vα = −λαK∇(p − γαz),

α = o, w in � × T, (2)

written for each phase α in the space and time domains, �

and T, respectively. In Eq. 1, φ denotes the porosity of the
rock, Sα and vα are the saturation and velocity of phase α,
t is time, and fα is the source/sink term, while, in Eq. 2, K
defines the permeability tensor, γα the specific weight, and z
is depth. Furthermore, λα = krα(Sα)/μα denotes the phase
mobility factor, where krα(Sα) andμα are the relative perme-
ability and phase dynamic viscosity, respectively. The factor
λα depends on saturation, however, due to the fluid incom-
pressibility assumption, it does not changewith pressure, i.e.,
μα is constant. The term fα introduces in the reservoir model
the action of wells, which are reproduced using the classical
Peaceman formulation [35, 36].

Additional relationships need to be provided tomathemat-
ically close the problemoutlinedbyEqs. 1 and2. Specifically,
we relied on the analytical Corey’s model [37, 38] for the rel-
ative permeability and the classical relationship

φ = φ0
[
1 + cr

(
p − p0

)]
, (3)

which relates porosity to the change in pore pressure experi-
enced by the rock [39]. Here, cr is the solid phase compress-
ibility and the superscript 0 denotes the initial conditions of

the relevant quantities. The constraint on the sumof the phase
saturations

∑
α=o,w

Sα = 1 (4)

is also an equation of the system. Ultimately, appropriate
initial conditions on pressure and saturation,

p|t=0 = p0 in �, (5a)

Sw|t=0 = S0w in �, (5b)

along with boundary conditions on pressure and fluid fluxes,

p = p on �p × T, (6a)

−λαK∇ (p − γαz) · n = vnα on �v × T, (6b)

need to be prescribed to give rise to a well-posed mathemat-
ical model. In Eqs. 5 and 6, �p and �v are the portions of the
boundary, �, where Dirichlet and Neumann conditions are
enforced, respectively, with �p ∪ �v = �, and � = � ∪ �,
while n denotes the outer normal vector to �.

2.2 Weak formulation

Let Eh be the collection of non-overlapping hexahedral cells
discretizing the reservoir body with Fh denoting the set
of grid faces. The weak form of Darcy’s law in Eq. 2 is
constructed by means of the MHFE method on the lowest-
order RT0 space [40], which requires appending pressure
unknowns to the center of gravity of both elements and faces,
pE and π , respectively. Saturation is instead solely com-
puted on the cells centroid. Specifically, the P0 space with
support on the collection of cells is used to reproduce the ele-
ment pressure and water saturation fields, whereas another
P0 space, defined on faces, plays a similar role for the inter-
face pressure. The 3-D velocity field is approximated in the
RT0 space, which is spanned by piecewise trilinear vector
functions, ηE

i (x, y, z), defined for every face i and element
E with support restricted to the cell itself. Darcy’s velocity
on E is thus expressed in the form:

vhα|E =
∑

∈∂E

ηE

 (x, y, z)qE

α,
, α = o, w, (7)

where the weight, qE
α,
, represents the α-phase flux across

face 
 and ∂E is the collection of element interfaces. The face
unknowns π are the hallmark of the MHFE approach over
the originalMixedfinite element scheme,whose introduction
was intended to guarantee the continuity of the normal com-
ponents of the interface fluxes, and they operate as Lagrange
multipliers.
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The MHFE weak form of Eq. 2, expressed for every ele-
ment of the grid, describes the fluid fluxes across its interfaces
based on the pressure and gravitational gradients experienced
within the cell itself as [26]:

qE
α = λ∗

α

(
BE

)−1 [
pE1 − π E − γα

(
zE1 − ζ E

)]
,

α = o, w. (8)

Here, the vectors qE
α , π E , ζ E ∈ R

nEf collect the fluxes
of phase α, face pressures and relevant depths, respectively,
with nEf being the number of element faces. Furthermore,

1 ∈ R
nEf denotes the vector of ones, λ∗

α is the diagonal matrix
containing thefluidmobility of theupstream element for each

face, and BE ∈ R
nEf ×nEf is theMHFEelementarymatrix. The

entries of BE are defined as:

BE
i j =

∫

�E

(
ηE
i

)T (
K E

)−1
ηE
j d�,

∀i, j ∈ ∂E, (9)

where �E denotes the cell volume. The expression for the
interface fluxes in Eq. 8 is all in all similar to that gener-
ated by a Mimetic finite difference discretization (see, for
instance, [27, 41]).

In this section, we limited ourselves to presenting just the
main aspects of the MHFEmethod applied to Eq. 2 in a mul-
tiphase setting; the interested reader is referred, for instance,
to the works [10, 32, 42–44] for the full mathematical deriva-
tion and further insights.

On the other hand, a classical FV method in space, cou-
pled with a first-order implicit Euler scheme for the time
discretization, is used to build the weak form of the mass
balance (1). This is a rather standard approach resulting in
the approximate form:

�E
φ

(
pEn

)
SEα,n − φ

(
pEn−1

)
SEα,n−1

�tn−1
+

∑
i∈∂Er

qE,E ′
α,i

− �E f Eα = 0, ∀E ∈ Eh, (10)

where n− 1 and n denote the previous and actual time steps,
respectively, �tn−1 = tn − tn−1 is the time increment, and
∂Er is the set of faces of E not included in the boundary. This
implies that the reservoir is isolated from the surrounding
rock, which is a frequent assumption in reservoir modeling.
Moreover,

qE,E ′
α,i = λ∗

α,i

(
BE ′)−1

i i �E
α,i − (

BE
)−1
i i �E ′

α,i(
BE

)−1
i i + (

BE ′)−1
i i

(11)

is the flux across the i-th face separating elements E and
E ′, which results from strongly imposing the continuity of
the local fluxes, expressed as in Eq. 8, on the two sides of
interface i , i.e., qE

α,i and q
E ′
α,i [26]. In Eq. 11, we have

�E
α,i = LBE

i

(
pE − γαz

E
)

−
∑

j∈∂E\{i}

(
BE

)−1

i j

(
π E
j − γαζ E

j

)

with LBE
i

= ∑
j∈∂E

(
BE

)−1
i j .

Wells are reproduced using the standard Peacemanmodel.
They can include multiple perforations and can be operated
either by a fixed rate or BottomHole Pressure (BHP) control.
Switching between the two controls is possible though not
used in the following tests. The phase flux exchanged by the
i-th perforation with the hosting cell reads [36]:

fα,i = λ∗
α,iW I (pres − pi ), (12)

where pres is the reservoir pressure at the hosting block,
and pi is the well pressure in the perforation, including also
the gravity contribution exerted by the fluids in the above
portion of the well, evaluated with a segmented gravity head
technique. In Eq. 12, W I is the well index which is defined
as (assuming that the well is vertical):

W I = 2π�z
√
kxky

ln
(
re
rw

)
+ s

. (13)

Here, �z is the cell thickness, kx and ky are the permeability
values along the x and y axes, s is the skin factor, rw is the
well radius and re is the equivalent radius:

re = 0.28

[(
ky
kx

) 1
2
�x2 +

(
kx
ky

) 1
2
�y2

] 1
2

(
ky
kx

) 1
4 +

(
kx
ky

) 1
4

, (14)

where �x and �y are the x and y sizes of the hosting cell.
Depending on the type of well control, the equations to be
included in the discrete system read:

{
pw f − pw f = 0 (BHP control)∑

α=o,w
∑n p

i=1 fα,i − f = 0 (rate control)
, (15)

where pw f and f are the prescribed BHP and total flow rate,
respectively, and n p is the number of perforations.
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2.2.1 The MHFE-FV system of equations

The governing equations, introduced in the previous section,
define a coupled nonlinear problem, Rn = 0, at each time
step, which is addressed here by an FI strategy. The system
equations can be broken down into three groups: Rπ ∈ R

n f ,
Rp ∈ R

nE+nw , and Rs ∈ R
nE , where n f , nE , and nw are

the number of faces, elements, and wells in the model. Note
that the time step counter n has been dropped in the vectors
above to compact the notation. The first set, Rπ = 0, aims at
ensuring that the total fluxes remain constant across the grid
faces, i.e.,

∑
α=o,w

(
qE
α,i + qE ′

α,i

)
= 0, ∀i ∈ Fh . (16)

The second set, Rp = 0, consists of the so-called Implicit
Pressure Explicit Saturation (IMPES)-like pressure equa-
tions, obtained by summing Eq. 10 over the phase index
for each cell, in addition to the well constraints, which are
included here due to the expected low number of wells as
compared to the number of elements. Ultimately, the set
Rs = 0 collects the so-called saturation equations, i.e., the
nE discretized mass balance equations (Eq. 10) written for
the water phase. The overall size of the nonlinear system of
equations, Rn = [Rπ , Rp, Rs]n,T = 0, is 2nE + n f + nw,
with nE , n f , and nw pressure unknowns computed on ele-
ments, faces, and wells, respectively, and nE saturations.

The nonlinearity of Rn = 0 is addressed by a classical
Newton scheme

xn,(m) = xn,(m−1) + δx, (17)

where xn,(m) = [xπ , xp, xs]n,(m),T is the full set of
unknowns arranged in homogeneous groups and m is the
Newton iteration counter. In Eq. 17, the solution update δx
is computed by solving the linearized system of equations:

J n,(m−1)δx = −Rn,(m−1) ⇒
⎡
⎣
Jππ Jπ p Jπs
Jpπ Jpp Jps
Jsπ Jsp Jss

⎤
⎦
n,(m−1) ⎡

⎣
δxπ

δxp
δxs

⎤
⎦ = −

⎡
⎣
Rπ

Rp

Rs

⎤
⎦
n,(m−1)

,

(18)

where J n,(m−1) = ∂Rn,(m−1)

∂x is the Jacobian matrix exhibit-
ing a 3 × 3 block structure, and Rn,(m−1) is the residual
vector, both taken at the (m − 1)-th iteration. As to the size
of the diagonal blocks, we have Jππ ∈ R

n f ×n f , Jpp ∈
R

(nE+nw)×(nE+nw), and Jss ∈ R
nE×nE . Before applying the

solution update in Eq. 17, δx is properly post-processed with
the Appleyard chop technique [13, 45], which provides a sort
of guidance and stabilization to the behavior of the nonlinear

solver. The iterative process in Eq. 17 is stopped whenever
an appropriate norm of the residual (see also Section 4 for the
specific criterion implemented in the simulator) falls below
a given threshold.

Inspection of the Jacobian matrix reveals that Jπs = 0
when gravity is neglected, otherwise all blocks are non-zero.
Moreover, under the same condition, Jπ p and Jππ do not
depend on λα . This means that these blocks remain constant
throughout the simulation with Jππ being also Symmet-
ric Negative Definite (SND), while the whole Jacobian is
always non-symmetric, regardless of whether gravitational
forces are included in the model or not. Block Jpp is mildly
non-symmetric, positive definite and diagonally dominant,
while Jss is the typical matrix arising from a transport prob-
lem, therefore non-symmetric as well. For the design of the
BCPR preconditioner, it is convenient to rearrange the Jaco-
bian matrix into a 2 × 2 structure by grouping together the
pressure blocks, yielding:

J =
[
JPP JPs
JsP Jss

]
, (19)

where

JPP =
[
Jππ Jπ p

Jpπ Jpp

]
, JPs = [Jπs Jps]T ,

JsP = [Jsπ Jsp]. (20)

A sketch of the non-zero pattern of J is shown in Fig. 1a.

3 The Block CPR (BCPR) preconditioner

The CPR-like family of preconditioners is one of the most
successful tools for the efficient preconditioning of linearized
systems of equations in reservoir simulations. The use of
TPFA for the inter-element fluxes approximation, with a sin-
gle pressure unknown per cell, influenced the structure of
the CPR algorithm, where a computationally efficient and
scalable choice for the approximation of the elliptic pres-
sure block alone is offered by AMG. However, applying the
classical CPR algorithm to the linearized system in Eq. 18
is not optimal since JPP is a 2 × 2 non-symmetric block
matrix, compounding both element and face variables, for
which an approximation by means of existing off-the-shelf
AMG functions is often ineffective. On the contrary, such
a block structure can be exploited by replacing AMG for
the whole pressure part with a block preconditioner relying,
in turn, on AMG approximations for the application of the
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Fig. 1 Non-zero pattern of J with different unknowns ordering. In
panel (b), the block in position (2,2), highlighted in red, roughly cor-
responds to the system matrix obtained from a standard TPFA-FV
discretization with its typical seven-point stencil. The off-diagonal
blocks express the coupling between element and face unknowns.
Notice that block (2,1) is denser than (1,2) as a result of strongly impos-
ing the flux continuity in the mass balance equations

leading block and Schur complement. In essence, we use the
classical two-stage CPR multiplicative framework:

M−1
BCPR = M−1

2

[
I − JM−1

1

]
+ M−1

1 , (21)

where

M−1
1 = diag (J )−1 (22)

and

M−1
2 =

[M−1
PP

0s

]
(23)

are the first- and second-stage preconditioners, respectively.
In Eq. 22, diag (J )−1 is the Jacobi preconditioner applied to
J , while, in Eq. 23,M−1

PP denotes the block preconditioner
for the overall pressure subproblem and 0s is the zero matrix
in the space of saturations.

By inspecting Eqs. 21-23, we notice that two modifica-
tions, in addition to the block preconditioner for the pressure
subproblem, have been introduced with respect to the most
classical CPR framework:

1. The order of the stages is inverted, i.e., the global stage
is carried out before the local one. This is done following
the suggestion in [22] (and previously applied in [46])
in order to provide some decoupling of pressure from
saturation. The decoupling task, in fact, is not explicitly
performed in a preliminary stage, as is often done in prac-
tice (for instance with the aid of IMPES or Quasi-IMPES
strategies [16]), so as to preserve the original algebraic
properties and stencil of the JPP block, which is key for
building M−1

PP ;
2. The global stage is carried out by a simple Jacobi pre-

conditioner instead of the classical ILU(0). The system
in Eq. 18 embraces both element and face unknowns
and their ordering makes it difficult to build a matrix
with a compact band, which is an important property for
incomplete factorizations. Typically, in FV-based mod-
els, this matrix structure is achieved by arranging the
unknowns with an element-wise ordering, i.e., by inter-
leaving the element pressure variables with the saturation
unknowns, [p1, Sw,1, p2, Sw,2, . . . , pnE , Sw,nE ]. Apply-
ing this ordering strategy to the set of xp and xs unknowns
in the system of Eq. 18 (see Fig. 1b) does not provide an
effective ILU(0) approximation and often may introduce
significant round-off errors, as some numerical tests, not
reported here, pointed out. Although other remedies may
include allowing somefill-in in the ILUdecomposition or
applying algebraic reordering techniques, we found that
the inexpensive Jacobi preconditioner can suffice for the
satisfactory performance of the BCPR preconditioner, as
we will comment more extensively in Section 4.1. This
also appears to be favorable in view of the massive par-
allelization of the algorithm.

The starting point for the design of a block preconditioner
for JPP is its LDU decomposition. By introducing proper
approximations for the application of the inverse of Jππ and
the Schur complement S = Jpp − Jpπ J−1

ππ Jπ p, the block
preconditioner for the pressure subproblem takes the form:

M−1
PP = U−1D−1L−1 =[

Iπ − J̃−1
ππ Jπ p

Ip

] [
J̃−1
ππ

S̃−1

] [
Iπ

−Jpπ J̃−1
ππ Ip

]
, (24)

where the superscript ∼ denotes an approximate term.
Approximating the second part of the Schur complement
is usually troublesome, as the unknown and dense term
J−1
ππ is involved. Building on the Explicit Decoupling Factor
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Approximation (EDFA) preconditioner, developed in our
previous works [31, 32], we rewrite the Schur complement
as

S = Jpp + Jpπ F, (25)

where

F = −J−1
ππ Jπ p (26)

is the upper decoupling factor in Eq. 24. The F term can be
computed by solving a series of Multiple Right-Hand Side
(MRHS) systems with the columns of Jπ p and Jππ as a
matrix:

−Jππ F = Jπ p. (27)

Obviously, the exact calculation of the dense F factor is
computationally intensive, so an approximation is sought.
In particular, to preserve a workable sparsity, we compute
each column of F only at certain locations belonging to a
given non-zero pattern P . Focusing on the approximation of
column q of F , with 1 ≤ q ≤ nE , let R

(q)
r be the restriction

operator to the rows belonging to the q-th non-zero pattern,
P(q), and l(q) be the corresponding vector of the canoni-
cal basis. The approximation of the column in the restricted
space is found by solving the following (small) system:

−J (q)
ππ f̃ (q) = R(q)

r j (q)
π p , (28)

where J (q)
ππ = R(q)

r Jππ

(
R(q)
r

)T and j (q)
π p = Jπ p l(q). The

inexact factor, F̃ , is obtained by gathering all the f̃ (q) con-
tributions after being prolonged to the original space:

F̃ =
nE∑
q=1

(
R(q)
r

)T
f̃ (q)

(
l(q)

)T
. (29)

The sequence of operations to compute F̃ is sketched in
Fig. 2. Notice that Jπ p ∈ R

n f ×(nE+nw) so F must share
the same size. However, the well and flux continuity equa-
tions are mutually decoupled, hence the last nw columns in
Jπ p are zero and we can avoid solving the relevant homoge-
neous systems in Eq. 28. This explains the upper limit for q
in Eq. 29.

For the approximation F̃ to be effective, it is crucial to
identify the locations of the most significant entries in each
column and collect them to form the non-zero pattern, while
preserving an adequate sparsity. To this end, we developed
two techniques, denoted as static and dynamic, respectively,
the former being more physics-based and the latter fully
algebraic.

Fig. 2 Column-wise approximation of the F decoupling factor. The red
squares with a cross in the F̃ matrix denote the locations of the selected
nonzero entries, which form the q-th column nonzero pattern

The static approach is underlain by a graphical interpre-
tation, for which each entry in the j (q)

π p and f̃ (q) vectors is

related to a grid face and the non-zeros in j (q)
π p correspond to

the faces of element q, as shown in Fig. 3a. Moreover, the
problem formalized in Eq. 28 is roughly equivalent to solv-
ing a flow problem in a portion of the domain whose shape
and size are defined by the nonzero pattern. Therefore, start-
ing from j (q)

π p ’s sparsity pattern, we can customize a broad
range of compact patches by including neighboring inter-
faces such as those displayed in Fig. 3. The patterns depend
on the number of levels of the connection, i.e., how many
elements in addition to the central one are involved in each
direction (from zero in Fig. 3a to four in 3g), and the pres-
ence of the lateral faces, while isotropy in the three directions
is preserved. Selecting an appropriate pattern such that the
shape and size of the resulting subdomain, where the flow
problem is solved, allows for capturing the propagation of
the main pressure gradients is key for an accurate approxi-
mation of F . With the static technique, a prototype pattern is
thus supplied beforehand and applied to the whole domain.
Numerical tests in [32] showed that this strategy is effective
when the grid is Cartesian and the modeler has a robust idea
of the possible flow field.

On the other hand, the dynamic technique relies on a recur-
sive algorithm, during which additional column non-zero
entries are introduced at the locations where the components
of the residual r = j (q)

π p + Jππ (R(q)
r )T f̃ (q) are larger in

absolute value, starting from the initial non-zero pattern of
j (q)
π p . Despite being more expensive, the dynamic approach
is more flexible and can be used as a black box. The parame-
ters controlling the dynamic process are (i) nent, the number
of new entries added to the original pattern, and (ii) nadd,
the maximum number of entries introduced at each pattern
augmentation step.
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Fig. 3 Collection of patterns for
the EDFA static approach.
Notice that the front and right
elements have been removed to
improve the picture clarity

Algorithm 1 Application of the BCPR precondi-
tioner: [v] = apply_BCPR(τi ,J ,M−1

1 ,M−1
2 ,w).

1: v = M−1
1 w 
 Application of the first-stage preconditioner

2: r = w − J v 
 Computing the residual
3: [δv] = apply_2_stage(τi , JPP , S̃, r) 
 Application of the

second-stage preconditioner to r = [rπ , rp, rs ], i.e., δv = M−1
2 r

4: v ← v + δv 
 Correction of the first guess

Algorithm 2Application of the second-stage block
preconditioner: [δv] = apply_2_stage(τi , JPP , S̃, r).
1: tπ = AMG(Jππ , rπ )

2: tp = rp − Jpπ tπ
3: δvp = solve_AMG(τi , S̃, tp)
4: δv = [0, δvp, 0]
5: tπ = rπ − Jπ pδvp
6: δvπ = AMG(Jππ , tπ )

7: δv ← δv + [δvπ , 0, 0]

The action of the BCPR preconditioner to a vector w is
shown in Algorithm 1, while Algorithm 2 details the appli-
cation of the block preconditioner at the local stage. AMG,
in particular the aggregation-based AGMGpresented in [47–
49], is used to approximate block Jππ and the inexact Schur
complement

S̃ = Jpp + Jpπ F̃ . (30)

While a single V-cycle is enough for the application of
J̃−1
ππ , an AMG-preconditioned inner Generalized Conjugate

Residual (GCR)method [50, 51]with a loose exit tolerance τi
in the range [1.E-5,1.E-4] (achieved in less than 15 iterations)
is used for the application of S̃−1. Function solve_AMG in
Algorithm 2 performs this task.

The choice of using the AGMG function has been made
out of convenience since, as opposed to many tools available

in the literature, it offers a ready-to-use Matlab interface.
In fact, the code implementing the two-phase flow model
in compressible media, described in Section 2, along with
the proposed BCPR preconditioner, has been prototyped
using Matlab. In the future, when transitioning to an imple-
mentation of the BCPR preconditioner with a compiled
programming language, more mainstream AMG tools, such
as those available in hypre [52] or PETSc [53, 54] libraries,
will be considered.

In general, the behavior of the global BCPR method
depends upon several elements that can be modified or
tuned to improve its effectiveness, such as the local- and
global-stage preconditioners, the specific AMG tool for the
application of the inverse of Jππ , as well as the approxi-
mation of the Schur complement and of its inverse. In this
development stage, we focus on the computation of S̃, setting
the other elements as discussed above.

4 Numerical results

The performance of theBCPRpreconditioner has been inves-
tigated in four test cases, built on the first four layers of the
SPE10 data set [55] and obtained by varying the original
shape of the domain and rock properties. The cell size is set
equal to 4 × 2 × 4 m and all the elements with a porosity
value smaller than 1.E-5 have been preliminarily removed
from the mesh. This cleaning step generates a Swiss cheese-
like grid visible, for instance, in Fig. 4, where the reader
can also see the production scenario and one of the per-
meability distributions used in the experimental part of the
work. The domain in Tests 1-2(a,b) is planar and discretized
with a Cartesian mesh, while in Test 3 it has been deformed
into an anticline structure with a non-Cartesian tessellation,
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Fig. 4 The two grids used in the tests with a sketch of the simulated
scenario. The red and black arrows show the location of production and
injection wells, respectively. The horizontal and vertical permeability
distributions are superimposed on the grids

which can also be classified as corner-point in the reservoir
simulation community. Such deformation is symmetric with
respect to the horizontal symmetry axes of the grid with a
maximum rotation of 19◦ and 32◦ around the x and y direc-
tions, respectively. The number of elements nE and faces n f

is the same for both discretizations and equal to 51,741 and
171,070, respectively. The simulated scenario, i.e., the clas-
sical five-spot injection/production pattern with an injector
in the middle of the reservoir and a producer at each corner,
is the same for all tests. The injector operates at a constant
rate equal to 20 m3/d and the producers at a constant BHP of
490 kPa for Tests 1, 2a, and 3 and 3,200 kPa for Test 2b. The
wells fully penetrate the reservoir thickness and their radius
is equal to 0.1 m. A summary of the tests’ setup is offered in
Table 1.

The objective of Test 1 is to introduce the BCPR pre-
conditioner and to define a baseline for its setup. To this
end, we apply a homogeneous and isotropic permeability
distribution (kx,y,z = 1.E-12 m2), while the initial poros-
ity is uniform throughout the domain (φ0 = 2.5E-1),
and gravity is neglected. Conversely, Tests 2 and 3 are
numerically much more challenging. A fully heteroge-
neous and anisotropic permeability field with nonuniform
porosity is introduced in Tests 2a and 2b, which repre-

sent a challenging bench test for the performance of the
BCPR preconditioner. In Test 2b, gravity is also enabled
to assess the sensitivity of our preconditioning tool to this
feature. Finally, in Test 3, a heterogeneous permeability
distribution, taken from theSPE10data set,with an anisotropy
ratio up to 3,300, is applied to the dome-structured domain.
The objective of this test is to evaluate the performance of
the BCPR preconditioner in a realistic setting and point out
the differences in its setup when moving from a Cartesian to
a non-Cartesian grid.

The linearized systems in Eq. 18 are solved by means of a
right-preconditioned full GMRES [56]. Given the relatively
low iteration number achieved during the tests, the use of full
GMRES appears to be fully warranted. The iterative process
is stoppedwhenever the 2-normof the relative residuals of the
Jacobian system falls below a user-defined threshold, τl , i.e.,
‖rk‖2/‖r0‖2 < τl . For all tests, τl = 1.E-6. The termination
criterion for the nonlinear solver relies on the evaluation of
both the absolute and relative residual. In particular, given the
different nature of the variables, the residual is broken down
into three parts, with the iteration process ending when one
of the following conditions is satisfied:

max
{
‖Rn,(m)

π ‖2, ‖Rn,(m)
p ‖2, ‖Rn,(m)

s ‖2
}

< τnl,a,

max
{
‖Rn,(m)

π ‖2/‖Rn,(0)
π ‖2, ‖Rn,(m)

p ‖2/‖Rn,(0)
p ‖2,

‖Rn,(m)
s ‖2/‖Rn,(0)

s ‖2
}

< τnl,r .

For all tests, we set τnl,a = τnl,r taking the value of 1.E-6 for
Test 1 and 1.E-5 otherwise.

In order to provide the most comprehensive picture of the
solver’s computational performance, we identified a set of
monitoring parameters defined as follows:

1. The number of nonlinear and linear iterations per time
step, NN and Nl , respectively;

2. The total simulation time in seconds per time step, tt , fur-
ther decomposed into tp and ts , i.e., the time to build the
preconditioner and for GMRES to iterate to convergence,
respectively;

3. The ratio RS of the number of non-zeros in the Schur
complement (Eq. 30) computed with the selected pattern
for F̃ with respect to the sparsest one, which corresponds
to the nonzero patch of Jπ p (also denoted as original in
the sequel), i.e., nnz(S̃)/nnz(S̃orig).

While the indicators defined in points 1. and 2. concern the
computational efficiency, RS in point 3. provides an indica-
tion as to the memory footprint of the preconditioner. With
the aim at measuring both the local and global solver perfor-
mance,wewill report the aforementioned parametersmarked
by the symbols ˆ(·) and (·), which refer to the cumulative per-
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Table 1 Setup of the test cases

Test 1 2a 2b 3

Reservoir type Plain Plain Plain Dome

Perm. tensor prop. Homogeneous Heterogeneous Heterogeneous Heterogeneous

Isotropic Anisotropic Anisotropic Anisotropic

Horiz. perm. range
[
m2

]
1.E-12 [3.0E-18, 2.0E-11] [3.0E-18, 2.0E-11] [3.0E-18, 2.0E-11]

Vert. perm. range
[
m2

]
1.E-12 [3.8E-22, 6.0E-12] [3.8E-22, 6.0E-12] [1.0E-13, 6.0E-12]

Porosity 0.25 [2.6E-05, 5.0E-01] [2.6E-05, 5.0E-01] [2.6E-05, 5.0E-01]

Oil spec. gravity
[ kPa

m

]
– – 8.00 –

Water spec. gravity
[ kPa

m

]
– – 9.81 –

The petrophysical properties of the medium relevant to the two-phase flow model in a compressible porous matrix, common to all the tests, are as
follows: rock compressibility cr = 5.E-7 kPa−1, oil dynamic viscosity μo = 2.3148E-11 kPa d, water dynamic viscosity μw = 1.1574E-11 kPa d,
irreducible water saturation Swr = 0, residual oil saturation Sor = 0, and initial water saturation S0w = 0. The relative permeability profiles used
in the tests are analytically expressed through Corey’s model and exhibit a parabolic shape

formance throughout the whole simulation and the average
performance in a single system, respectively. In particular,
the latter parameter is computed by looking only at the first
linearized systems per time step (denoted by the additional
subscript 1).

The tests are carried out on aworkstation equippedwith an
AMDRyzen 9 3950X 16-Core processor at 3.49 GHz and 64
GB of RAM. Due to the prototypical Matlab implementation
of the code, the results should be regarded as preliminary for
the CPU time. An improved absolute CPU time performance
is expected with compiled programming languages, such as
C++.

The applicability and effectiveness of the AMG tool to
reproduce the action of the inverse of Jππ and S̃ is a cru-
cial factor. To this aim, we investigate in advance how well
the linear solver performs when dealing with the system of
equations associated with Jππ and S̃, for some RHS, using
the chosen AMG function as a preconditioner. The num-
ber of iterations to converge at a given tolerance (equal to
1.E-8 in this analysis) is used to measure the quality of the
AMG preconditioner for these local problems. This analysis
is carried out at different time steps to evaluate the possible
dependency on the problem evolution. Figure 5 summarizes
the outcome of this preliminary analysis, where AGMG is
used as a preconditioner for the GCR solver [50, 51]. For
the sake of consistency, GCR is used in place of CG even
for Symmetric Positive Definite (SPD) matrices, i.e., −Jππ .
Block Jππ ∈ R

n f ×n f arises from an elliptic contribution,
so it is well-suited to AMG, and the solver converges in
fewer iterations than S̃ ∈ R

(nE+nw)×(nE+nw). When grav-
ity is not considered in the model (Tests 1, 2a, and 3), Jππ

does not depend on mobility, it is constant during the simula-
tion and is also SND. Otherwise, it is weakly non-symmetric
and evolves over time (Test 2b), and such a scenario is
computationally more challenging for AMG. As the simu-
lation proceeds, the number of iterations slightly increases,

nonetheless AGMG appears to behave satisfactorily well. As
to Fig. 5b, we can say that AGMG serves quite satisfacto-
rily as a preconditioner for the Schur complement as well.
In particular, the combination of a non-Cartesian grid and
heterogeneous anisotropic permeability produces the most
challenging scenario. Ultimately, we also observe that the
AMG approximation is almost insensitive to the time step
size both for Jππ and S̃. For all the tests, in fact, �t grows,
reaching �tmax within the first 40/50 time steps, and, in this
range, the iteration count remains almost constant.

While the AMG setup for S̃ needs to be performed at each
nonlinear step, this task can be carried out only once at the
outset of the simulation for Jππ when gravity is neglected,
since this block is constant during the simulation. On the
contrary, when gravity is considered in the model, the AMG
setup is required at each nonlinear iteration for both Jππ and
S̃.

4.1 Test 1: Planar reservoir with homogeneous
and isotropic permeability

Test 1 reproduces a textbook waterflooding application with
production/injection lasting for 5,000 days (≈ 13.7 years),
which are covered in 539 time steps with a maximum time
increment,�tmax, equal to 10 days. The Courant-Friedrichs-
Lewy (CFL) number [57] is up to 6.25. Figure 6 offers some
model insights in terms of water saturation and water veloc-
ity at the end of the simulation. In this application, but also
in Tests 2a and 2b, we study the performance of the BCPR
preconditioner when the Schur complement is built using the
static approach only. In our previous study [32], in fact, the
more expensive dynamic variant proved not necessary when
the flowfield ismoderately regular and themesh is Cartesian.
Table 2 summarizes the main outcome of seven runs per-
formed with the patterns shown in Fig. 3. Not surprisingly,
as the pattern is enlarged (runs from 1 to 7), the cumulative

123



Computational Geosciences (2024) 28:253–272 263

Fig. 5 Number of iterations to converge for the systems of equations
associated with blocks Jππ , (a), and S̃, (b), generated during the simula-
tions in Tests 1-3. The systems are solved, to a tolerance equal to 1.E-8,
by means of GCR preconditioned with AGMG. The Schur complement
S̃ is built using pattern A (Fig. 3b)

time to build the preconditioner, t̂ p, increases, whereas the
number of linear iterations, N̂l , decreases. The most signifi-
cant reduction, around 20%, is from run 1 to 2, i.e., moving
from F̃ built with the original pattern to pattern A. Further
patch enlargements give negligible improvements. Actually,
the density of the Schur complement (see the RS column)
resulting from the pattern expansion increases the computa-
tion and application cost of the preconditioner, so that the
best performance is achieved with patterns A-D. This result
shows that there is no need for a significant filling of F̃ , with
one or two additional levels of the connection, with respect
to the original pattern, already enough. Focusing on every
single system, convergence is achieved on average in less
than 15 iterations. Moreover, we observe that patterns B and
D deliver the same results as their counterparts A and C,
meaning that they produce the same F̃ factor. This is due
to the block diagonal structure of the BE matrices (Eq. 9)
for Cartesian discretizations. Therefore, in that context, the

Fig. 6 Test 1: Some model insights at the end of the simulation (t =
5, 000 d)

approximation in computing F̃ is only controlled by the level
of the connection and not by the presence of the lateral faces.

The overall performance of the linear solver during the
whole simulation is shown in Fig. 7 in terms of linear itera-
tions and CPU time per time step. The number of nonlinear
iterations is 3 until the 140th time step and 2 later on, thus
explaining the sudden jump observed in the red profiles. The
linear solver displays good performance throughout the full
simulation, stabilizing after�tmax is reached, with no impact
on the nonlinear convergence, as confirmed in column N̂N

in Table 2. Figure 7b also shows, from the peak in the tp
and tp1 profiles, that the impact of the computation of F̃ is
at the outset of the simulation. However, such a cost can be
effectively amortized during a full run.

The motivation behind the introduction of the BCPR
algorithm is the lack of efficiency of conventional general-
purpose AMG tools to approximate the whole 2×2 pressure
part of the system in Eq. 18. In order to investigate this prob-
lem, the system with JPP is solved using the GCR method
preconditionedwithAGMGfor someRHS. The convergence
profile is shown in Fig. 8 along with those of the diagonal
blocks, Jππ and Jpp, and Schur complement S̃ for compar-
ison. While convergence is fast for Jππ , Jpp, and S̃, GCR
fails to converge within 100 iterations for the system with
JPP . Therefore, extending the classical CPR method to our
model problem (Eq. 18) is expected to deliver poor results.
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Fig. 7 Test 1: Number of linear iterations (a) and CPU time (b) vs. the
time step index during the full run 2 of Table 2

Substituting the ILU(0) factorization with the less expen-
sive Jacobi preconditioner at the global stage is the second
main modification, in our BCPR preconditioner, to the
original CPR algorithm, since we observed a substantial
degradation in the solver convergence as the size of themodel
is enlarged. The numerical results in Fig. 9 help us to sup-
port this choice. In this analysis, we solve the system with
the Jacobian matrix J using GMRES preconditioned with
some variants of incomplete factorization and the Jacobi pre-
conditioner. The exit tolerance and the maximum number of

Fig. 8 Test 1: Convergence profiles of GCR preconditioned with
AGMG for the global pressure problem, JPP , leading terms, Jππ and
Jpp , and approximate Schur complement S̃. The exit tolerance is 1.E-8

iterations are set equal to 1.E-8 and 100, respectively. We
do not expect GMRES to converge due to the complex block
structure of the problem, rather we are interested in the solver
behavior during the very first iterations since the global-stage
preconditioner is applied only once in the BCPR algorithm.
Computing a factorization with zero fill-in directly on the
Jacobian matrix ordered as in Fig. 1b produces the worst
results in terms of initial convergence rate. Applying some
algebraic reordering techniques, such as Minimum degree
ordering (MinDeg), Nested dissection (Dissect), and Reverse
Cuthill-McKee (RCM) [58] may help to improve the initial
solver behavior. A threshold-based variant of ILU, com-
puted on the RCM-reordered Jacobianmatrix, does not allow
for significantly better performance. On the contrary, as the
threshold τ is reduced, convergence can degrade, although
the factors become very dense. On the other hand, the conver-
gence profile with the Jacobi preconditioner (the cyan line) is
overall comparable to the best outcome of the reordered ILU
factorizations, while being computationally much cheaper
and embarrassingly parallel.

Table 2 Test 1: Numerical
performance of the static
technique

# Pat RS N̂N N̂l t̂p [s] t̂s [s] t̂t [s] Nl1 t p1 [s] t s1 [s] t t1 [s]

1 Orig 1 1,221 22,452 68.7 2,556.7 2,625.4 17.7 0.1 2.0 2.1

2 A 1.4 1,221 17,892 92.2 1,917.7 2,009.9 14.2 0.1 1.5 1.6

3 B 1.4 1,221 17,892 91.4 1,911.6 2,003.0 14.2 0.1 1.5 1.6

4 C 1.7 1,221 17,396 104.4 1,909.2 2,013.6 13.7 0.1 1.5 1.6

5 D 1.7 1,221 17,396 105.8 1,910.8 2,016.6 13.7 0.1 1.5 1.6

6 E 2.0 1,221 17,341 141.7 2,163.1 2,304.8 13.6 0.1 1.7 1.8

7 F 2.4 1,221 17,326 154.5 2,244.7 2,399.2 13.6 0.1 1.7 1.8
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Fig. 9 Test 1: Convergence profiles of GMRES preconditioned with
Jacobi preconditioner and some variants of ILU factorizations for the
Jacobian matrix J . The exit tolerance is 1.E-8

4.2 Tests 2a: Planar reservoir with heterogeneous
and anisotropic permeability

In this test, we consider a challenging scenario characterized
by the permeability and porosity distributions of the SPE10
data set. The simulated time is 1,500 days (≈ 4.1 years) of
continuous production/injection spanned in 412 time steps.
The maximum time increment is set equal to 4 days, and the
CFL number reaches a value of 19.9.

Figure 10 illustrates the physical outcome of the model at
the end of the simulation. The analysis of the BCPR perfor-
mance with the five patterns without lateral faces is provided
in Table 3, where we see that a failure is reported when the
Schur complement is built with the original patch. This pat-
tern, in fact, produces a rough approximation of S̃, which
soon loses the algebraic properties that make it suitable for
AGMG. Such an issue is easily solved by expanding the
element-to-face connection and, once again, pattern A (run
2) delivers the best results in terms of CPU time. The per-
formance of the nonlinear and linear solvers with pattern A
for the EDFA method is displayed in Fig. 11, where we can
observe a similar behavior as in Test 1.

The computational challenge offered by the SPE10 data
set allows us to benchmark, in a realistic setting, our precon-
ditioning solution against a standard approach to approx-
imate the Schur complement. Performing this task in an
effective but inexpensive way is typically one of the most
challenging steps in the design of a block preconditioner.
Before resorting to more advanced approaches, Jacobi pre-
conditioner for the inverse of the block in position (1,1) is
definitely one of the first attempts, yielding the approxima-
tion S̃ = Jpp − Jpπdiag(Jππ )−1 Jπ p. We tested this option
in the BCPR framework and compared the solver perfor-

Fig. 10 Test 2a: Some model insights at the end of the simulation
(t = 1, 500 d)

mance, in terms of linear iterations and total CPU time, with
that obtained with the best EDFA setting (run 2 in Table 3).
The EDFA method clearly outperforms the Jacobi-based
approach, as shown in Fig. 12, which produces a too-coarse
approximation of the second part of the Schur complement.

4.3 Tests 2b: Planar reservoir with heterogeneous
and anisotropic permeability and gravity

This application is the evolution of Test 2a with the intro-
duction of gravity in the model to evaluate its effect on the
performance of the BCPR preconditioner. The maximum
time step size, equal to 1 day, is smaller than in the previous
tests and has been chosen to limit the number of nonlinear
iterations to 5 or 6 at most. This results in a larger number
of time steps, up to 1,222, although the simulated time inter-
val has been reduced to 1,200 days (≈ 3.3 years). The CFL
number reaches a value of 24.4 during the simulation. The
final outcome from the model is depicted in Fig. 13.

Table 4 reports the performance of the BCPR precondi-
tioner with the static approach for building F̃ . As compared
to Test 2a, the introduction of gravity does not seem to affect
the setup strategy of the preconditioner. Pattern A enables a
significant decrease (17.63%) in the number of linear iter-
ations with respect to the original patch (which allows for
convergence in this test) and is again the optimal choice. Fur-
ther expansions produce a larger cost in terms of CPU time,

123



266 Computational Geosciences (2024) 28:253–272

Table 3 Test 2a: Numerical
performance of the static
technique

# Pat RS N̂N N̂l t̂p [s] t̂s [s] t̂t [s] Nl1 t p1 [s] t s1 [s] t t1 [s]

1 Orig 1 NC – – – – – – – –

2 A 1.4 1,184 23,402 94.2 2,070.9 2,165.1 19.9 0.1 1.7 1.8

3 C 1.7 1,183 22,488 112.6 2,209.2 2,321.8 19.3 0.1 1.9 2.0

4 E 2.0 1,221 23,037 138.2 2,352.2 2,490.4 19.3 0.1 2.0 2.1

5 F 2.4 1,212 22,810 167.1 2,514.8 2,681.9 19.3 0.1 2.1 2.2

which, nevertheless, remains close to 1 s for the solution of
a single system after approximately 10 iterations. Although
the presence of gravity does not appear to significantly influ-
ence the setup and convergence of the linear solver, it does
affect that of the nonlinear solver, as shown in Fig. 14. The
number of nonlinear iterations, in fact, is larger than in Test
2a, though the maximum time step size is smaller. The other
panels confirm that the performance of the BCPR precon-
ditioner is overall stable during the simulation, being the
average number of linear iterations per nonlinear step almost
constant after the maximum time step size is reached.

4.4 Test 3: Dome reservoir with heterogeneous
and anisotropic permeability

In this application, the simulated temporal domain spans
1,500 days (≈ 4.1 years) of continuous production/injection,

subdivided in 412 time steps with �tmax = 4 days and a
maximum CFL number equal to 13.2. An overview of the
model outcome at the end of the simulation is provided
in Fig. 15, while Tables 5 and 6 report the results of the
numerical investigation, carried out using both the static and
dynamic variants for the Schur complement approximation,
respectively.

Using a non-Cartesian grid with heterogeneity and
anisotropy makes the linearized problem computationally
more challenging, as first observed in the comment about
Fig. 5b and confirmed by the increase in the number of lin-
ear iterations in Nl1 (compare Tables 5 and 6 to 2 and 3).
The computation and application cost of the preconditioner
is also larger than in the previous tests. In fact, blocks Jππ

and S̃ with the original pattern are 3.6 and 1.9 times denser,
respectively. This is due to the fact that, with a non-Cartesian
grid, the elementary matrix BE (see Eq. 9) is generally full.

Fig. 11 Test 2a: Number of
nonlinear (a) and linear (b)
iterations and CPU time (c) vs.
the time step index during the
full run 2 of Table 3
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Fig. 12 Test 2a: Comparing the performance of different approxima-
tions of the Schur complement, using Jacobi preconditioner for Jππ and
the best setting for the EDFA method (run 2 in Table 3)

This has also an effect on F̃ , for which including the lateral
faces in the element-to-face pattern produces now a different
approximation (compare runs 2,3, and 4,5 in Table 5).

An appreciable reduction in the total number of linear iter-
ations occurs in run 2 (pattern A), as in the previous tests,
however, the total CPU time does not decrease correspond-
ingly because of the RS growth. Further pattern expansions
turn out to be actually detrimental to the solver speed. Hence,
the optimal setup makes use of either the original or the A
pattern, with up to 6 additional non-zeros introduced in each
column of F̃ .

Based on these results, we might argue that the optimal
performanceof the dynamic technique is achievedwith a sim-
ilar number of new column entries, nent. This is confirmed
by a two-step sensitivity analysis in which we tuned nent to
find its optimal value, before adjusting nadd, i.e., the num-
ber of entries added at each iteration. Table 6 summarizes
the outcome of this investigation. In the first six runs, we fix
nadd = 2. The total number of linear iterations decreases as
nent grows up to 6, then the performance deteriorates; there-

Fig. 13 Test 2b: Some model insights at the end of the simulation
(t = 1, 200 d)

fore, this is the optimal value sought. In the second part of the
analysis, where nadd is tuned (runs 7-11), we observe that, as
this parameter grows, t̂ p decreases since fewer iterations are
required to compute each column of F̃ . The best results are
given for nadd = 3 (run 8), then the number of linear itera-
tions starts to increase slowly, reaching the maximum when
nadd = 6, i.e., all the new column entries are introduced at
the first iteration. This result is consistent with the sensitivity
analysis performed in [32] on the same non-Cartesian dis-
cretization, where we observed that at least two iterations
are needed for the decoupling factor approximation to be
effective. Overall, the solver performance in run 8 improves
the one recorded in Table 5 both in terms of iteration count
and total CPU time.

5 Discussion and conclusions

The efficient solution of the systems of linearized equations
(Eq. 18), originating from an original MHFE-FV discretiza-
tion of the PDEs that govern the classical two-phase flow
model in compressible media, was the main objective of this
work. To this end, we designed a preconditioning algorithm
built on top of the classical CPR approach and adapted to
the 3 × 3 block structure of the Jacobian matrix (Eq. 18)
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Table 4 Test 2b: Numerical
performance of the static
technique

# Pat RS N̂N N̂l t̂p [s] t̂s [s] t̂t [s] Nl1 t p1 [s] t s1 [s] t t1 [s]

1 Orig 1 5,105 73,148 341.0 7,064.5 7,405.5 13.5 0.1 1.4 1.5

2 A 1.4 5,099 60,249 433.9 5,338.3 5,772.2 10.9 0.1 1.0 1.1

3 C 1.7 5,099 56,953 504.9 5,665.6 6,170.5 10.4 0.1 1.0 1.1

4 E 2.0 5,099 57,413 612.0 5,823.7 6,435.7 10.5 0.1 1.1 1.2

5 F 2.4 5,100 57,276 759.6 5,446.0 6,205.6 10.4 0.1 1.0 1.1

by introducing a block preconditioner for the 2× 2 pressure
subproblem JPP . This allows for achieving higher solver
robustness by exploiting the inner block structure instead of
using a single AMG for the whole JPP part. The resulting
preconditioner succeeds in incorporating block precondition-
ing within a global CPR-like algorithm and is thus labeled
Block CPR (BCPR). The new core of this tool is the block
preconditioner for JPP , whose development builds on our
previousworks [31, 32] about the Explicit Decoupling Factor
Approximation (EDFA)preconditioner. This technique relies
on the approximation of the Schur complement with inex-
act versions of the Jacobian decoupling factors, making use
of appropriate restriction/prolongation operators built upon
non-zero patterns created either statically or dynamically,
as also proposed in [59, 60]. Two additional modifications
to the native CPR algorithm have been introduced. Due to
the poor performance of a global ILU preconditioner and in

view of a massive parallelization of the algorithm, the Jacobi
preconditioner has been used at the global stage. The sec-
ond modification concerns the order of the stages, which has
been inverted, following the approaches in [22, 46]. The aim
is to introduce some kind of decoupling effect of pressure
from saturation, since this task is not explicitly performed
in a preprocessing step to preserve the original algebraic
properties of JPP . In essence, we inverted the classical CPR
algorithmic structure and modified both preconditioners for
the stages. The resulting BCPR algorithm can be cast in an
AMG-like framework, where the global stage corresponds
to a Jacobi pre-smoothing step, followed by a coarse-level
solver on pressures carried out by the EDFA tool.

The testing phase in Section 4 showed that the BCPR pre-
conditioner is overall robust and efficient. Its setup consists
mainly of tuning the parameters controlling the behavior of
the inner EDFA tool, which represents the original core of the

Fig. 14 Test 2b: Number of
nonlinear (a) and linear (b)
iterations and CPU time (c) vs.
the time step index during the
full run 2 of Table 4
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Fig. 15 Test 3: Some model insights at the end of the simulation (t =
1, 500 d)

BCPR technique, although other elements can be modified
such as theAMG function or the global-stage preconditioner.
The numerical experiments on different test cases showed
that only a few additional entries need to be included in the
original column sparsity pattern (Fig. 3a) to obtain an accu-
rate and sparse, thus efficient, approximation of F , hence
of the Schur complement itself. These results are consistent
with the previous outcome obtained for the EDFA precondi-
tioner alone in a single-phase problem [31, 32]. Specifically,
with a Cartesian grid and regardless of the rock property dis-
tribution (Test 1-2), the static technique with pattern A is
preferable. The introduction of gravity into the flow model
(Test 2b), while causing the nonlinear problem to be com-

putationally more challenging, does not significantly affect
the overall behavior and setup of the linear solver. Moving
from a Cartesian to a non-Cartesian tessellation modifies the
stencil of some blocks in the Jacobian matrix, in particu-
lar, Jππ and Jpπ , and results in a denser approximation of
the Schur complement, while using the same pattern, and in
higher computation and application cost of the BCPR pre-
conditioner. In this setting, expanding the original pattern
with the dynamic technique proved to be more efficient than
the static approach, but, once more, only a few additional
column entries in F̃ are required for optimal performance of
the BCPR preconditioner.

The BCPR preconditioner has been designed follow-
ing an algebraic approach in order to develop a general
framework that can be adapted to other multiphysics prob-
lems, including, for instance, thermodynamic equilibrium,
and discretization schemes with hybrid variables, like the
Mimetic finite difference method [27]. This work is thus the
basis for future developments, mainly following two prin-
cipal directions: expanding the underlying physical model
and strengthening the implementation. We initially took the
two-phase flow problem as a reference model, with incom-
pressible fluids and no capillarity effects. However, fluid
compressibility and capillarity can be introduced in the flow
model as a first step towards an extension of the BCPR
framework to multiphase black-oil models and, in a farther
future, compositional simulations. Yet, adding capillarity
would require some work as the structure of the Jacobian can
change (see also [26]). Thegoodperformanceof the proposed
algorithm also needs to be confirmed for those more sophis-
ticated flow models. On the other hand, we want to develop
a more efficient version of the BCPR preconditioner, derived
from the Matlab prototype, using compiled programming
languages, such as C++, with the ultimate goal of includ-
ing it in our in-house built QASR simulator [28]. This would
also allow linkingmainstreamAMG libraries to the code and
carrying out more significant analyses on the CPU time con-

Table 5 Test 3: Numerical
performance of the static
technique

# Pat RS N̂N N̂l t̂p [s] t̂s [s] t̂t [s] Nl1 t p1 [s] t s1 [s] t t1 [s]

1 Orig 1 1,235 27,915 125.4 4,924.7 5,050.1 24.4 0.1 4.3 4.4

2 A 2.0 1,235 23,879 233.6 4,797.0 5,030.6 20.8 0.2 4.2 4.4

3 B 2.3 1,238 28,903 266.2 7,714.8 7,981.0 25.2 0.2 6.8 7.0

4 C 2.9 1,235 23,705 343.2 5,748.9 6,092.1 20.6 0.3 5.0 5.3

5 D 4.3 1,224 23,268 504.7 7,671.6 8,176.3 19.3 0.4 6.4 6.8

6 E 3.7 1,235 23,722 456.7 7,803.3 8,260.0 20.5 0.4 6.8 7.2

7 F 4.5 1,235 23,673 558.4 8,767.7 9,326.1 20.5 0.5 7.6 8.1
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Table 6 Test 3: Numerical
performance of the dynamic
technique

# nent nadd RS N̂N N̂l t̂p [s] t̂s [s] t̂t [s] Nl1 t p1 [s] t s1 [s] t t1 [s]

1 2 2 1.4 1,235 25,420 176.7 5,191.4 5,368.1 22.1 0.1 4.6 4.7

2 4 2 1.7 1,235 24,429 233.0 5,308.3 5,541.3 21.1 0.2 4.6 4.8

3 6 2 2.0 1,235 23,151 278.4 4,409.9 4,688.3 20.2 0.2 3.9 4.1

4 8 2 2.2 1,235 23,881 319.7 6,043.2 6,362.9 20.3 0.2 5.2 5.4

5 10 2 2.5 1,235 24,682 356.8 6,869.6 7,226.4 21.1 0.3 5.9 6.2

6 12 2 2.7 1,235 25,878 390.1 7,577.3 7,967.4 21.9 0.3 6.5 6.8

7 6 1 2.0 1,235 23,299 301.1 4,493.2 4,794.3 20.3 0.2 3.9 4.1

8 6 3 2.0 1,235 22,904 272.7 4,356.7 4,629.4 20.1 0.2 3.9 4.1

9 6 4 2.0 1,235 23,179 275.2 4,471.2 4,746.4 20.3 0.2 4.0 4.2

10 6 5 2.0 1,235 23,910 271.6 4,683.7 4,955.3 20.5 0.2 4.0 4.2

11 6 6 2.0 1,235 24,404 252.1 4,903.1 5,155.2 21.1 0.2 4.3 4.5

sumption, especially on larger models. Moreover, ongoing
work is being conducted to better understand the benefits of
inverting the order of the stages in the BCPR algorithm for its
overall effectiveness, by performing a theoretical error anal-
ysis accompanied by a thorough numerical investigation.
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42. Maryška, J., Rozložník, M., Tůma, M.: Mixed-hybrid finite ele-
ment approximation of the potential fluid flow problem. J. Comput.
Appl. Math. 63(1–3), 383–392 (1995). https://doi.org/10.1016/
0377-0427(95)00066-6

43. Mosé, R., Siegel, P., Ackerer, P., Chavent, G.: Application of the
mixed hybrid finite element approximation in a groundwater flow
model: Luxury or necessity? Water Resour. Res. 30(11), 3001–
3012 (1994). https://doi.org/10.1029/94WR01786

44. Younes, A., Ackerer, P., Delay, F.: Mixed finite elements for solv-
ing 2-D diffusion-type equations. Rev. Geophys. 48(1), RG1004
(2010). https://doi.org/10.1029/2008RG000277

45. Younis, R.M.: Modern advances in software and solution algo-
rithms for reservoir simulation [PhDdissertation]. StanfordUniver-
sity (2011). Available from:https://stacks.stanford.edu/file/druid:
fb287kz3299/RMY_PHD_THESIS-augmented.pdf

46. Bui, Q.M., Elman, H.C., Moulton, J.D.: Algebraic multigrid
preconditioners for multiphase flow in porous media. SIAM J.
Sci. Comput. 39(5), S662–S680 (2017). https://doi.org/10.1137/
16M1082652

47. Napov, A., Notay, Y.: An algebraic multigrid method with guaran-
teed convergence rate. SIAM J. Sci. Comput. 34(2), A1079–A1109
(2012). https://doi.org/10.1137/100818509

48. Notay, Y.: An aggregation-based algebraic multigrid method. Elec-
tron. Trans. Numer. Anal. 37, 123–146 (2010)

49. Notay, Y.: Aggregation-based algebraic multigrid for convection-
diffusion equations. SIAM J. Sci. Comput. 34(4), A2288–A2316
(2012). https://doi.org/10.1137/110835347

123

https://doi.org/10.1002/nla.264
https://doi.org/10.1016/j.jcp.2018.08.043
https://doi.org/10.1016/j.jcp.2018.08.043
https://doi.org/10.1137/S106482750240443X
https://doi.org/10.1137/S106482750240443X
https://doi.org/10.2118/96809-MS
https://doi.org/10.2118/163608-PA
https://doi.org/10.1007/s11831-022-09739-2
https://doi.org/10.1137/19M1292023
https://doi.org/10.1016/j.cma.2019.112575
https://doi.org/10.1016/j.cma.2019.112575
https://doi.org/10.1002/nag.3192
http://link.springer.com/10.1007/978-1-4612-3172-1
https://doi.org/10.1016/j.jcp.2017.06.034
https://doi.org/10.1016/j.jcp.2019.109194
https://doi.org/10.1007/s10596-021-10096-5
https://doi.org/10.1163/156939503322004891
https://doi.org/10.1163/156939503322004891
https://doi.org/10.1137/S1064827598339608
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202035072
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202035072
https://doi.org/10.1016/j.jcp.2021.110513
https://doi.org/10.1016/j.jcp.2021.110513
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202244067
https://www.earthdoc.org/content/papers/10.3997/2214-4609.202244067
https://doi.org/10.2118/8284-PA
https://doi.org/10.2118/6893-PA
https://doi.org/10.1137/1.9780898718942
https://doi.org/10.1137/1.9780898718942
http://link.springer.com/10.1007/BFb0064470
http://link.springer.com/10.1007/BFb0064470
https://doi.org/10.1016/0377-0427(95)00066-6
https://doi.org/10.1016/0377-0427(95)00066-6
https://doi.org/10.1029/94WR01786
https://doi.org/10.1029/2008RG000277
https://stacks.stanford.edu/file/druid:fb287kz3299/RMY_PHD_THESIS-augmented.pdf
https://stacks.stanford.edu/file/druid:fb287kz3299/RMY_PHD_THESIS-augmented.pdf
https://doi.org/10.1137/16M1082652
https://doi.org/10.1137/16M1082652
https://doi.org/10.1137/100818509
https://doi.org/10.1137/110835347


272 Computational Geosciences (2024) 28:253–272

50. Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative
methods for nonsymmetric systems of linear equations. SIAM
J. Numer. Anal. 20(2), 345–357 (1983). https://doi.org/10.1137/
0720023

51. Jiránek, P., Rozložník, M., Gutknecht, M.H.: How to make simpler
GMRES and GCRmore stable. SIAM J. Matrix Anal. Appl. 30(4),
1483–1499 (2009). https://doi.org/10.1137/070707373

52. Falgout, R.D., Yang, U.M.: HYPRE:A library of high performance
preconditioners. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K.,
Dongarra, J.J. (eds.) Comput. Sci. — ICCS 2002, pp. 632–641.
Springer, Berlin, Heidelberg (2002). Available from: http://link.
springer.com/10.1007/3-540-47789-6_66

53. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J.,
Brune, P., et al.: PETSc/TAO users manual - ANL-21/39 - Revision
3.17. Argonne National Laboratory (2022)

54. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient
management of parallelism in object-oriented numerical soft-
ware libraries. In: Mod. Softw. tools Sci. Comput. Boston, MA:
Birkhäuser Boston, pp. 163–202. (1997). Available from: http://
link.springer.com/10.1007/978-1-4612-1986-6_8

55. Christie, M.A., Blunt, M.J.: Tenth SPE comparative solution
project: A comparison of upscaling techniques. In: SPE Reserv.
Simul. Symp. Houston, Texas: Society of PetroleumEngineers, pp.
308–317. (2001). Available from: https://doi.org/10.2118/66599-
MS

56. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM J.
Sci. Stat. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/
0907058

57. Coats, K.H.: IMPES stability: Selection of stable timesteps. SPE
J. 8(02), 181–187 (2003). https://doi.org/10.2118/84924-PA

58. Saad, Y.: Iterative methods for sparse linear systems. Philadel-
phia, USA: Society for Industrial and Applied Mathematics
(2003). Available from: http://epubs.siam.org/doi/book/10.1137/
1.9780898718003

59. Ferronato, M., Franceschini, A., Janna, C., Castelletto, N.,
Tchelepi, H.A.: A general preconditioning framework for coupled
multiphysics problems with application to contact- and poro-
mechanics. J Comput Phys. 398, 108887 (2019). https://doi.org/
10.1016/j.jcp.2019.108887

60. Franceschini, A., Castelletto, N., Ferronato, M.: Approximate
inverse-based block preconditioners in poroelasticity. Comput.
Geosci. 25(2), 701–714 (2021). https://doi.org/10.1007/s10596-
020-09981-2

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1137/0720023
https://doi.org/10.1137/0720023
https://doi.org/10.1137/070707373
http://link.springer.com/10.1007/3-540-47789-6_66
http://link.springer.com/10.1007/3-540-47789-6_66
http://link.springer.com/10.1007/978-1-4612-1986-6_8
http://link.springer.com/10.1007/978-1-4612-1986-6_8
https://doi.org/10.2118/66599-MS
https://doi.org/10.2118/66599-MS
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.2118/84924-PA
http://epubs.siam.org/doi/book/10.1137/1.9780898718003
http://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://doi.org/10.1016/j.jcp.2019.108887
https://doi.org/10.1016/j.jcp.2019.108887
https://doi.org/10.1007/s10596-020-09981-2
https://doi.org/10.1007/s10596-020-09981-2

	Block constrained pressure residual preconditioning for two-phase flow in porous media by mixed hybrid finite elements
	Abstract
	1 Introduction
	2 Mathematical problem: two-phase flow  in porous media
	2.1 Governing equations
	2.2 Weak formulation
	2.2.1 The MHFE-FV system of equations


	3 The Block CPR (BCPR) preconditioner
	4 Numerical results
	4.1 Test 1: Planar reservoir with homogeneous  and isotropic permeability
	4.2 Tests 2a: Planar reservoir with heterogeneous and anisotropic permeability
	4.3 Tests 2b: Planar reservoir with heterogeneous and anisotropic permeability and gravity
	4.4 Test 3: Dome reservoir with heterogeneous  and anisotropic permeability

	5 Discussion and conclusions
	References


