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Land cover change across 45 years in the world’s largest mangrove forest 
(Sundarbans): the contribution of remote sensing in forest monitoring
Kanan Akbar Hossain a, Mauro Masiero a and Francesco Pirotti a,b

aDepartment of Land, Environment, Agriculture and Forestry, University of Padova, Padova, Italy; bCIRGEO Interdepartmental Research 
Center of Geomatics, University of Padova, Padova, Italy

ABSTRACT
This study explored the land use land cover (LULC) change over 45 years (1975 -2020) in the 
world’s largest mangrove forest, Sundarbansusing Landsat imagery. LULC maps were created 
with same-season imagery with the lowest cloud cover at four intervals: 1975, 1990, 2005, and 
2020. Maximum likelihood classification (MLC) was applied to assign five classes: dense forest, 
moderate forest, sparse forest, barren land, and water body. Accuracy assessment was carried 
out with 250 control points for each year resulting in overall accuracy and kappa coefficient 
ranging from 84.8% to 90.0% and 0.81 to 0.87, respectively. Results show dense forest at its 
highest cover in 1975 and then decreasing by an estimated annual rate of 1.3% from 1975 to 
2020, but not consistently. Dense forest class mostly turned moderate and sparse; most of the 
sparse forest class turned to barren land. Most of the barren lands were located near the 
boundary between forest and human settlement, and these two classes were more frequent in 
the Indian part of Sundarbans than in the Bangladesh part. The conclusion is that the time- 
series of remote sensing data can validly support effective forest management by identifying 
space and time changes in the biodiversity of Sundarbans.
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Introduction

Mangroves forests are found in the tropical and sub- 
tropical areas of the world and create a forest in the 
intertidal region between sea and land (Datta & Deb, 
2012; FAO, 2010; Islam et al., 2019). About 41% of the 
world’s mangroves are distributed in South and 
Southeast Asia, with the remaining 59% shared by other 
regions (Malik et al., 2017). Sundarbans is the largest 
contiguous mangrove forest of the world; it alone con-
stitutes 3% of the global mangroves forest area (Chanda 
et al., 2016), covering 10,000 km2, of which 62% 
(6,200 km2) are placed in Bangladesh and the rest 38% 
(3800 km2) in India (Ghosh et al., 2015). The Sundarbans 
are managed independently by Bangladesh and India, but 
they were considered as a single entity until the partition 
of India in 1947 (Ortolano et al., 2016).

Sundarbans provide habitat for numerous wild 
fauna and flora, essential to maintaining coastal bio-
diversity and ecological integrity (Barbier, 2007). In 
addition, this forest includes hosting many threatened 
and endangered species, such as the Royal Bengal 
tiger, estuarine crocodile, Indian python, and some 
species of river dolphins (Ortolano et al., 2016). 
Therefore, Sundarbans is considered a hotspot for 
biodiversity conservation, and at the same time, an 
important provider of a wide range of ecosystem ser-
vices (FAO, 2010; Payo et al., 2016). About 3.5 million 
Bangladeshi and 4 million Indian people are directly 

or indirectly dependent on these ecosystem services 
for livelihood and socio-economic well-being (Giri 
et al., 2007; Kibria et al., 2018; Ortolano et al., 2016; 
Roy et al., 2013). Most importantly, Sundarbans pro-
tect millions of coastal people and their resources from 
storms, cyclones, and coastal soil erosion. Moreover, 
the carbon sequestration rate of mangrove forests is 
four times higher than other tropical forests (Donato 
et al., 2011). Accordingly, Sundarbans is an important 
hub to store total ecosystem carbon that reduces 
greenhouse gas emissions. Recognizing the signifi-
cance and uniqueness of the Sundarbans ecosystem, 
the Sundarbans National Park (SNP) in India and the 
Sundarbans Reserve Forest (SRF) in Bangladesh have 
been declared World Heritage Sites by the United 
Nations Educational, Scientific and Cultural 
Organization (UNESCO) in 1987 and 1997, respec-
tively. SRF was also included as a Ramsar site in 1992 
(Ghosh et al., 2015; Quader et al., 2017; Rahman et al., 
2015).

Sundarbans mangroves in Bangladesh and India are 
decreasing at an alarming rate due to natural and 
anthropogenic causes. Giri et al. (2007) reported that 
the Sundarbans mangrove forest area decreased by 
1.2% from 1970 to 2000. The degradation is due to 
overexploitation of Non-Timber Forest Products 
(NTFPs), expansion of agricultural (shrimp farming 
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and paddy cultivation) and industrial activities (power 
plant, shipyard, oil spills from boats and ships, dam 
construction, and so on) sea level rise, salinity, siltation, 
cyclones, and storm surges (Gopal & Chauhan, 2006; 
Islam, 2010). Sea level rise is considered the most sig-
nificant climate change-related threat to Sundarbans 
mangrove regions (Loucks et al., 2010; Quader et al., 
2017; Rahman, 2020). For instance, sea level rise adja-
cent to the Sundarbans is +3.90 ± 0.46 mm/year 
(Nishat et al., 2019), and 40–60% of mangrove area 
will decrease if sea-level rise will grow up to 1 m 
(Rahman et al., 2015, World bank, 2010). Neogi et al. 
(2017) also studied that cyclonic storms are increased 
by 26% from 1881 to 2001 towards the Sundarbans 
coastal area. However, Das and Datta (2016) reported 
that anthropogenic activities are one of the major 
causes of the ecological degradation of Sundarbans. 
For instance, freshwater discharge of the Ganges water-
way was decreased from 3700 m3s−1 in 1962 to 364 in 
2006 due to the construction of the Farakka Barrage in 
1975, which led to increasing salinity level of the 
Sundarbans (Islam & Gnauck, 2008). Moreover, 
Bangladesh and Indian governments recently agreed 
to build a coal-fed thermal power plant in Rampal 
14 km north of the Sundarbans is an additional threat 
for biodiversity and forest-dependent people.

The Sundarbans’ ecological and socio-economic 
perspectives are a single unit (Ortolano et al., 2016), 
but the legal borderline and different management 
policies between Bangladesh and India make it difficult 
to provide an overview regarding the evolution and 
current state of the entire Sundarbans (Giri et al., 
2014; Gopal & Chauhan, 2006; Ishtiaque & Chhetri, 
2016). In addition to this, vast of the Sundarbans areas 
are inaccessible are due to forest geophysical features 
and other environmental factors (Datta & Deb, 2012; 
Emch & Peterson, 2006). In this situation, remote sen-
sing is useful for detecting and monitoring spatio- 
temporal changes e.g. LULC change and specifically 
forest mapping (LaRocque et al., 2020; Vaglio Laurin 
et al., 2016) in and around the Sundarbans (Quader 
et al., 2017; Rahman, 2013). Dahdouh-Guebas et al. 
(2004) reported that optical remote sensing with mod-
erate-to-high spatial resolution is a reliable tool for 
mapping and characterizing mangrove ecosystems. 
Rahman et al. (2010) also reported that the monitoring, 
analysis, and modeling of LULC are significant for 
Sundarbans’ conservation and management planning. 
Therefore, remote sensing help in the decision-making 
of forest management policies (Pirotti et al., 2014) as 
well as in achieving some United Nations Sustainable 
Development Goals (UN-SDGs) (Chirici, 2020). 
However, there have been insufficient studies under-
taken in Sundarbans, particularly in Bangladesh 
Sundarbans, to track and discuss the numerous causes 
of LULC change (Hasan et al., 2020; Islam et al., 2019). 
In addition, most of these studies conclude by 

highlighting limitations and suggest that further inves-
tigation is required (Quader et al., 2017). For instance, 
the majority of the limitations regarding image selec-
tion and image pre-processing have been recently 
addressed by archives which provide corrected and 
analysis-ready data, but often area-specific image selec-
tion and processing is necessary. Another aspect is that 
rigorous accuracy assessment, and applying these 
workflow consistently is essential to assess LULC accu-
rately (Congalton, 1991; Rwanga & Ndambuki, 2017). 
In our study, we try to fill these knowledge gaps to 
detect the periodic changes of Sundarbans.

The general objective of our work is to explore the 
spatio-temporal changes of the entire Sundarbans (includ-
ing both Bangladesh and Indian parts) through remotely 
sensed data from 1975 to 2020. To achieve this, we have 
addressed the following specific objectives: (1) measuring 
accuracy of the classified LULC classes (2) mapping and 
assessing the different LULC (3) thematic change and (4) 
positive, negative and unchanged areas over 45 years. To 
our knowledge, a study with these spatial and temporal 
scales has not been carried out in the region.

Study area

We considered the entire Sundarbans Mangrove forest 
(including Bangladesh and Indian part) as a study area, 
which is located between 21°32′ and 22°40′ N and 88°05′ 
and 89°51′ E (Figure 1). The Sundarbans are formed on the 
estuary created by the Hooghly, Ganges, Brahmaputra, 
and Meghna rivers in the Bay of Bengal. These rivers are 
the main sources to supply freshwater and sediments to 
Sundarbans. The average elevation of Sundarbans is about 
2 m above the mean sea level (Payo et al., 2016). 
Approximately 30% of areas of the Sundarbans are covered 
by water which is shaped by numerous rivers, canals, and 
tidal flows (Nishat et al., 2019). The tide inundated the 
forest twice a day (Barlow et al., 2011), and was character-
ized by a tropical climate with a dry season during 
December–February and a monsoonal wet season during 
March–November (Quader et al., 2017). Seasonal mean 
minimum and maximum temperatures vary from 12°C to 
24°C and 25°C to 35°C, respectively. The total annual 
amount of precipitation is between 1500 mm to 
2000 mm. During the monsoon period, the tropical 
cyclones always hit the Sundarbans, causing severe flood-
ing and wind damage (Ghosh et al., 2015).

Methodology

The study of spatio-temporal changes for an extended 
period and larger areas are challenging regarding 
images collection from multiple sensors, processing, 
correction, and accuracy assessment (Roy & Inamdar, 
2019). Our study area is covered by the numerous 
satellite scenes from various sensors from 1975 to 
2020. Therefore, we designed the study in 
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a sequential framework to ensure the best accuracy, 
which includes: i) image collection, ii) image pre- 
processing, iii) image classification, (iv) accuracy 
assessment, and (v) final mapping (Figure 2).

Image collection

Landsat satellite “collection-1 level-1” images were used 
to explore the LULC of Sundarbans from 1975 to 2020. 
The United States Geological Survey USGS (2019) 
reported that the Landsat “collection-1 level-1” images 
are the best-known quality to support time series analysis. 
Except for one, all these cloud-free images were acquired 
from January to February from the USGS. January and 
February are the winter season (cold-dry condition) and 
less cloudy in Sundarbans regions; therefore, there is no 
significant variation in vegetation phenology and spectral 
signature between these two months (Bera & Chatterjee, 
2019; Islam et al., 2019).

The 2020 images were from the Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS). 
The rest of the images were from Landsat Thematic 
Mapper (TM) and Landsat Multi-Spectral Scanner 
(MSS). In the case of 1975, three adjacent Landsat 
images are needed to cover the entire Sundarbans. 
The source and other specifications of the used satel-
lite images of Sundarbans are given in Table 1.

Image pre-processing

Atmospheric and radiometric correction of collected 
images were completed using Fast Line-of-sight 
Atmospheric Analysis of Hypercubes (FLAASH) in 
ENVI 5.3. FLAASH is a highly established and advanced 
atmospheric correction algorithm in remote sensing plat-
forms (Serrano et al., 2016). Although FLAASH 

technique requires longer processing times, it generally 
provides more accurate results than other methods 
(Smith, 2015). The FLAASH model includes a method 
(Equation 1 and 2) for minimizing the inconsistency of 

Figure 1. Sundarbans Mangrove forest (study area).

Figure 2. Frame work of methodological activities followed in 
the study.
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radiometric and atmospheric (i.e. water vapor, haze, 
smoke, fog, dust and aerosol) effect in images (Kaufman 
et al., 1997; Matthew et al., 2000). The first term in 
Equation (1) measure the radiance that is reflected from 
the surface and travels directly into the sensor, while 
the second term corresponds to radiance from the surface 
that is scattered by the atmosphere into the sensor. 

L ¼
A

1� ρeS

� �

þ
Ae

1� ρeS

� �

þ La (1) 

Where, L is the spectral radiance at sensor pixel, ρ 
is the pixel surface reflectance, e is an average 
surface reflectance for the pixel and a surrounding 
region, S is the spherical albedo of the atmosphere, 
La is the radiance back-scattered by the atmo-
sphere, A and B are coefficients that depend on 
atmospheric and geometric conditions but not on 
the surface.

Geometrically, our study area is almost flat, where A, 
B, S, and La are strongly dependent on the atmospheric 
conditions (e.g. water vapor). Therefore, the equation (1) 
is resolved for the pixel surface reflectance in all of the 
sensor channels. The solution process includes calculat-
ing a spatially averaged radiance image Le, from which 
the spatially averaged reflectance ρe is estimated using the 
approximate equation (2). 

Le �
Aþ Bð Þρe

1� ρeS
þ La

" #

(2) 

We also applied the modified pseudo-invariant features 
(PIF) method as part of the relative radiometric correc-
tion of the scenes of the Landsat sensor (Myeong et al., 
2006). The PIF method reduces the inconsistency 
between different scenes of the same mosaic of images 
(Quader et al., 2017). After mosaicking, the images of the 
study area were extracted by considering the administra-
tive boundary of Sundarbans.

For image rectification, we used about 50 ground 
control points and the dispersed ground control points 
generated a root mean square error (RMSE) using 
Equation (3). 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðyi � xiÞ
2

n

s

(3) 

Where, yi is the observed sample points, xi is the 
predicted sample points and, n is the total number of 
observations. The square of the difference (y-x) always 
consists in a value of one when it is an error, and zero 
when it is correct. So the RMSE is the square root of 
the misclassification rate, and the lower RMSE stands 
the higher the accuracy of LULC prediction (Talukdar 
et al., 2020). In this study, maximum RMSE was found 
0.39 that belong to the acceptable range for LULC 
change detection (Knorn et al., 2009; Tucker et al., 
2004). After that the images were resampled to 
a 30 m pixel size using the nearest neighbour resam-
pling method (Ghosh et al., 2016).

Image classification

A variety of image classification techniques are used for 
mapping and studying LULC change (Billah et al., 2021; 
Lu & Weng, 2007). We performed supervised maximum 
likelihood classification (MLC) on the study area at four 
time periods over 45 years (1975, 1990, 2005, and 2020). 
The classification was assigned to five classes: dense/ 
moderate/sparse forest, barren land, and water. 
Supervised MLC classification techniques have been 
used worldwide over the last two decades to study man-
grove LULC (Bera & Chatterjee, 2019; Giri et al., 2007; 
Chen et al., 2013; Giri & Muhlhausen, 2008; Giri et al., 
2010; Islam et al., 2019; Jones et al., 2016; Ghosh et al., 
2016; Kumar et al., 2021; Pham & Yoshino, 2015). 
Because, the MLC algorithm is one of the most well- 
known parametric classifiers used for supervised classifi-
cation (Li et al., 2014) and is easy to use, thus, an extended 
training process is not required (Chen et al., 2013; Datta 
& Deb, 2012). Moreover, the MLC algorithm reduces the 
data necessities and provides a potential to extract com-
prehensive information (Hassan, 2017; Jat et al., 2017) by 
calculating the weighted distance or likelihood of an 
unknown measurement vector that belongs to one of 
the known classes, based on the Bayesian equation. The 
unknown measurement vector is assigned to the class 
based on the highest probability of fit. Consideration of 
a variance-covariance matrix within the class distribu-
tions is considered one of the advantages of this algorithm 
(Ghosh et al., 2016). However, a sufficient number of 
training samples are prerequisites for a successful and 

Table 1. Source and specification of satellite images used in the study.
Year Data acquisition date/time SatelliteSensor Path/ Row Used bands Spatial resolution Cloud cover Covered area*

1975 19 February 1975 L 2 MSS 147/045 4–7 60 m 0% BS
10 January 1976 L 2/MSS 148/045 4–7 60 m 0% IS, BS
10 January 1976 L 2/MSS 148/044 4–7 60 m 0% BS

1990 24 February 1990 L 5/TM 137/045 1–7 30 m 0% BS
14 January 1990 L 5/TM 138/045 1–7 30 m 0% IS, BS

2005 16 January 2005 L 5/TM 137/045 1–8 30 m 0% BS
7 January 2005 L 5/TM 138/045 1–8 30 m 0% IS, BS

2020 26 January 2020 L 8/OLI 137/045 1–7 30 m 0% BS
Jan 17, 2020 L 8/OLI 138/045 1–7 30 m 0.62% IS, BS

Covered area*: BS = Bangladesh Sundarbans, IS = Indian Sundarbans
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superior classification (Lu & Weng, 2007). For each 
study year, we selected a total of 245 training samples 
throughout the area to identify the LULC classes (a total 
of 980 training samples for four study years). The training 
samples were distributed among the LULC classes as 
follows: 50 samples for dense forest, 50 for moderate 
dense forest, 45 for sparse forest, 35 for barren land, and 
65 for water body. The water color is different near the 
coastal/beach/shoreline areas than the deep river basins 
of Sundarbans due to the sedimentation, water deepness, 
and tidal effect; thus, the spectral variation is a little 
different. In this case, we considered a large number of 
water body sites for training samples. The training sam-
ples were selected manually from the images for accurate 
classification by careful inquiry of homogeneous pixels of 
these five LULC classes (Islam et al., 2019). Moreover, we 
used high-resolution Google Earth images as a reference 
point to identify the actual LULC classes (Figure 3).

Accuracy assessment

For accuracy assessment, we randomly selected 250 con-
trol points for each study year over the classified images (a 
total of 1000 control points for four study years). The 
points were labelled according to the land cover around 
a 30 m radius – in case a point fell too close between two 
different land cover classes, it was slightly shifted in order 
to make sure that it is representative of a full Landsat 
pixel. These control points were verified using Google 
Earth historical images. However, no information is 
available in Google Earth historical images for the year 
1975. Therefore, for this year, we verified images using 
previous literature, expert-based information (Quader 
et al., 2017), and with historical toposheet map (sheet 
NF 45–8, series U 502) from the survey of India. 

Classification accuracy for the classified images was 
assessed by computing error metrics (producer, user 
and overall accuracy) and kappa coefficients (K) 
(Kanniah et al., 2015; Stehman, 1996). The calculation 
of K is described in equations (4). 

K ¼
n
Pr

i¼1 xij �
Pr

i¼1ðxixjÞ
� �

n2 �
Pr

i¼1ðxixjÞ
� � (4) 

Where, n is the total of sample, xij is the total corrected 
sample, xi is the producer total and xj is the user total. The 
value of K equal to one means perfect agreement, whereas 
a value close to zero means that the agreement is no better 
than would be expected by chance (Rwanga & n.d. 
ambuki, 2017). Therefore, higher value of K indicates 
the higher the accuracy of LULC expectation.

Final mapping

After the accuracy assessment, the final map was com-
pleted for four different study years (1975, 1990, 2005, 
and 2020) to estimate different LULC. Then, we calcu-
lated periodic LULC, thematic and difference from 
one year to another. Finally, the causes of periodic change 
patterns were discussed in terms of human induced (i.e. 
agricultural and industrial activities) and climate change- 
related impacts (i.e. cyclonic storms and sea level rise).

Results

Accuracy assessment

The accuracy assessment results of the classified 
images show that the overall accuracy ranges were 
between 84.8% and 90.0% from 1975 to 2020. The 
highest and lowest overall accuracy was found for 

Figure 3. Image classification and accuracy assessment.
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2020 and 1975, respectively (Table 2). The producer’s 
(PA) and user’s (UA) accuracy were highest for water, 
and the differences between these values (PA and UA) 
were less than other LULC classes. The maximum 
differences between producer’s and user’s values 
were found for the sparse and moderate forest. The 
kappa coefficient ranges were from 0.81 to 0.87 from 
1975 to 2020 (Table 2). The kappa value was highest 
for the year 2020 than others periods.

Land use land cover change

The LULC maps of our study revealed that in 1975 the 
dense forest covered maximum areas (45%) of 
Sundarbans (Figure 4). The second main class cover 
was water (32%), followed by barren land (10%), mod-
erate dense (8%), and sparse forest (5%) (Table 3). 
However, in 1990 and 2005, the water covered 

maximum areas instead of dense forest, and the 
other land cover was followed by moderate dense 
forest, sparse forest, and barren land. In 2020, most 
areas were covered by water and moderate dense for-
est where the dense forest was replaced with third 
position (Figure 5). Our geo-spatial maps also showed 
that most of the dense forest occupied the eastern part 
of Sundarbans from 1975 to 2020. The sparse forest 
and barren land areas were highest in the Indian part 
of Sundarbans than in Bangladesh ones. However, the 
maximum barren land areas are located near to bor-
derline between forest and human habitat (Figure 4).

The study showed that in the overall study time-
span, there was a rate of 1.3% of dense forest loss 
per year from 1975 to 2020 (Table 3), but not consis-
tently. The dense forest cover decreased from 1975 to 
1990 and 2005 to 2020 with an annual rate of 2.75% 
and 2.25%, respectively. However, the dense forest 

Table 2. Analysis accuracy metrics of classified Landsat images of Sundarbans (1975–2020).
Land use classes

Dense forest Medium dense forest Sparse forest Barren land Water body

Year(Used sensor) PA UA PA UA PA UA PA UA PA UA Overall accuracy Kappa coefficient (K)

1975 (MSS) 87 84 82 83 81 84 79 83 92 91 84 0.81
1990 (MSS) 88 87 81 87 84 89 88 93 91 90 88 0.85
2005 (TM) 89 90 80 86 82 87 85 90 94 91 87 0.83
2020 (OLI) 88 90 86 88 89 85 80 89 96 93 90 0.87

“PA” and “UA” indicates producer’s and user’s accuracy respectively

Figure 4. LULC of Sundarbans from 1975 to 2020.
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increased by giving a yearly rate of 0.40% from 1990 to 
2005. Moderate and sparse forests increased from 
1975 to 2020, but these two types of forests decreased 
from 1990 to 2005. The increasing annual rates of 
moderate dense and sparse forest were greater than 
the dense forest from 1975 to 2020, which indicates 
the degradation of forest areas by converting dense 
forest into moderate dense and then sparse forest. The 
water body always increased gradually (Figure 5) by 
giving an annual rate of 0.6% from 1975 to 2020, but 
the increasing trend was highest for the last 15 years 
(2005 to 2020) (Table 3).

Thematic changes

The thematic change map provides information 
that the significant areas of dense forest were 
altered by sparse and moderate dense forest 
from 1975 to 2020 (Figure 6). But, the alternation 
between these types of forest cover was higher 
from 1975 to 1990. Moreover, the map shows 
that the areas of sparse, moderate, and dense 
forest were increased by reducing barren areas 
in the Indian part of Sundarbans from 1975 to 
2020, whereas Bangladesh Sundarbans increased 
sparse and moderate dense forest by reducing 
dense forest areas. The areas of barren land were 

decreased from 1975 to 2020. However, the bar-
ren areas located between forest boundary and 
human settlement were unchanged (Figure 6).

The results of our finding showed that most of 
the thematic changes were found for the dense 
forest in the last 45 years (1975 to 2020), where 
significant areas of the dense forest turned into 
moderate dense (15.62%), sparse forest (10.41%) 
and water bodies (2.45%) (Table 4). The dense to 
moderate dense and sparse forest changes were 
greater from 1975 to 1990 than the other two 
transitional periods (1990 to 2005 and 2005 to 
2020). However, very few areas of dense forest 
were developed from the moderate dense, sparse 
forest and other types of land cover. The study 
found that the highest percentages of dense forests 
were developed from 1990 to 2005 by replacing 
moderate dense to dense (5.65%) and sparse to 
dense forest (3.61%). The barren areas were 
increased by converting moderate dense forest to 
the barren land and sparse forest to barren land 
from 1975 to 2020. But, barren lands were 
decreased in areas by dense forest from 1975 to 
1990. A significant amount of barren, sparse, 
dense, and moderate dense forests areas turned 
into water bodies from 1975 to 2020, where very 
few areas gained from water (Figure 6).

Table 3. Analysis LULC of Sundarbans (1975–2020).
Area (km2)(% of total area) Area changes (km2)(Annual rate of changes %)

LULC 1975 1990 2005 2020 1975–1990 1990–2005 2005–2020 1975–2020

Dense forest 4527(45%) 2657(27%) 2818(28%) 1864(19%) −1870(−2.75%) +161(+0.40%) −954(−2.25%) −2663(−1.30%)
Moderate – dense forest 809(8%) 1817(18%) 1734(17%) 2120(21%) +1008(+8.31%) −83(−0.30%) +386(+1.48%) +1312(+3.61%)
Sparse forest 530(5%) 1735(17%) 1363(14%) 1815 (18%) +1205(+15.15%) −372(−1.43%) +452(+2.21%) +1285(+5.39%)
Barren land 1002(10%) 416(4%) 522(5%) 247 (2%) −585(−3.90%) +106(+1.70%) −275(−3.51%) −754(−1.67%)
Water bodies 3142(32%) 3408(34%) 3596(36%) 3963 (40%) +266(+0.57%) +188(+0.37%) +366(+0.68%) +821(+0.58%)

“+” and “–” indicates increase and decrease respectively

Figure 5. Change areas by different LULC of Sundarbans from 1975 to 2020.
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Positive, negative and unchanged in and around 
Sundarbans

The findings of our result showed that the no-change1 

areas were greater than negative2 and positive change3 

areas from 1975 to 2020. But, most of the no-change areas 
included water bodies. The no-change areas were more 
numerous for the period from 1990 to 2005, and these 
areas were located in the eastern part of Sundarbans 
(Figure 7). Maximum positive changes occurred from 
1975 to 1990 than the other two periods (e.g. 1990 to 
2005 and 2005 to 2020), which were found in the eastern 
part of the forest. The negative change areas were highest 
2005 to 2020 (Figure 8) compared to other periods.

Discussion

Accuracy assessment

The overall accuracy and kappa coefficient of this 
study found are higher than the obtained by 
Mandal and Hosaka (2020), Nandy and 

Kushwaha (2011), and Giri et al. (2007). It is 
considered as a significantly high level of agree-
ment with validation data (Landis & Koch, 1977; 
Rwanga & Ndambuki, 2017). The producer’s (PA) 
and user’s (UA) accuracy of our study were 
higher for water than for sparse and moderate 
forest. This is likely due to the spectral similarity 
between the sparse and moderate forest, which 
both have photosynthetic material with back-
ground of soil or other which mix the spectral 
response. Moreover, the Landsat-8 OLI-TIRS sen-
sor (2020) classified images had higher overall 
accuracy and kappa values compared to TM 
(2005), MSS (1990), and MSS (1975) (Table 2). 
The reason behind that the training samples were 
not closely matched with image date, although we 
used Google Earth high-resolution images as 
reference data for the years 2020, 2005 and 
1990, and historical land use maps (e.g. toposheet 
map) for the year 1975 (Islam et al., 2019; Kumar 
et al., 2021).

Figure 6. Thematic Changes in and around Sundarbans from 1975 to 2020.

1No change indicates the stable areas where no alternation among dense forest, moderate dense forest, sparse forest, barren land and water bodies.
2Negative change indicates the decrease of dense forest, moderate dense forest, sparse forest, barren land and water bodies.
3Positive change indicates the increase of dense forest, moderate dense forest, sparse forest, barren land and water bodies.
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Land use land cover, thematic change, and 
positive, negative and unchanged

The dense forest cover was highest in 1975 com-
pared to other periods (e.g. 1990, 2005, and 2020). 
However, the study found that the dense forest area 
reduced from 1975 to 1990 and 2005 to 2020, and 
it increased from 1990 and 2005. In the overall 
study timespan (1975 to 2020), the dense area 
declined with an annual rate of 1.3%. Giri et al. 
(2007) reported that the Sundarbans mangrove for-
est area decreased by 1.2% from 1970 to 2000. Our 
thematic change study showed that the changing 
patterns of the dense and moderate forests were 
opposite from 1975 to 2020 (Figure 9); when the 
dense forest decreased, the moderate dense forest 
increased with the same trend. A similar opposite 
trend was also found between the sparse and bar-
ren lands. The findings of these thematic changes 
suggest that the Sundarbans dense forest deceased 
by converting to moderate dense and sparse forest, 
whereas most of the sparse turned into barren land. 
However, the degradation rate is increasing due to 
anthropogenic activities, natural, and climate 
change factors. Anthropogenic activities include 
overexploitation of resources (e.g. honey, fuelwood, 
thatching materials, fish, crab, medicinal plants, 
etc.), agricultural expansion (e.g. shrimp farming 
and paddy cultivation), and industrialization (e.g., 
power plant, dam construction, port, and shipyard) 
(Giri et al., 2007; Ghosh et al., 2015; Iftekhar & 
Islam, 2004; Islam, 2010; Kumar et al., 2021; 

Rahman et al., 2010; Thakur et al., 2021). Natural 
factors comprise tropical cyclones, storm surges, 
salinity intrusion, siltation, and pest and diseases 
(Ghosh et al., 2015; Islam & Gnauck, 2008; Kumar 
et al., 2021; Mandal & Hosaka, 2020; Neogi et al., 
2017; Quader et al., 2017; Rahman et al., 2015). The 
major climate change reason is sea level rise for the 
Sundarbans (Ghosh et al., 2015; Kumar et al., 2021; 
Loucks et al., 2010; Payo et al., 2016; Quader et al., 
2017).

Anthropogenic activities
Anthropogenic activities are one of the major causes 
of the degradation of Sundarbans (Das & Datta, 2016). 
For instance, approximately 3.5 million Bangladeshi 
and 4 million Indian people are directly or indirectly 
dependent on Sundarbans for livelihood and socio- 
economic well-being (Giri et al., 2007; Kibria et al., 
2018; Ortolano et al., 2016; Roy et al., 2013). However, 
the number of forest-dependent people is still increas-
ing in Sundarbans areas, leading to rising overexploi-
tation of resources to meet the demand (Ghosh et al., 
2015; Nishat et al., 2019). Rahman et al. (2010) also 
reported that the areas of Sundarbans and its biodi-
versity is disappearing quickly due to illegal felling, 
encroachment, and poaching of wildlife.

Our study found that the moderate and sparse 
forests were highest than the dense forest in 2020. 
The highest amount of barren lands were fund for 
1975, and then it reduced in 2020. However, most of 
the barren land areas are located near the border 
between forest and human habitat (Figure 4), 

Table 4. Analysis thematic changes of Sundarbans (1975–2020).
1975–1990 1990–2005 2005–2020 1975–2020

Change classes km2 % km2 % km2 % km2 %

Dense to sparse 848 8.48 398 3.97 460 4.59 1041 10.41
Dense to moderate dense 1331 13.3 352 3.51 847 8.45 1563 15.62
Dense no change 2275 22.74 1830 18.24 1332 13.28 1625 16.24
Dense to barren 38 0.38 29 0.29 42 0.42 51 0.51
Dense to water 31 0.31 44 0.44 137 1.37 245 2.45
Moderate dense to sparse 275 2.75 454 4.52 635 6.33 310 3.1
Moderate dense no change 358 3.57 765 7.63 702 7 242 2.42
Moderate dense to dense 120 1.2 567 5.65 294 2.93 128 1.28
Moderate dense to barren 36 0.36 7 0.07 30 0.3 22 0.22
Moderate dense to water 19 0.19 23 0.23 73 0.73 106 1.06
Sparse no change 220 2.2 481 4.79 559 5.57 154 1.54
Sparse to moderate dense 55 0.55 574 5.72 493 4.91 125 1.25
Sparse to dense 120 1.2 363 3.61 220 2.2 44 0.44
Sparse to barren 82 0.82 142 1.42 20 0.2 38 0.38
Sparse to water 53 0.53 177 1.76 71 0.7 169 1.69
Barren to sparse 349 3.49 15 0.15 89 0.88 251 2.51
Barren to moderate dense 62 0.62 32 0.32 50 0.5 162 1.62
Barren to dense 124 1.24 21 0.21 16 0.16 52 0.52
Barren no change 241 2.4 249 2.48 136 1.36 120 1.2
Barren to water 222 2.22 101 1.01 229 2.28 413 4.13
Water to sparse 37 0.37 15 0.15 78 0.77 59 0.59
Water to moderate dense 8 0.08 11 0.11 33 0.33 29 0.29
Water to dense 8 0.08 37 0.36 5 0.05 15 0.15
Water to barren 19 0.19 94 0.94 18 0.18 16 0.16
Water no change 3072 30.7 3252 32.41 3461 34.5 3024 30.23
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indicating human-induced degradations. Kumar et al. 
(2021) reported that the settlement and agricultural 
expansion reduce the forest covered area adjacent to 
Sundarbans’ boundary. According to the Zoological 
Society of London (2012), the agricultural activities 
had destroyed around 24,730 ha of Sundarbans man-
groves from 1975–2010, where only shrimp cultiva-
tion destroyed 7,550 ha (Neogi et al., 2017). Aziz and 
Paul (2015) also reported that 110 km2 (11000 ha) 
Sundarbans reduced from 1970 to 2000. Our LULC 
map showed that the sparse forest and barren land 
areas were highest in the Indian part of Sundarbans 
than in Bangladesh (Figure 4). Similar results were 
found by Thakur et al. (2021) and Quader et al. 

(2017). Paul et al. (2017) reported that the south- 
western part of Indian Sundarbans is degraded mainly 
for human uses of mangrove resources, fishery devel-
opment, hypersalinity, siltation, cyclonic storm effects, 
and land erosion.

Construction of dam and other industrial develop-
ment are continuing around the Sundarbans to grow 
up country’s economy which led to increasing the 
reasons of forest degradations. Islam and Gnauck 
(2008) reported that the Ganges waterway decreased 
freshwater discharge from 3700 m3s−1 in 1962 to 
364 m3s−1 in 2006 due to the construction of the 
Farakka Barrage in 1975, resulting in increasing sali-
nity level of the Sundarbans and decreasing forest 

Figure 7. Areas with forest change of Sundarbans from 1975 to 2020.

Figure 8. Forest change in Sundarbans from 1975 to 2020.
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cover. In our study the forest density was always 
(1975–2020) higher in the eastern part of 
Sundarbans compared to other areas (Figure 4). 
Because salinity decreases from west to east (Gopal 
& Chauhan, 2006) and dominates by less salinity lover 
Heritiera fomes tree (Aziz & Paul, 2015). Rahman et al. 
(2015) reported that, Heritiera fomes dominated forest 
types store more ecosystem carbon than other vegeta-
tion types. However, the Heritiera fomes dominated 
forest stands (eastern part) are also decreasing due to 
increasing soil salinity. Mukhopadhyaya et al. (2015) 
and Aziz and Paul (2015) reported that about 32% of 
Bangladesh Sundarbans were covered by only 
Heritiera fomes in 1959 that reduced to 21% in 1983 
and 17% in 2015. In addition, Bangladesh and Indian 
governments recently agreed to build a coal-fed ther-
mal power plant in Rampal 14 km north of the 
Sundarbans is an additional reason for Sundarbans 
degradation.

Natural factors
Cyclone disturbances can cause significant damage 
to forest structures (Everham & Brokaw, 1996) and 
forested landscapes (Foster & Boose, 1992). 
Sundarbans is on an average 150 km long (east to 
west) and 75 km wide (north to south), which acts 
as a natural barrier that protects the coastal people 
and their properties from cyclonic storms, tidal 
surges, and coastal soil erosions. Every year, the 
tropical cyclones with different intensities across 
the coastal areas of Bangladesh (Alam & Collins, 
2010; Mallick et al., 2017), most of the landfall 
starts from Sundarbans. Moreover, Sundarbans 
face severe cyclonic storms and disturbances every 
7–12 years (Mandal & Hosaka, 2020). In our map, 
we showed the cyclone tract that happened just 
before the study periods (Figure 10). The findings 
of our study revealed that tropical cyclones 

damaged Sundarbans massively from 1975 to 
2020. The intensity of cyclone disturbances 
depends on wind speed, distance from the cyclone’s 
eye, precipitation, and so on (Mandal & Hosaka, 
2020). The maximum wind speed of our reported 
four cyclonic events were 80 km h−1 (1974), 
102 km h−1 (1989), 101 km h−1 (2005), and 
195 km h−1 (2019) (Mandal & Hosaka, 2020; 
Quader et al., 2017). Among four cyclonic events, 
the cyclone Bulbul (2019) had high wind speed and 
damaged the Sundarbans significantly. Samanta 
et al. (2021) estimated that, 14.6% (303.6 km2) 
and 45.8% (950.7 km2) of Indian Sundarbans 
areas suffered high and low loss, respectively, due 
to the cyclone Bulbul. Similarly, Bangladesh 
Sundarbans seems affected significantly after the 
cyclonic storms Bulbul. Another two severe 
cyclones, namely Sidr (2007) and Aila (2009), 
damaged the Sundarbans vastly. For instance, 
cyclone Sidr affected the Sundarbans most severely, 
where 24% of forest was destroyed by trunk break-
age, uprooting, substrate loss, and local scour 
around the trees (Mandal & Hosaka, 2020). 
Recently, super-cyclonic storm Amphan (2020) 
attacked the western part of Sundarbans caused 
considerable damages to the forest biodiversity. 
Neogi et al. (2017) reported that the cyclonic 
storms are increased by 26% from 1881 to 2001 
towards the Sundarbans coastal area, and the 
degree of the tropical cyclonic impacts is expected 
to extremely high in the next few years (Alam & 
Dominey-Howes, 2015; Moon et al., 2019; Ranson 
et al., 2014; Varotsos et al., 2015; Walsh et al., 
2016). Therefore, cyclonic storms are the major 
causes for the degradation of Sundarbans man-
grove. In addition to this, the landmass of 
Sundarbans (i.e. offshore islands and sea-facing 
coastlines) is reducing due to tidal surges. Kanan 

Figure 9. Changing pattern of different LULC of Sundarbans from 1975 to 2020.
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et al. (2021) studied that the net erosion of 
Sundarbans was 821 km2 for the last 45 years 
(1975 to 2020).

Climate change factors
Sundarbans is an innocent victim of accelerating glo-
bal warming, and sea level rise is considered the most 
significant climate change-related threat to 
Sundarbans (Loucks et al., 2010; Quader et al., 2017). 
In our study, the area water bodies of Sundarbans 
increased gradually from 1975 to 2020 (Figure 9). 
Quader et al. (2017) studied that the water bodies 
and sea level increased gradually from 1977 to 2010, 
which might indicate sea level reduces some areas of 
Sundarbans. Nishat et al. (2019) reported that the sea 
level rise in the Sundarbans is +3.90 ± 0.46 mm/year, 
and 75% of mangrove area will inundate if sea-level 
rise will grow up to 0.45 m (Jabir et al., 2021) . Sea level 
rise increases both the surface water salinity and soil 
salinity through the saline water intrusion into the 
groundwater (Bhuyian & Dushmanta, 2011) and 
reduces the forest’s diversity and density. The water 
and soil salinity level of the north-eastern Bangladesh 
Sundarbans is less than other parts of the forest (Aziz 
& Paul, 2015; Gopal & Chauhan, 2006); therefore, we 
found a higher density for the north-eastern part                              

(Figure 4). Generally, high-density forest sinks more 
carbon is significant to reduce greenhouse gas emis-
sions to the atmosphere. Donato et al. (2011) reported 
that the carbon sequestration rate of mangrove forests 
is, on average, four times higher than other tropical 
forests. Therefore, scientific management of 
Sundarbans might increase the total ecosystem carbon 
stock than it already has stored.

Challenges and uncertainties for mapping and 
assessing

First, LULC long-term study of Sundarbans is challen-
ging, because multiple scenes from multiple sensors 
are required to cover Sundarbans for the whole time 
period (Islam et al., 2019; Roy & Inamdar, 2019). For 
this reason, the collection of cloud-free multiple 
images for a common date and sensor is not possible. 
Therefore, our study tried to keep the nearest date to 
collect multiple images maintaining the same spectral 
signature. Moreover, we followed the standard 
method for reducing radiometric, atmospheric, and 
mosaicking effects.

Second, the tide inundates the Sundarbans twice 
a day (Barlow et al., 2011), ranging between 1 m to 
1.5 m. The tidal range (e.g. high, low, and mid-tide) 

Figure 10. LULC and cyclone tract from 1975 to 2020. Cyclone track of August 1974 (a), November 1989 (b) November 2002 (c) and 
November 2019 (d).
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influences the mangrove LULC mapping using satel-
lite data (Zhang et al., 2015). Therefore, we analysed 
station-based hourly tidal data of Sundarbans (1977 
to 2020) to understand the sensitivity of tidal varia-
tions of the images used in the LULC classification. 
The maximum tidal difference among these collected 
images was around half a meter. The less tidal 
variation might be that the Landsat satellites flew 
and captured the images of Sundarbans regions 
when it was at a mid-tide level at that time (9:30 
am to 10:30 am) (Table 1). Thus, no significant 
changes in exposure or coverage to mudflat and 
inter-tidal regions of the images used in the study, 
and the best condition for LULC mapping of 
Sundarbans mangroves.

Third, during LULC classification, we observed 
that the water color was different near the shoreline 
areas than the deep river basins of Sundarbans and 
produced slightly different spectral variations. The 
deep and shallow water color is different due to 
the sedimentation, water deepness, and tidal effect 
(Islam et al., 2019). In this situation, we selected 
a large number of water body sites as a training 
sample for accurate classification. Therefore, man-
grove LULC classification needs more attention to 
overcome the sedimentation, water deepness and 
tidal effect.

Fourth, we verified control points over the classified 
images using Google Earth historical images except 
the year 1975. In this situation, we verified images 
using previous literature, expert-based information 
(Quader et al., 2017) and historical toposheet map of 
Sundarbans.

Finally, Landsat data are effective for mapping 
and assessing spatio-temporal changes of 
Sundarbans. However, it needs to follow a proper 
methodology to obtain higher accuracy. For 
instance, selecting training samples by careful 
inquiry of homogeneous pixels increases the max-
imum likelihood classification accuracy. In addi-
tion, verification with more control points is 
important for accurate measuring of LULC change 
over time.

Conclusion

The present study used multiple Landsat scenes and 
sensors to estimate LULC, thematic and net 
changes of the entire Sundarbans mangrove. The 
Landsat images were processed using an appropri-
ate methodological approach to ensure accurate 
mapping and estimation. As a result, we found 
higher accuracy than the previous study of 
Sundarbans. The overall accuracy and kappa 

coefficient ranges were from 84.8% to 90.0% and 
0.81 to 0.87, respectively, suitable for monitoring 
mangrove forests. These accuracy metrics were 
higher for Landsat-8 (OLI-TIRS) compared to 
Landsat-2 (MSS) and Landsat-5 (TM).

The study found that in the overall study timespan 
from 1975 to 2020, the dense forest cover of 
Sundarbans decreased by giving an annual rate of 
1.3%; however, the decreasing rate was unstable. The 
dense forest area decreased from 1975 to 1990 and 
2005 to 2020, where it increased from 1990 to 2005. 
The dense forest cover decreased by altering to mod-
erate dense and sparse forest, whereas most sparse 
areas turned barren land. However, very few dense 
and moderate dense forest areas were developed 
from the sparse forest and barren lands. Most of the 
barren lands were found near the borderline between 
forest and human settlement, and these two types of 
land cover were higher for the Indian part of 
Sundarbans than Bangladesh. Human-induced activ-
ities and cyclonic storms were the significant causes 
for the degradation of Sundarbans.

However, the government of Bangladesh and India 
take the initiative to protect the Sundarbans by updat-
ing their management policies, but implementation is 
quite challenging or incomplete (Ghosh et al., 2015; 
Mahmood et al., 2021). Therefore, governments need 
to collaborate with policymakers, ecologists, environ-
mentalists, activists, and local people to improve man-
agement strategies. The coastal belt plantation and 
control access of forest-dependent people by generat-
ing alternative income sources could effectively con-
serve Sundarbans and its biodiversity. Using remote 
sensing multitemporal data, like in this research, helps 
support sustainable forest management and planning, 
particularly in scenarios like the Sundarbans, contri-
buting to the achievement of some UN-SDGs.
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