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Abstract
Time series of conformational dynamics in proteins are usually evaluated with hidden Markov
models (HMMs). This approach works well if the number of states and their connectivity is
known. However, for the multi-domain protein Hsp90, a standard HMM analysis with
optimization of the BIC (Bayesian information criterion) cannot explain long-lived states well.
Therefore, here we employ constrained HMMs, which neglect transitions between states by
including assumptions. Gradually tuning a model with justified and focused changes allows us to
improve its effectiveness and the score of the BIC. This became possible by analyzing time traces
with several thousand observable transitions and, therefore, superb statistics. In this scheme, we
also monitor the residences in the states reconstructed by the model, aiming to find exponentially
distributed dwell times. We show how introducing new states can achieve these statistics but also
point out limitations, e.g. for substantial similarity of two states connected to a common neighbor.
One of the states displays the lowest free energy and could be the idle open ‘waiting state’, in which
Hsp90 waits for the binding of nucleotides, cochaperones, or clients.

1. Introduction

The heat shock protein Hsp90 is one of the most abundant proteins in the cytoplasm of cells and a molecular
chaperone fulfilling its function of assisting other proteins (called clients) to attain their active form. By
interacting with a wide range of cochaperones and client proteins, it maintains proteostasis and thus essential
cellular functions [1–3]. Hsp90 is a homodimer, each monomer consisting of three domains. The abundant
structural data on Hsp90 distinguishes two conformational states: an N-terminally open configuration and
an N-terminally closed configuration [4, 5]. Transitions between these conformational states are part of
Hsp90’s catalytic cycle, e.g. the N-terminally open conformation allows for the binding of many clients, some
clients are then threaded through the dimer in the closed state [6, 7]. In general, the function of proteins is
determined by the different structures they adopt and how they interconvert between them [8–10].

For Hsp90, several fluorescence-based studies have shown that at least four states (two N-terminal open
and two N-terminal closed) are necessary to describe the data [11, 12]. Therefore, a transition between these
four states is the current picture of the idle Hsp90 dimer, but more states could also describe these previous
data. The four states have either been defined by the structural analogy between different Hsp90
homologues [4] or by a hidden Markov model (HMM) analysis of single-molecule FRET data [12, 13] or
Plasmon ruler data [14].
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Figure 1. (a) Diagram of the network of states and transitions between them, as previously found for Hsp90 in solution with
ATP [12]. We use the label 4S for square, as the network contains a closed loop. The colored circles represent the different hidden
states of the HMM, and their position (up or down) indicates the (high or low) scattering intensity. Links represent the
transitions between the states found by an HMM. (b)–(d) Diagrams of the CHMMs implemented in this work. ‘U’ in 4U and 5U
emphasizes the u-shaped part of the network; ‘V’ in 6V draws attention to the relevant v-shaped 4-1-5 motif. Along a row, darker
colors correspond to lower escape rates. In these models, an absence of a link indicates the enforced presence of a zero in the
corresponding entry of the transition matrix.

The HMM is a flexible tool that aims to infer undetected dynamics from partially available
information [15–17]. It has been used for a variety of purposes, such as studying stochastic systems with
feedback and measurement errors [18] or fluorescent time series of quantum dots [19], improving qubit
readout [19], and searching for gravitational waves [20, 21]. Moreover, HMMs are useful in biophysics for
improving our understanding of molecular motors [22, 23] and heterogeneous diffusion states in the
cytoplasm [24].

Here, the analysis of a very long single-molecule time series from Plasmon ruler spectroscopy allows us to
revise the number of hidden states for the idle Hsp90 using an unconventional HMM approach. The base is a
standard HMM for physical systems hopping between states, each emitting a continuous signal. Formerly,
four states emerged from the Bayesian information criterion (BIC) as the best tradeoff between model
complexity and sound reproduction of the dynamics [12, 14]. The corresponding topology of the system’s
states is sketched in figure 1(a) (model 4S). Lines represent transitions with rates significantly different from
zero. The corresponding reconstructed signal was similar to the one shown in figure 2(a). It is composed of
stretches with 1↔ 4 jumps and others with 2↔ 3 jumps, with sporadic transiting between them through
the 1↔ 2 and 3↔ 4 channels. A closed loop in the network of states was needed to model the Hsp90’s
nonequilibrium cycle consuming ATP.

Contrary to previous studies, we use the constrained HMM (CHMM) method [25] to assume that
transitions between certain states are impossible. This procedure reduces the number of free parameters in
the model, which can modify and possibly improve the BIC score for a given number of states. Our strategy
with CHMMs is building upon a good model from an HMM by gradually modifying the most sensible
elements that improve the (BIC score of the) model while keeping it simple enough. Since we analyze an
experiment in equilibrium (no ATP), we can consider a network of states without loops. From results with
standard HMMs, we find that transitions 3↔ 4 take place with the lowest rates in model 4S. Hence, our first
natural simplification assumes transitions 3↔ 4 are so rare that they can be neglected in equilibrium. This
leads to the 4U model of figure 1(b), which can better represent the data than the 4S model when comparing
their BIC scores. Figure 2(a) is precisely the reconstructed time series of such a CHMM. The following shows
subsequent upgrades to more complex models with five or six states, which explain the data better.

2. Data

The data analyzed here have been recorded by Plasmon ruler spectroscopy in the Soennichsen lab before,
where their acquisition is described in detail [14]. In short, the eponymous plasmon ruler in plasmon ruler
spectroscopy consists of two plasmonic nanoparticles (in this case, gold) bridged by the macromolecule
under investigation (here, the Hsp90 dimer). Due to plasmon coupling between the two gold nanospheres,
their plasmon resonance is shifted to higher wavelengths, and the scattering intensity is increased when the
interparticle distance is decreased by a closing of the Hsp90 dimer. For these measurements, yeast Hsp90 was
mutated for a cysteine at position 285. A gold nanosphere (diameter of about 60 nm) was attached to each of
the two Hsp90 monomers at these cysteines via flexible PEG linkers. These constructs were then immobilized
on a glass substrate and observed in a dark field microscope. The scattering intensity of the gold nanospheres
was recorded by a CMOS camera. This procedure allowed for single-molecule observation of Hsp90’s
N-terminal open-close dynamics with 10 Hz for six hours. Here, we analyze traces from Hsp90 in the
absence of nucleotides from [14]. One time series of the opening and closing dynamics of an Hsp90 dimer,
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Figure 2. (a) Experimental trace colored according to the reconstructed sequence of states (i.e. the Viterbi path of the CHMM) for
model 4U and (b) for model 6V. The lower panel is a zoomed region that shows how the 6-state model uses state 0 to explain a
very long low-intensity period.

recorded by Plasmon ruler spectroscopy and termed ‘Thermal1’, is shown in figure 2(a). The raw data is
provided as a supplementary file, ‘njpad5defsupp1.txt’. The y-axis depicts the shift of the plasmon scattering
intensity in arbitrary units. The open Hsp90 dimer shows a low signal (here depicted in shades of blue),
while the closed dimer gives a high signal (here depicted in shades of red). Appendix A summarizes some
findings from another time series (‘Thermal2’) recorded by Plasmon ruler spectroscopy, also provided as a
supplementary file, ‘njpad5defsupp2.txt’.

3. Constrained HMMs

HMMs have been routinely used for decades to determine the hidden states zt visited by a system from some
available partial information in the form of a time series of visible states xt, with t= 0,1,2, . . . ,T denoting a
discrete time index. An HMM with N hidden states {Z1, . . . ,ZN} ∋ zt (here, we do not deal with continuous
Z’s) assumes that the hidden jumping process zt → zt+1 is a Markov chain with jumping probabilities
aij = p(Zj|Zi). It aims to optimize the likelihood of observed data (x1,x2, . . . ,xT) by tuning the parameters
that determine the N2 −N jumping probabilities (the−N term comes from their normalization from each
state) and the emission probabilities p(x|Zi). In our case, the emissions to a real continuous variable x depend
on 2N parameters, namely a mean and standard deviation of a Gaussian distribution for each hidden state
Zi. Moreover, one adds N − 1 parameters for the normalized probability of the initial states. Hence, in total,
each HMM at most contains a number of parameters

Rmax (N) = N2 + 2N− 1 (1)
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which influences the outcome of the BIC. Indeed, for an HMM with R parameters and a maximized value of
the expected log-likelihood function L, the minimization of the BIC score

BIC= R lnT− 2 lnL (2)

allows the selection of a model of moderate complexity that describes the data well.
In a constrained HMM (CHMM) [25], one uses R< Rmax(N) parameters by introducing constraints

based on assumptions. Specifically, the constraints assume that some transitions between states are
impossible, i.e. they build some topology into the hidden state representation. For example, in figure 1(b),
the three lines connecting N = 4 states represent their possible transitions. For consistency with
thermodynamics, these transitions are bidirectional. It yields 6 independent transition probabilities
(self-transitions derive from normalization), which is lower than the maximum number N2 −N= 12 and
leads to R= 17< Rmax(4) = 23. Therefore, assuming a model with the structure of figure 1(b) may improve
the BIC score with respect to the full HMM if the chosen transitions match the essential ones in the system.

CHMMs, analogous to HMMs, use the Baum–Welch forward-backward algorithm [16] to train and
improve the model’s parameters. Then, after the learning phase, they use the Viterbi algorithm [16] to
retrieve the most probable sequence (zt) of hidden states. We implement both algorithms with the support of
the log-sum-exp trick [26] to prevent underflow. The Baum–Welch algorithm updates each entry aij of the
transition matrix by a term proportional to aij itself. Therefore, if a specific entry aij starts as aij = 0, it will
remain zero at every update. The core idea of CHMMs is thus expressed in terms of the chosen initialization:
If one sets an initial element in the transition matrix to zero, it will remain such during training and drop
from the count of the parameters. We describe this point in detail in appendix B. In the end, each transition
rate wij for an allowed transition i→ j is simply computed from the transition probability aij: wij = aij/∆t.

In the following section, we use CHMMs in conjunction with statistical considerations to show that the
experimental time series for Hsp90 are compatible with N = 6 states. Formerly, a N = 4 state model emerged
from analyzing single-molecule FRET data of Hsp90 not driven by ATP consumption (Apo state) using
normal HMMs [12]. Now, analyzing much longer plasmon ruler time traces, we also see states with very long
dwell times, which are rarely visited and had been missed due to the short single-molecule FRET traces. In
the following section, we discuss our reasoning for expanding the system to the N = 5 states of model 5U
(figure 1(c)) and finally settling to N = 6 as in model 6V (figure 1(d)).

4. Data analysis

The models that we discuss are sketched in figures 1(a)–(d). The schemes display states with a high plasmon
resonance shift (high intensity) in the top row and states with a low plasmon resonance shift (low intensity)
in the bottom row. In all cases, the emission parameters are essentially indistinguishable between states of
high intensity and the same for states with low intensity. For example, p(x|i = 2)≈ p(x|i = 3). This extreme
overlap of the visible signal for different hidden states makes the reconstruction of the hidden sequence zt
challenging.

Previous HMM analysis of single-molecule fluorescence time series for the protein Hsp90 converged to
model 4S (figure 1(a)) [12]. Model 4S emerged as the best one because the BIC applied to normal HMMs
penalized and led to the discarding of more complex models with N > 4. Thus, model 4S resulted in the
optimal trade-off between simplicity and effectiveness. However, as argued in the introduction, the simpler
model 4U in figure 1(b) is a better starting point for our CHMM analysis of Hsp90 data in equilibrium.

First, we determine the optimal parameters with a CHMM assuming the 4U structure in figure 1(b). We
recover the two pairs of states: states 2 and 3, connected by fast jumping rates, and states 1 and 4, joined by a
slower transition path. Furthermore, both pairs of transition rates (‘paths’) are faster than the path between
low-intensity states 1 and 2.

However, a ‘resimulation’ of a system with the same parameters (as done, e.g. in [12]) with a stochastic
Markov chain reveals a limitation of the proposed model: it cannot reproduce the longest dwell times≳102 s
of the experiments, as shown in figure 3(b). In fact, the reconstructed distributions of dwell times P(τ),
better visualized with the survival probability S(t) =

´∞
t P(τ)dτ , for model 4U shows (figure 4) that they are

not single exponentials for every state. In particular, distributions for states 1 and 4 (central panels of
figure 4) contain two exponential regimes. This leads to the impossibility of simulating the longest times: the
CHMM does not give enough significance to the sparse, extra-slow transitions. The simulations, therefore,
can only reproduce the dwell times generated according to the first exponential.
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Figure 3. Sequences of dwell times: (a) reconstructed by the CHMM for the networks 4U shown in figures 1(a), and (b) from
simulations based on the parameters for this model. Note the lack of simulated times>102 s. (c) and (d) show the respective plots
for model 6V in figure 1(d).

Figure 4. Each panel shows the statistics of the dwell times reconstructed by the models (see legends) for the state specified in its
title: symbols are the survival probability S(t), and straight lines are exponential fits. For the simpler models 4U and 5U, we show
two fits when there are two exponential decays in a S(t). Panels’ layout follows the state’s structure of model 6V in figure 1(d).

In order to fix the problems with state 1, we assume it can be split into states 0 and 1 in a model that we
term 5U, shown in figure 1(c). State 0 will represent a long-term parking state aiming to account for the
series’ longest dwell times. The training of the CHMM for model 5U converges to an expected log-likelihood
L that improves the BIC score (BIC(5U)−BIC(4U)=−142) despite the number of parameters increased by
five: two more for the transition probabilities between 0 and 1, two for the emission probabilities of state 0,
and also one for the initial probability of state 0. A version with state 0 attached to state 2 rather than 1 does
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Table 1. Fitting parameters of the dwell times exponential behavior (ωi) for the states of the 6V model compared with escape rates
λi =

∑
j ̸=iwij summing the transition rates found by the CHMM for the data set from the main text (‘Thermal1’) for each state i. The

fits yielding ωi’s are the lines for model 6V in figure 4; for state 5, the fit excludes times lower than 20 s, where the statistics deviates from
the asymptotic exponential behaviour.

State ωi [s
−1] λi [s

−1]

0 0.007 0.004
1 0.063 0.069
2 0.69 0.67
3 1.2 1.1
4 0.65 0.48
5 0.07 0.12

not improve the results. Possibly, state 0 is attached to both other ones. Still, the few available transitions
from data do not allow for validation of this hypothesis, which is discarded by the BIC due to the additional
transition parameters. Now, the dwell time distribution for state 1 scales correctly as a single exponential
(lower central panel of figure 4). However, state 4 still manifests a double exponential distribution,
prompting us to move to a N = 6 model.

The natural extension from model 5U to N = 6 states involves splitting state 4 into two states, now
labeled 4 and 5. The name 6V for this model (sketched in figure 1(d)) emphasizes the ‘V’ shape of the
connections from state 1 to states 4 and 5, which is critical for understanding the following results. Model 6V
is supported by the further decrease of the BIC score, BIC(6V)−BIC(4U)=−177. In the time series of the
experimental signal colored according to the reconstructed states, one may appreciate the difference between
the predictions of the simpler model 4U (in figure 2(a)) and model 6V (in figure 2(b)). The latter assigns the
long, low-intensity dwell times to parking state 0. Moreover, as visible in the lower panel of figure 2(b),
model 6V predicts sequences of jumps 1↔ 4 mixed with those 1↔ 5, corroborating the hypothesis that the
network 6V structure with both 4 and 5 connected to state 1 is correct. In addition, simulations with model
6V parameters reproduce the>102 s dwell times; see figure 3(d) (also model 5U reproduced this feature, data
not shown).

However, figure 4 shows that the dwell times for states 4 and 5, even for model 6V, still do not follow a
single exponential form. The distribution for state 4 has an exponential statistics cut off at≈6 s. Conversely,
the distribution for state 5 has no times lower than≈6 s, an excess of statistics at intermediate times≳6 s,
and asymptotic exponential statistics compatible with a long-lived behavior. For the rest, states 4 and 5 are
part of the high-intensity signal and are indistinguishable due to their similar emission parameters.

The interpretation of these features is that the Viterbi algorithm, being unable to distinguish state 4 from
5 from the signal but trying to maximize the likelihood of the data, chooses the most probable event among
4→ 1 and 5→ 1 jumps mostly based on the (fitted) typical dwell time. Thus, a short observed dwell time is
paired to a 4→ 1 event because the average dwell time of state 4 is shorter than state 5. Conversely, a time
longer than 6 s is assigned to 5→ 1, even when the likelihood of the 4→ 1 occurrence is barely lower.
Similarly, this mechanism also explains the lack of statistics below 250 s in the dwell times for state 0
(figure 4): the Viterbi algorithm finds it more logical to assign a short dwell time of the low-intensity signal
to state 1 or 2; hence, it cannot detect short dwell times in state 0.

In table 1, we summarize the escape rates λi that the CHMM finds for model 6V. For all models and both
data sets they are also reported on the diagonal of the tables in figure A1 in appendix A. In table 1, we also
report the index ωi determined from an exponential fit∼ e−ωi t of the dwell time survival probability S(t)
(the dashed lines in figure 4) for model 6V. For every state i, we find good agreement between ωi and λi.

In all models, state 1 emerges as a special one: it is the state with the highest stationary probability, as
reconstructed by the CHMM for models 4U, 5U, and 6V (see figure 5). Therefore, it is the lowest free energy
conformation of Hsp90. Moreover, state 1 is an open state and the most central one in the network of states
for models 5U and 6V. Hence, we speculate that state 1 is a kind of ‘waiting state’ of the idle Hsp90. I.e. it
might be the state in which Hsp90 waits for the binding of nucleotides or cochaperones or clients to proceed
towards other states [13].

We do not consider models with N > 6 since there is no strong clue for more states to exist. Another
version with N = 6, in which state 5 is connected to state 0 rather than to state 1, does not perform as well as
model 6V: the BIC score is worse, and the dwell times distribution for state 0 becomes non-exponential.
Hence, model 6V emerges as the best fit for our data.

It should be interesting to understand which neglected transitions between the six states should be
reintroduced in order to model Hsp90 in the presence of ATP. We postpone this to future work.
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Figure 5. Stationary state probability for the three different models investigated in detail.

5. Conclusions

We have analyzed the dynamics of the protein Hsp90 measured by Plasmon rulers. The experimental
Plasmon ruler time traces clearly show an N-terminal open and an N-terminal closed regime. A previous
dynamic analysis based on HMM required at least four (hidden) states to describe the time traces [14], but
more states could also explain the data. Here, we analyze this data with CHMMs, namely HMMs with
constraints, and we show that adding two more states in a well-defined network better describes Hsp90’s
opening and closing dynamics. This is important because not only the structure of a protein but also the
number of states and their conversion rates determine the function of proteins [27]. A more complete
knowledge of the number of states and their interconversion, as provided here, therefore improves our
understanding of Hsp90 and should enhance our ability to target Hsp90 with drugs, for example.

For our analysis, it was crucial that the experimental technique allowed sampling over time scales of
hours, covering the long-lived states’ dwell times of about 10 min. Our model selection was performed step
by step, gradually improving the BIC score by incorporating minimal pondered additions supported by the
observed statistics. It is a strategy not limited to protein data analysis; we expect it to provide good results for
general systems.

The learning from data of CHMMs, of course, as for normal HMMs, needs a good convergence of the
Baum–Welch algorithm. In principle, this convergence may suffer from the introduction of constraints,
which limits the number of parameters and the space of possible learning dynamics. Nevertheless, this is not
an issue in our tests and is well compensated by the improved BIC scores generated with fewer parameters.

The additional Hsp90 protein states are consistent with the experimental observation of N-terminal
dynamics on a wide range of time scales from nanoseconds [28] to several minutes, as shown here. These
additional states might, for example, reflect different angles between the N-terminal and middle domain [29,
30] or asymmetric states [31, 32]. Finally, CHMMs might be a helpful addition to the wealth of already
available HMM algorithms available for the analysis of time traces [17].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence
Strategy (CIBSS EXC-2189 Project ID 390939984) and the SFB1381 programme (Project ID 403222702). We
thank the Soennichsen lab for providing the raw data of the Plasmon ruler traces.

7



New J. Phys. 26 (2024) 073023 R Tancredi et al

Appendix A. Additional information and plots for the second dataset ‘Thermal2’.

We briefly collect some information on the rates determined by the CHMM for all models (figure A1), and
we show the Viterbi sequence for the second data set, ‘Thermal2’ (figure A2).

Figure A1. Transition rates in s−1 for the three models, for the dataset used in the main text (‘Thermal1’, top panels), and for the
second dataset (‘Thermal2’, bottom panels). Diagonal elements are the negative of states’ escape rates λi, and their cell follows the
standard color code for distinguishing the six states; off-diagonal terms are transition rates wij from state i (row) to state j, and
their cell’s darkness scales with the log of their value. Transitions not included in the CHMM have white cells with zero rates.

Figure A2. Viterbi reconstruction of the hidden states with model 6V for the second experimental trace ‘Thermal2’. The zoom
highlights a long dwell time in the state 5.

8
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Appendix B. CHMM approach underpinnings in the Baum–Welch algorithm

We recall some basic features of the Baum–Welch (forward-backward) algorithm and show how they affect
the constrained version of the HMMs.

Let us consider a sequence of hidden states (z1, . . . ,zT), where each zt ∈ {Z1,Z2, . . . ,ZN}, and a sequence
of observed states (x1, . . . ,xT) (for us, xt is the recorded experimental intensity). We assume that the initial
state is chosen with a probability π = (π1, . . . ,πN). Furthermore, given state zt = i, we assume that the
observable xt follows the emission distribution xt ∼ bi(x) = p(x|Zi) (for us, bi(x)∼ exp[−(x−µi)

2/2σ2
i ],

with µi the mean of the emitted signal from the hidden state Zi, and σ2
i its variance).

For the forward phase, we define αt(i)≡ p(x1, . . . ,xt,zt = i). The value of α1(i) is computed as
α1(i) = πi b(x1). The subsequent values of αt(i) are then recursively evaluated as

αt (i) =
N∑

j=1

αt−1 ( j)ajibi (xt) . (B.1)

In the backward phase, we use another auxiliary variable βt(i) = p(xt+1, . . . ,xT|zt = i). Also β’s are evaluated
recursively: starting from the last value βT(i) = 1, one iteratively computes the previous ones as

βt (i) =
N∑

j=1

aijbj (xt+1)βt+1 ( j) . (B.2)

The state-posterior γt(i) = p(zt = i |x1, . . . ,xT) is then evaluated as

γt (i) =
αt (i)βt (i)∑N
j=1αt ( j)βt ( j)

. (B.3)

The transition rates are then updated according to the rule

aij =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γt (i)

(B.4)

where ξt(i, j) is evaluated as

ξt (i, j) = aij
αt (i)βt+1 ( j)bj (yt+1)∑

k

∑
wαt (k)akwβt+1 (w)bw (yt+1)

. (B.5)

In a CHMM, for some pair ij of states, we may have that

aij = 0⇐⇒ ξt (i, j) = 0,∀t. (B.6)

This, together with equation (B.4), implies that if aij is initialized as zero to avoid i→ j transitions in the
CHMM, it will remain zero at every update.
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