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Abstract: In dominated parametric statistical models, confidence sequences provide conservatively valid
frequentist inference directly from a likelihood ratio. They ensure a specific mode of replicability
when inference is performed on accumulating data: inferential conclusions that are compatible with a
guaranteed probability when the sample is enlarged, in the form of overlapping confidence regions. Here
we consider both Robbins’ mixture confidence sequences and running maximum likelihood confidence
sequences recently considered by Wasserman, Ramdas, and Balakrishnan. We compare through simulation
the replicability properties of the two kinds of confidence sequences, evaluating, along a prospected
enlargement of the sample, the frequency of incompatible estimation intervals and the frequency of failure
of simultaneous coverage of the true parameter value. Moreover, we propose a shortcut to extend the
application of mixture confidence sequences to pseudo-likelihoods, in particular to composite likelihood.
The main assumption required is that normal asymptotic theory offers a good approximation to the density
of the maximizer of the pseudo-likelihood. When inference is about a scalar parameter of interest, the
computation of the proposed sequence of confidence intervals is straightforward. The method is illustrated
by an example with replicability properties evaluated through simulation.
Résumé: Dans les modèles statistiques paramétriques dominés, les séquences de confiance offrent une
inférence fréquentiste conservatrice basée sur un rapport de vraisemblance. Elles garantissent un mode
de reproductibilité spécifique en cas d’inférence à partir de données accumulées : il s’agit de conclusions
inférentielles sous forme de chevauchements de régions de confiance possédant une probabilité garantie
lorsque la taille de l’échantillon augmente. Les auteurs de ce travail se sont penchés sur des mélanges de
séquences de confiance similaires à celles de Robbins (1970) et sur des séquences de confiance par maximum
de vraisemblance comme celles de Wasserman, Ramdas et Balakrishnan (2020, Section 7). Afin de comparer
les propriétés de reproductibilité des deux types de séquences de confiance considérées, ils explorent, selon
un élargissement prospectif de la taille d’échantillon, la fréquence des intervalles d’estimation incompatibles
et la fréquence d’échecs de couverture simultanée de la valeur du paramètre réel. En outre, ils montrent
comment appliquer ces mélanges de séquences de confiance aux pseudo-vraisemblances, dont en particulier
la vraisemblance composite. La principale hypothèse requise est que la normalité asymptotique offre une
bonne approximation de la densité du maximum de la pseudo-vraisemblance. Lorsque l’inférence concerne
un paramètre scalaire, l’évaluation de la séquence d’intervalles de confiance proposée est simple. Enfin,
la méthode est illustrée au moyen d’un exemple avec des propriétés de reproductibilité évaluées par
simulation.
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1. INTRODUCTION

Ritualistic application of frequentist inferential tools such as 𝑃 -values, even from likelihood ratio
tests, is often pointed out as a source of the replicability crisis in science famously denounced by
Ioannidis (2005). Indeed, calibration established on hypothetical repetitions of the experiment
that produced the data at hand, considered in isolation, is too vague a guarantee of replicability.
Such a calibration gives rise to episodic inferences that are vulnerable, inter alia, to selection
bias and interim analyses. See Benjamini (2020) on selective inference as a killer of replicability.

Pace & Salvan (2020) underline that to request that compatible, i.e., noncontradictory,
conclusions be reached when the sample is enlarged is a better basis than the repeated sampling
principle to embed a concept of replicability into statistical theory. This view emphasizes
statistical models as models for sequential environments.

With confidence regions for the same parameter, calculated at various sample sizes, inferential
conclusions are compatible if these regions overlap, and incompatible if their intersection is
empty. When inference is performed on the basis of accumulating data, hasty announcement
of provisional conclusions that will turn out to be incompatible with the final conclusions may
cause a large reputational damage.

A confidence sequence (Robbins, 1970; see also Darling & Robbins, 1967a,b) is a sequence
of confidence regions constructed so as to be all compatible with a guaranteed probability.
Research on confidence sequences seems to have been long neglected after the technical
contributions in Lai (1976) and Csenki (1979). In recent years, however, there has been a
renewed interest, with various aims. See, e.g., Wasserman, Ramdas & Balakrishnan (2020),
Howard et al. (2021), Johari et al. (2021), Vovk & Wang (2021), and Howard & Ramdas
(2022).

Outside proper sequential settings, use of confidence sequences enhances replicability of the
conclusions of a stand-alone study, but, of course, only actual replication in follow-up studies
may give the experimental demonstration of a finding. In the more recent literature, confidence
sequences are often termed as “anytime-valid confidence regions” and the whole approach as
“safe inference”. The mixture device—used to obtain confidence sequences by Robbins (1970)
and other early contributors—has been superseded by the device of data splitting in Wasserman,
Ramdas & Balakrishnan (2020). While computationally more convenient (no integration is
required), data splitting infringes the weak likelihood principle and may look dubious unless
applied to intractable models when no other tool with frequentist guarantee is available.

With high-dimensional data, often the full likelihood is difficult to specify and inference
may be based on a misspecified likelihood such as composite likelihood. A composite likelihood
combines dependent likelihoods from small portions of the data using convenient weights. See
Varin, Reid & Firth (2011) for a review. See also Pace, Salvan & Sartori (2019) and Fraser &
Reid (2020) for results on optimal weights. When composite likelihood is the basis for inference,
it is of interest to construct confidence sequences whose estimation regions are all compatible
with an at least approximate frequentist guarantee. One proposal with exact frequentist validity
is in Nguyen (2020), which generalizes the data splitting device of Wasserman, Ramdas &
Balakrishnan (2020) to composite likelihoods.

In this work, we propose a shortcut to construct confidence sequences à la Robbins from
composite likelihood. The main assumption required is that normal asymptotic theory offers a
good approximation to the density of the maximizer of the pseudo-likelihood. When inference
is about a scalar parameter of interest, the computation of the proposed sequence of confidence
intervals is straightforward.

The outline of the article is as follows. Section 2 offers a brief review of the rationale behind
confidence sequences. The main devices to obtain confidence sequences, namely mixture as in
Robbins (1970) and splitting as in Wasserman, Ramdas & Balakrishnan (2020), are recalled in
Section 3, where simple examples are examined, including simulations. In Section 4, attention is
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 879

devoted to confidence sequences associated with asymptotically normal estimators. The particular
case of estimators from composite likelihoods is considered in detail in Section 5. Section 6
presents an example of confidence sequences with composite likelihoods, with simulations
supporting the claim of approximate validity when the sample size is large enough. Section 7
concludes.

2. CONFIDENCE SEQUENCES

Let the potentially observable data be 𝑦
(𝑛) = (𝑦1,… , 𝑦

𝑛
), a realization of the random vector

𝑌
(𝑛) = (𝑌1,… , 𝑌

𝑛
), 𝑛 = 1, 2,…. We denote by 𝑃

𝜃
the joint probability distribution of the

sequence 𝑌
(∞) = (𝑌1, 𝑌2,…) and suppose that 𝑃

𝜃
belongs to a statistical model with parameter

space Θ ⊆ IR𝑝. Moreover, we assume that 𝑝
𝑛

(
𝑦
(𝑛); 𝜃

)
> 0 is the density of 𝑌 (𝑛) under 𝑃

𝜃
, whose

support is independent of 𝜃. Ideally, by observing the sequence 𝑦(𝑛) the statistician will eventually
discover the truth, that is, the true value of 𝜃 in Θ, denoted by 𝜃

∗.
An estimation region based on 𝑦

(𝑛) is a subset of Θ, denoted by Θ̂
𝑛
= Θ̂

(
𝑦
(𝑛)) or similar

symbols. A confidence sequence is a sequence of estimation regions. A confidence sequence
offers compatible inferential conclusions about 𝜃 if there are conclusions that are common
to all confidence statements, which are thus noncontradictory. Consistency of an estimator
that is always contained in Θ̂

𝑛
often entails that the sequence Θ̂

𝑛
shrinks towards the true

value of 𝜃.
A confidence sequence Θ̂

𝑛
has persistence level 1 − 𝜀, where 0 < 𝜀 < 1, if, for every 𝜃 ∈ Θ,

𝑃
𝜃

(
𝜃 ∈ ∩

𝑛≥1Θ̂𝑛

)
≥ 1 − 𝜀.

This implies the frequentist guarantee that, for every 𝜃 ∈ Θ,

𝑃
𝜃

(
∩
𝑛≥1Θ̂𝑛

= ∅
)
≤ 𝜀,

so that the probability of observing incompatible conclusions from a sequence with persistence
level 1 − 𝜀 as evidence accumulates is as small as desired. Indeed,

𝑃
𝜃

(
∩
𝑛≥1Θ̂𝑛

= ∅
)
≤ 𝑃

𝜃

(
𝜃 ∉ ∩

𝑛≥1Θ̂𝑛

)
= 1 − 𝑃

𝜃

(
𝜃 ∈ Θ̂

𝑛
for every 𝑛 ≥ 1

)
.

Confidence sequences Θ̂
𝑛

with persistence level 1 − 𝜀 provide conservatively valid frequentist
inference. For any given 𝑛, Θ̂

𝑛
is an estimation region with confidence level at least 1 −

𝜀. As remarked in Wasserman, Ramdas & Balakrishnan (2020, page 16888), such regions
are valid at arbitrary stopping times and at arbitrary data-dependent times that are chosen
post hoc.

A fundamental martingale inequality for the likelihood ratio statistic is the basis for
constructing confidence sequences with persistence level 1 − 𝜀. Let 𝑃 and 𝑄 denote the joint
probability distributions of the sequence 𝑌

(∞) when 𝑌
(𝑛), 𝑛 = 1, 2,…, have densities with the

same supports 𝑝
𝑛

(
𝑦
(𝑛)) and 𝑞

𝑛

(
𝑦
(𝑛)), respectively. Then

𝑃

(
𝑞
𝑛

(
𝑌
(𝑛))

𝑝
𝑛

(
𝑌 (𝑛)

) ≥ 𝑘 for some 𝑛

)

≤
1
𝑘
, (1)

for any 𝑘 > 0.
For 𝑘 > 1, inequality (1) gives a bound to the probability of reaching strongly misleading

evidence from the likelihood ratio statistic (Royall, 1997, page 7). Note that, for every given 𝑛,
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880 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

the inequality 𝑃
(
𝑞
𝑛

(
𝑌
(𝑛))∕𝑝

𝑛

(
𝑌
(𝑛)) ≥ 𝑘

)
≤ 1∕𝑘 is an easy consequence of Markov’s inequality.

Result (1) follows from a well-known martingale inequality: see Jacod & Protter (2000,
Theorem 26.1). In particular,

𝑞
𝑛

(
𝑌
(𝑛))

𝑝
𝑛

(
𝑌 (𝑛)

) =
𝑞
𝑛−1

(
𝑌
(𝑛−1))

𝑝
𝑛−1

(
𝑌 (𝑛−1)

)
𝑞
𝑛

(
𝑌
𝑛
|𝑌 (𝑛−1))

𝑝
𝑛

(
𝑌
𝑛
|𝑌 (𝑛−1)

)

is a nonnegative martingale with respect to the natural filtration 
𝑛
= 𝜎(𝑌 (𝑛)). Indeed, under 𝑃 ,

the ratio of conditional densities
𝑞
𝑛

(
𝑌
𝑛
|𝑌 (𝑛−1))

𝑝
𝑛

(
𝑌
𝑛
|𝑌 (𝑛−1)

)

has expectation, conditional on 𝑌
(𝑛−1), equal to 1.

Inequality (1) is a universal basis for constructing a plethora of confidence sequences with
persistence level 1 − 𝜀, each corresponding to a particular choice of 𝑞

𝑛
(⋅). The general form is

Θ̂1−𝜀
(
𝑦
(𝑛)) =

{

𝜃 ∈ Θ ∶
𝑞
𝑛

(
𝑦
(𝑛))

𝑝
𝑛

(
𝑦(𝑛); 𝜃

) <
1
𝜀

}

=
{
𝜃 ∈ Θ ∶ 𝑝

𝑛

(
𝑦
(𝑛); 𝜃

)
> 𝜀𝑞

𝑛

(
𝑦
(𝑛))}

. (2)

The fact that the confidence sequence Θ̂1−𝜀
(
𝑦
(𝑛)) defined by (2) has persistence level 1 − 𝜀

follows from inequality (1) with 𝑝
𝑛

(
𝑦
(𝑛)) = 𝑝

𝑛
(𝑦(𝑛); 𝜃) and 𝑘 = 1∕𝜀. Confidence regions (2) are

nested, that is, Θ̂1−𝜀′
(
𝑦
(𝑛))

⊆ Θ̂1−𝜀
(
𝑦
(𝑛)) when 1 − 𝜀

′
< 1 − 𝜀. As underlined in Wasserman,

Ramdas & Balakrishnan (2020, Section 1, after Remark 4), for a given 𝑛, regions of the form
(2) are an instance of universal inference, meaning that the procedure has a valid frequentist
guarantee with no regularity conditions.

3. MIXTURE AND SPLIT CONFIDENCE SEQUENCES

Robbins’ (1970) confidence sequences, hereafter called mixture confidence sequences, have the
form (2) with 𝑞

𝑛

(
𝑦
(𝑛)) given by the mixture device

𝑞
𝑛

(
𝑦
(𝑛)) =

∫Θ
𝑝
𝑛
(𝑦(𝑛); 𝜃

)
𝜋(𝜃) 𝑑𝜃. (3)

Therefore they have the form

Θ̂1−𝜀
(
𝑦
(𝑛)) =

{
𝜃 ∈ Θ ∶ 𝑝

𝑛

(
𝑦
(𝑛); 𝜃

)
> 𝜀
∫Θ

𝑝
𝑛

(
𝑦
(𝑛); 𝜃

)
𝜋(𝜃) 𝑑𝜃

}
. (4)

The weight function 𝜋(𝜃) is a preset probability density over Θ with 𝜋(𝜃) > 0 for every
𝜃 ∈ Θ and invites Bayesian interpretation. Indeed, in the form (3), 𝑞

𝑛

(
𝑦
(𝑛)) can incorporate

prior information about 𝜃. One advantage of the choice (3) in definition (2) is that the
maximum likelihood estimate 𝜃̂

𝑛
= argmax

𝜃∈Θ 𝑝
𝑛

(
𝑦
(𝑛); 𝜃

)
is always a point in Θ̂1−𝜀

(
𝑦
(𝑛)),

because 𝑝
𝑛

(
𝑦
(𝑛); 𝜃̂

𝑛

)
≥ ∫Θ 𝑝𝑛

(
𝑦
(𝑛); 𝜃

)
𝜋(𝜃) 𝑑𝜃. More generally, mixture confidence sequences

are likelihood-based. The set Θ̂1−𝜀
(
𝑦
(𝑛)) is the region of 𝜃 values whose likelihood

𝐿
(
𝜃; 𝑦(𝑛)

)
= 𝑝

𝑛

(
𝑦
(𝑛); 𝜃

)
is larger than a fraction 𝜀 of the integrated likelihood (3).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11749
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 881

The ideal mixture confidence sequence has 𝜋(𝜃) ∼ 𝐷(𝜃∗); that is, it degenerates at the true 𝜃.
This choice produces the sequence

Θ∗1−𝜀
(
𝑦
(𝑛)) =

{
𝜃 ∈ Θ ∶ 𝑝

𝑛

(
𝑦
(𝑛); 𝜃

)
> 𝜀𝑝

𝑛

(
𝑦
(𝑛); 𝜃∗

)}
. (5)

Of course, sequence (5) has persistence level 1 − 𝜀 but it is not a feasible confidence sequence.
However, 𝜃∗ may be estimated using information besides 𝑦(𝑛). This fact is at the basis of the data
splitting device introduced in Wasserman, Ramdas & Balakrishnan (2020).

Considering for simplicity two groups with the same size 𝑛, 𝑛 = 1, 2,… , the data 𝑦
(2𝑛) are

randomly split as 𝑦
(2𝑛) =

(
𝑦
(𝑛)
0 , 𝑦

(𝑛)
1

)
with 𝑦

(𝑛)
0 = (𝑦1,… , 𝑦

𝑛
) and 𝑦

(𝑛)
1 = (𝑦

𝑛+1,… , 𝑦2𝑛). These

observations are a realization of the random vector 𝑌 (2𝑛) =
(
𝑌
(𝑛)

0 , 𝑌
(𝑛)

1

)
, where 𝑌 (𝑛)0 = (𝑌1,… , 𝑌

𝑛
)

and 𝑌
(𝑛)

1 =
(
𝑌
𝑛+1,… , 𝑌2𝑛

)
. The split estimation set, denoted by Θ̃1−𝜀(𝑌 (2𝑛)) with realization

Θ̃1−𝜀
(
𝑦
(2𝑛)), is given by

Θ̃1−𝜀
(
𝑦
(2𝑛)) =

{
𝜃 ∈ Θ ∶ 𝑝

𝑛

(
𝑦
(𝑛)
0 ; 𝜃

)
> 𝜀𝑝

𝑛

(
𝑦
(𝑛)
0 ; 𝜃̂

(𝑛)
1

)}
, (6)

where 𝜃̂
(𝑛)
1 is any consistent estimator of 𝜃 depending on 𝑦

(𝑛)
1 , typically the maximum likelihood

estimator or a regularized form of it. The set (6) is still of the form (2), with 𝑛 equal to 2𝑛,
𝑝2𝑛

(
𝑦
(2𝑛)) = 𝑝

𝑛

(
𝑦
(𝑛)
0 ; 𝜃

)
, and 𝑞2𝑛

(
𝑦
(2𝑛)) = 𝑝

𝑛

(
𝑦
(𝑛)
0 ; 𝜃̂

(𝑛)
1

)
. While mixture confidence sequences

agree with the strong likelihood principle, data splitting infringes the weak likelihood principle
and consequently it may lead to inferior inferences; see, however, Cox (1975). To somehow
accommodate this drawback, Wasserman, Ramdas & Balakrishnan (2020, Section 4) have
proposed various de-randomized variants, such as 𝐾-fold splitting and subsampling, which we
will not discuss.

Actually, in Wasserman, Ramdas & Balakrishnan (2020), the set (6) is proposed as a universal
confidence set having, for every fixed sample size 2𝑛, confidence level at least 1 − 𝜀, as implied
by Markov’s inequality. It is not proposed as a confidence sequence with persistence level
1 − 𝜀. The reason is, we guess, that it is not clear whether the martingale property holds for the
sequence

𝑝
𝑛

(
𝑌
(𝑛)

0 ; 𝜃̂(𝑛)1
)

𝑝
𝑛

(
𝑌
(𝑛)

0 ; 𝜃
) .

We conjecture that the sequence (6) may be used as an approximate confidence sequence,
with asymptotic persistence level 1 − 𝜀, where we say that a sequence Θ̂

𝑛
has asymptotic

persistence level 1 − 𝜀 if

lim
𝑛→∞

𝑃
𝜃

(
𝜃 ∈ Θ̂

𝑚
for every 𝑚 ≥ 𝑛

)
≥ 1 − 𝜀.

From this perspective, the sampling property of practical interest is that, for a sample size 𝑛min
large enough and a hypothetical observation horizon 𝑛max much larger than 𝑛min,

𝑃
𝜃

(
𝜃 ∈ Θ̂

𝑛
for every 𝑛 such that 𝑛min ≤ 𝑛 ≤ 𝑛max

)
≥ 1 − 𝜀.

When, as for sequence (6), analytic tools do not provide any guidance, simulation may be used
to ascertain whether the above simultaneous frequency guarantee holds. In the simulations in
Examples 1 and 2 that follow, the confidence sequence is defined supposing that both datasets

DOI: 10.1002/cjs.11749 The Canadian Journal of Statistics / La revue canadienne de statistique
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882 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

𝑦
(𝑛)
0 and 𝑦

(𝑛)
1 are increased by one independent observation at a time and do not mix. Thus, new

observations come in pairs and each of the two observations is randomly assigned to one of the
two groups once and for all.

With independent and identically distributed (i.i.d.) random variables 𝑌1, 𝑌2,…, Wasserman,
Ramdas & Balakrishnan (2020) introduce the confidence sequence with (exact) persistence level
1 − 𝜀 defined as

Θ1−𝜀(𝑦(𝑛)) =

{

𝜃 ∈ Θ ∶
𝑛∏

𝑖=1

𝑝1(𝑦𝑖; 𝜃) > 𝜀

𝑛∏

𝑖=1

𝑝1(𝑦𝑖; 𝜃̂(𝑦(𝑖−1)))

}

, (7)

where, for 𝑖 ≥ 2, 𝜃̂(𝑦(𝑖−1)) is any estimate of 𝜃 depending on 𝑦
(𝑖−1), for instance the maximum

likelihood estimate or a regularized form of it, while 𝜃̂(𝑦(0)) = 𝜃, so that, on both sides of the
inequality defining the sequence (7), the factor 𝑝1(𝑦1; 𝜃) cancels out. If the dimension of 𝜃 is
𝑝 > 1, then 𝑝1(𝑦1; 𝜃) in (7) may be substituted by the density of a block of 𝑝 or more observations.
The sequence (7) is written supposing that the dataset is increased by one observation at a time.
The definition is easily extended to cover cases when data are collected in groups. Wasserman,
Ramdas & Balakrishnan (2020, Section 7) refer to the process giving rise to the sequence (7)
as “running maximum likelihood ratio” and highlight that the idea originated in Wald (1947)
and was further analyzed in Robbins & Siegmund (1972, 1974). In the following, a confidence
sequence (6) will be referred to as split-naive while a confidence sequence (7) will be referred to
as split-exact. At any given 𝑛, split-naive intervals are computationally much more convenient
than split-exact intervals. The next two examples compare the average length of confidence
intervals from mixture and from split confidence sequences, both naive and exact. The empirical
percentage of incompatible inferences and of noncoverage of the true parameter value pertaining
to confidence intervals from naive and exact split confidence sequences are also compared. The
results for mixture intervals are overall satisfactory.

3.1. Example 1. Normal Population with Known Variance
Suppose that 𝑌

𝑖
, 𝑖 = 1, 2,…, are i.i.d. 𝑁(𝜃, 𝜎2

0 ), with unknown mean 𝜃 and known variance 𝜎
2
0 .

Sufficiency leads us to consider the sample mean 𝑌
𝑛
=

∑𝑛

𝑖=1𝑌𝑖∕𝑛, with a 𝑁(𝜃, 𝜎2
0∕𝑛) density,

𝑛 = 1, 2,…. The mixture confidence sequence with persistence level 1 − 𝜀 defined by the weight
function

𝜋(𝜃) = 1
√

2𝜋𝜏2
0

exp

{

−
(
𝜃 − 𝜇0

)2

2𝜏2
0

}

,

corresponding to a 𝑁(𝜇0, 𝜏
2
0 ) conjugate prior, is given in a closed form by the intervals

𝑦
𝑛
±

𝜎0√
𝑛

√√√√log
𝜏

2
0 + 𝜎

2
0∕𝑛

𝜎
2
0∕𝑛

+
(
𝑦
𝑛
− 𝜇0

)2

𝜏
2
0 + 𝜎

2
0∕𝑛

− 2 log 𝜀 . (8)

See Pace & Salvan (2020, Example 1) for more details.
When the data are randomized into two streams, 𝑦(2𝑛) =

(
𝑦
(𝑛)
0 , 𝑦

(𝑛)
1

)
, with 𝑦

(𝑛)
0 = (𝑦01,… , 𝑦0𝑛)

and 𝑦
(𝑛)
1 = (𝑦11,… , 𝑦1𝑛), the split-naive confidence sequence (6) is

Θ̃1−𝜀
(
𝑦
(2𝑛)) =

⎧
⎪
⎨
⎪
⎩

𝜃 ∈ IR ∶
𝑝
𝑛

(
𝑦
(𝑛)
0 ; 𝜃̂

(𝑛)
1

)

𝑝
𝑛

(
𝑦
(𝑛)
0 ; 𝜃

) <
1
𝜀

⎫
⎪
⎬
⎪
⎭

,
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 883

where 𝑝
𝑛

(
𝑦
(𝑛)
0 ; 𝜃

)
= 𝑐 exp

{
− 1

2𝜎2
0

∑𝑛

𝑖=1(𝑦0𝑖 − 𝜃)2
}

is the likelihood function from 𝑦
(𝑛)
0 , and

𝜃̂
(𝑛)
1 =

∑𝑛

𝑖=1𝑦1𝑖∕𝑛 is the maximum likelihood estimate of 𝜃 from 𝑦
(𝑛)
1 . This sequence is given by

closed-form intervals, namely

𝜃̂
(𝑛)
0 ±

𝜎0√
𝑛

√√√√𝑛
{
𝜃̂
(𝑛)
0 − 𝜃̂

(𝑛)
1

}2

𝜎
2
0

− 2 log 𝜀 , (9)

which always contain 𝜃̂
(𝑛)
0 =

∑𝑛

𝑖=1𝑦0𝑖∕𝑛, the maximum likelihood estimate of 𝜃 based on 𝑦
(𝑛)
0 .

Intervals (9) may be formally obtained from intervals (8) by putting 𝜇0 = 𝜃̂
(𝑛)
1 and considering the

limit as 𝜏2
0 → 0. Even the split-exact confidence sequence (7) is given by closed-form intervals,

𝜃̂2∶2𝑛 ±
𝜎0√

(2𝑛 − 1)

√√√√
∑2𝑛

𝑖=2

(
𝑦
𝑖
− 𝜃̂

𝑖−1
)2 −

∑2𝑛
𝑖=2

(
𝑦
𝑖
− 𝜃̂2∶2𝑛

)2

𝜎
2
0

− 2 log 𝜀, (10)

where 𝜃̂2∶2𝑛 =
∑2𝑛

𝑗=2𝑦𝑗∕(2𝑛 − 1) and 𝜃̂
𝑖−1 =

∑𝑖−1
𝑗=1𝑦𝑗∕(𝑖 − 1), for 𝑖 = 2,… , 2𝑛. Note that, unlike

(8), intervals (9) and (10) are equivariant under location changes.
At any given sample size 2𝑛, mixture intervals depend on the data only through the minimal

sufficient statistic, while split intervals, both naive and exact, do not. A small simulation
experiment was conducted in order to compare the lengths of the three kinds of intervals. The
persistence level selected is 1 − 𝜀 = 0.80. As observed in Pace & Salvan (2020, Example 2), the
corresponding confidence sequence gives fixed-𝑛 intervals, for 𝑛 in the range [𝑛min, 𝑛max] =[10,
4000], close to conventional confidence intervals with level 0.995. Various values of 2𝑛 from 20
to 1000 and several choices of the true 𝜃 in the range [0, 2.5] were considered, with 𝜎

2
0 = 1. The

standard normal weight function 𝜋(𝜃) = 𝑒
−𝜃2∕2∕

√
2𝜋 was used for mixture intervals, such that

𝜇0 = 0 and 𝜏
2
0 = 1 in (8). The results, based on 10,000 Monte Carlo replications, are displayed

in Table 1. When the sample size is small or moderate, and the true 𝜃 is not far away from
𝜇0, mixture intervals are generally shorter. With 𝜃 > 𝜇0 + 𝜏0, for larger sample sizes, the split
intervals of the naive kind are the shortest, whereas the split intervals of the exact kind seem to
be slightly inferior even when 2𝑛 =1000.

Next, we perform a simulation to investigate the conjecture that, for conveniently large
sample sizes, the split-naive intervals have approximately persistence level 1 − 𝜀. For 10,000
replications, sequences of samples with even size from 2𝑛min to 2𝑛max were generated with
𝑛min = 100 and 𝑛max = 40,000. The behaviour along the sequence of mixture intervals (8)
with 𝜇0 = 0 and 𝜏

2
0 = 1, split-naive intervals (9), and split-exact intervals (10) was observed,

with the aim of detecting sequences that give incompatible conclusions (incompatibilities) and
sequences that do not always cover the true parameter value (uncoverages), at various nominal
persistence levels, 1 − 𝜀. The results are displayed in Table 2. Analogous results are displayed
in Table 3 for sequences of samples with even size from 2(400) to 2(80,000). The mixture and
split-exact intervals look very conservative in the sense that the percentages of incompatibilities
and uncoverages are both far below the bound 100 × 𝜀. The sequences of split-naive intervals
with 1 − 𝜀 = 0.80 are anti-conservative. However, they improve their closeness to the nominal
bound as 𝑛min moves from 100 to 400.

Intervals (8) may provide a simple closed-form approximation for confidence sequences (4)
for a scalar parameter 𝜃 when a normal weight function is used. Suppose that a normal approxi-
mation is available for the maximum likelihood estimator 𝜃̂

𝑛
, that is, 𝜃̂

𝑛

.∼𝑁
(
𝜃, v2

𝑛
(𝜃)

) .∼𝑁
(
𝜃, v̂2

𝑛

)
,
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884 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

TABLE 1: Normal population with mean 𝜃 and variance 1: empirical averages of the length of intervals (8)
with 𝜇0 = 0 and 𝜏

2
0 = 1 (mixture), intervals (9) (split-naive), and intervals (10) (split-exact), all with

nominal persistence level 1 − 𝜀 = 0.80 in 10,000 samples with size 2𝑛, for various true values of 𝜃.

2𝑛 Method 𝜃 = 0 𝜃 = 0.5 𝜃 = 1 𝜃 = 1.5 𝜃 = 2 𝜃 = 2.5

20 Mixture 1.123 1.144 1.204 1.299 1.421 1.564

Split-exact 1.262 1.262 1.262 1.262 1.262 1.262

Split-naive 1.407 1.407 1.407 1.407 1.407 1.407

40 Mixture 0.834 0.849 0.891 0.957 1.042 1.142

Split-exact 0.921 0.921 0.921 0.921 0.921 0.921

Split-naive 0.996 0.996 0.996 0.996 0.996 0.996

100 Mixture 0.560 0.569 0.595 0.635 0.687 0.749

Split-exact 0.610 0.610 0.610 0.610 0.610 0.610

Split-naive 0.631 0.631 0.631 0.631 0.631 0.631

200 Mixture 0.413 0.419 0.436 0.464 0.500 0.543

Split-exact 0.447 0.447 0.447 0.447 0.447 0.447

Split-naive 0.446 0.446 0.446 0.446 0.446 0.446

400 Mixture 0.304 0.308 0.320 0.339 0.363 0.393

Split-exact 0.326 0.326 0.326 0.326 0.326 0.326

Split-naive 0.315 0.315 0.315 0.315 0.315 0.315

1000 Mixture 0.201 0.204 0.211 0.222 0.238 0.256

Split-exact 0.215 0.215 0.215 0.215 0.215 0.215

Split-naive 0.200 0.200 0.200 0.200 0.200 0.200

Note: Due to equivariance, the results for split-exact and split-naive methods do not depend on 𝜃.

with v̂2
𝑛

an estimate of the asymptotic variance of 𝜃̂
𝑛

(that is, of v2
𝑛
(𝜃) = 𝜎

2(𝜃)∕𝑛). If a 𝑁(𝜇0, 𝜏
2
0 )

density is used as a weight function where 𝜇0 is the conjectured central value for 𝜃, then, in
analogy with (8), a closed-form confidence sequence for 𝜃 is

𝜃̂
𝑛
± v̂

𝑛

√√√√log
𝜏

2
0 + v̂2

𝑛

v̂2
𝑛

+
(
𝜃̂
𝑛
− 𝜇0

)2

𝜏
2
0 + v̂2

𝑛

− 2 log 𝜀, (11)

for 𝑛 ≥ 𝑛min with 𝑛min sufficiently large and v̂
𝑛
=

√
v̂2
𝑛
.

As Pace & Salvan (2020, Section 4) showed through simulation in some special models,
for sequences starting from a moderate sample size 𝑛min, this proposal seems to maintain
approximately the persistence level 1 − 𝜀 in the examples considered. Closed-form confidence
intervals (11) have a Wald-type structure. Consequently, unlike intervals from a genuine
likelihood, intervals (11) are not exactly equivariant under reparameterizations. On the other
hand, intervals (11) rely only on the assumption that normal asymptotic theory offers a good
approximation of the density of the estimator of 𝜃. Therefore, any asymptotically normal
estimator could be used in (11), like a robust estimator or the maximizer of a pseudo-likelihood
(such as a composite likelihood).
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 885

TABLE 2: Normal population with mean 𝜃 and variance 1: empirical percentages of incompatibilities and
uncoverages of intervals (8) with 𝜇0 = 0 and 𝜏

2
0 = 1 (mixture), intervals (9) (split-naive), and intervals (10)

(split-exact) at various nominal persistence levels 1 − 𝜀 in 10,000 sequences of samples with even size
from 200 to 80,000. The true value of 𝜃 is zero.

100 × 𝜀

Method 20 10 5 1

Mixture 0.99 0.43 0.20 0.04

Incompatibilities Split-exact 0.76 0.28 0.14 0.03

Split-naive 7.82 2.09 0.54 0.03

Mixture 3.22 1.79 0.94 0.21

Uncoverages Split-exact 2.66 1.41 0.72 0.13

Split-naive 23.66 9.15 3.35 0.37

TABLE 3: Normal population with mean 𝜃 and variance 1: empirical percentages of incompatibilities and
uncoverages of intervals (8) with 𝜇0 = 0 and 𝜏

2
0 = 1 (mixture), intervals (9) (split-naive), and intervals (10)

(split-exact) at various nominal persistence levels 1 − 𝜀 in 10,000 sequences of samples with even size
from 800 to 160,000. The true value of 𝜃 is zero.

100 × 𝜀

Method 20 10 5 1

Mixture 0.40 0.14 0.06 0.01

Incompatibilities Split-exact 0.25 0.07 0.03 0.01

Split-naive 5.77 1.50 0.41 0.02

Mixture 1.74 1.02 0.44 0.08

Uncoverages Split-exact 1.40 0.62 0.33 0.09

Split-naive 21.67 8.30 3.36 0.28

3.2. Example 2. Poisson Population
For 𝑖 = 1, 2,…, let 𝑌

𝑖
be a sequence of independent Poisson random variables with unknown

mean 𝜆 > 0 and let 𝑦
𝑖

be their observations. The likelihood function based on 𝑦
(2𝑛) is

𝑝2𝑛
(
𝑦
(2𝑛); 𝜆

)
= 𝑐 𝑒

−2𝑛𝜆
𝜆

2𝑛𝜆̂(2𝑛)
,

where 𝜆̂
(2𝑛) =

∑2𝑛
𝑖=1𝑦𝑖∕(2𝑛).

Using for 𝜆 > 0 the weight function 𝜋(𝜆) = 𝑏
𝑎
𝜆
𝑎−1

𝑒
−𝑏𝜆∕Γ(𝑎) where 𝑎, 𝑏 > 0, corresponding

to a Gamma(𝑎, 𝑏) distribution, Robbins’ mixture is

𝑞2𝑛
(
𝑦
(2𝑛)) =

∫

+∞

0
𝑝2𝑛

(
𝑦
(2𝑛); 𝜆

)
𝜋(𝜆) 𝑑𝜆 = 𝑐

𝑏
𝑎Γ

(
𝑎 + 2𝑛𝜆̂

(2𝑛))

(𝑏 + 2𝑛)𝑎+2𝑛𝜆̂(2𝑛)Γ(𝑎)
,
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886 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

so that the mixture confidence sequence with persistence level 1 − 𝜀 is

Θ̂1−𝜀
(
𝑦
(2𝑛)) =

{

𝜆 > 0 ∶
𝑞2𝑛

(
𝑦
(2𝑛))

𝑝2𝑛
(
𝑦(2𝑛); 𝜆

) <
1
𝜀

}

;

that is

Θ̂1−𝜀
(
𝑦
(2𝑛)) =

⎧
⎪
⎨
⎪
⎩

𝜆 > 0 ∶
𝑏
𝑎Γ

(
𝑎 + 2𝑛𝜆̂

(2𝑛))
𝑒

2𝑛𝜆

(𝑏 + 2𝑛)𝑎+2𝑛𝜆̂
(2𝑛)
Γ(𝑎)𝜆2𝑛𝜆̂

(2𝑛) <
1
𝜀

⎫
⎪
⎬
⎪
⎭

. (12)

Because 𝑔(𝜆) = 2𝑛𝜆 − 2𝑛𝜆̂
(2𝑛)

log 𝜆 is convex when 𝜆 > 0, exp(𝑔(𝜆)) is convex as well, and
therefore Θ̂1−𝜀

(
𝑦
(2𝑛)) is an interval containing 𝜆̂

(2𝑛)
. A closed-form approximation for (12) based

on (11) can also be obtained, for instance from the approximation log 𝜆̂
(2𝑛) .∼𝑁(log 𝜆, 1∕(2𝑛𝜆))

and using a normal weight function for log 𝜆 with mean 𝜇0 and variance 𝜏
2
0 matching the mean

and variance of log 𝜆 when 𝜆 ∼ Gamma(𝑎, 𝑏).
When 𝑦

(2𝑛) =
(
𝑦
(𝑛)
0 , 𝑦

(𝑛)
1

)
, with 𝑦

(𝑛)
0 = (𝑦01,… , 𝑦0𝑛) and 𝑦

(𝑛)
1 = (𝑦11,… , 𝑦1𝑛), the likelihood

function based on 𝑦
(𝑛)
0 is given by 𝑝

𝑛

(
𝑦
(𝑛)
0 ; 𝜆

)
= 𝑐 𝑒

−𝑛𝜆
𝜆
𝑛𝜆̂
(𝑛)
0 , where 𝑛𝜆̂

(𝑛)
0 =

∑𝑛

𝑖=1𝑦0𝑖. On the other

hand, the estimate 𝜆̂
(𝑛)
1 is the maximum likelihood estimate of 𝜆 from 𝑦

(𝑛)
1 , 𝜆̂

(𝑛)
1 =

∑𝑛

𝑖=1𝑦1𝑖∕𝑛, if
∑𝑛

𝑖=1𝑦1𝑖 > 0, and otherwise 𝜆̂
(𝑛)
1 = 0.5∕𝑛. The split-naive confidence sequence (6) is then

Θ̃1−𝜀(𝑦(2𝑛)) =
⎧
⎪
⎨
⎪
⎩

𝜆 > 0 ∶
𝑝
𝑛

(
𝑦
(𝑛)
0 ; 𝜆̂

(𝑛)
1

)

𝑝
𝑛

(
𝑦
(𝑛)
0 ; 𝜆

) <
1
𝜀

⎫
⎪
⎬
⎪
⎭

,

that is,

Θ̃1−𝜀
(
𝑦
(2𝑛)) =

{

𝜆 > 0 ∶ exp

(

−𝑛
(
𝜆̂
(𝑛)
1 − 𝜆

)
+ 𝑛𝜆̂

(𝑛)
0 log

𝜆̂
(𝑛)
1

𝜆

)

<
1
𝜀

}

. (13)

Again, Θ̃1−𝜀
(
𝑦
(2𝑛)) is an interval which always contains 𝜆̂

(𝑛)
0 .

The split-exact confidence sequence (7) is given by

Θ1−𝜀(𝑦(2𝑛)) =

{

𝜆 > 0 ∶ exp

(
2𝑛∑

𝑖=2

𝜆̂
𝑖−1 − (2𝑛 − 1)𝜆 −

2𝑛∑

𝑖=2

𝑦
𝑖
log

𝜆̂
𝑖−1

𝜆

)

> 𝜀

}

, (14)

where 𝜆̂
𝑖−1 =

∑𝑖−1
𝑗=1𝑦𝑗∕(𝑖 − 1) if

∑𝑖−1
𝑗=1𝑦𝑗 > 0 and 𝜆̂

𝑖−1 = 0.5∕(𝑖 − 1) otherwise.
At any given sample size 2𝑛, mixture intervals depend on the data only through the minimal

sufficient statistic. Split intervals do not. A simulation experiment was conducted in order to
compare the lengths of the four kinds of intervals. The persistence level selected is 1 − 𝜀 = 0.80
and various values of 2𝑛 from 20 to 1000 and several choices of the true 𝜆 in the range
[0.3, 3] were considered. The negative exponential weight function 𝜋(𝜆) = 𝑒

−𝜆 was used for
mixture intervals, such that 𝑎 = 𝑏 = 1 in (12), and 𝜇0 = Ψ(1) = −𝛾 and 𝜏

2
0 = Ψ

′(1) = 𝜋
2∕6 in

the approximate form (11) for log 𝜆, where Ψ(⋅) and Ψ′(⋅) denote the digamma and trigamma
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 887

TABLE 4: Poisson population with mean 𝜆: empirical averages of the length of intervals (12) with
𝑎 = 𝑏 = 1 (mixture), (11) for log 𝜆 with 𝜇0 = Ψ(1) and 𝜏

2
0 = Ψ

′(1) (mixture appr.), (13) (split-naive) and
(14) (split-exact) with persistence level 1 − 𝜀 = 0.80 in 5000 samples with size 2𝑛 and various true values

of 𝜆

2𝑛 Method 𝜆 = 0.3 𝜆 = 0.5 𝜆 = 1.0 𝜆 = 2.0 𝜆 = 3.0

20 Mixture 0.610 0.777 1.130 1.751 2.352

Mixture appr. 0.697 0.860 1.242 1.891 2.448

Split-exact 0.632 0.841 1.237 1.802 2.225

Split-naive 0.790 1.020 1.413 1.995 2.443

40 Mixture 0.447 0.575 0.833 1.285 1.722

Mixture appr. 0.479 0.611 0.897 1.370 1.772

Split-exact 0.461 0.612 0.900 1.310 1.617

Split-naive 0.549 0.710 0.995 1.409 1.725

100 Mixture 0.297 0.383 0.556 0.853 1.134

Mixture appr. 0.309 0.400 0.592 0.901 1.162

Split-exact 0.305 0.404 0.594 0.863 1.066

Split-naive 0.336 0.439 0.622 0.883 1.083

200 Mixture 0.216 0.280 0.407 0.623 0.824

Mixture appr. 0.224 0.293 0.432 0.657 0.845

Split-exact 0.221 0.294 0.432 0.629 0.777

Split-naive 0.233 0.306 0.434 0.619 0.761

400 Mixture 0.156 0.203 0.296 0.452 0.597

Mixture appr. 0.164 0.214 0.316 0.478 0.614

Split-exact 0.160 0.213 0.313 0.456 0.564

Split-naive 0.163 0.213 0.305 0.436 0.536

1000 Mixture 0.100 0.131 0.193 0.294 0.388

Mixture appr. 0.108 0.141 0.208 0.314 0.402

Split-exact 0.102 0.137 0.203 0.297 0.368

Split-naive 0.099 0.131 0.189 0.271 0.334

functions. With this choice of the weight function none of the selected values of 𝜆 is extreme. The
results, based on 5000 Monte Carlo replications, are displayed in Table 4. When the sample size
is small or moderate, mixture intervals (12) are generally preferred. However, for 2𝑛 = 1000,
split-naive intervals (13) are the shortest, although very close to the mixture intervals. Split-exact
intervals (14) are, on average, shorter than split-naive intervals when 2𝑛 is small. The average
length of approximate mixture intervals (11) is close to that of split-exact intervals.

As in Example 1, for 5000 replications, sequences of samples with even size from 2𝑛min to
2𝑛max were generated with 𝑛min = 100 and 𝑛max =10,000. The behaviour along the sequence of
intervals (12) with 𝑎 = 𝑏 = 1 (mixture), (11) for log 𝜆 with 𝜇0 = Ψ(1) and 𝜏

2
0 = Ψ

′(1) (mixture
appr.), (13) (split-naive) and (14) (split-exact) has been observed, with the aim of evaluating
incompatibilities and uncoverages at various nominal persistence levels 1 − 𝜀. The results are

DOI: 10.1002/cjs.11749 The Canadian Journal of Statistics / La revue canadienne de statistique
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888 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

TABLE 5: Poisson population with mean 𝜆: empirical percentages of incompatibilities and uncoverages of
intervals (12) with 𝑎 = 𝑏 = 1 (mixture), (11) for log 𝜆 with 𝜇0 = Ψ(1) and 𝜏

2
0 = Ψ

′(1) (mixture appr.), (13)
(split-naive), and (14) (split-exact) at various nominal persistence levels 1 − 𝜀 in 5000 sequences of

samples with even size from 100 to 10,000. The true value of 𝜆 is one.

100 × 𝜀

Method 20 10 5 1

Incompatibilities Mixture 0.72 0.32 0.08 0.00

Mixture appr. 0.46 0.08 0.06 0.00

Split-exact 0.62 0.26 0.08 0.04

Split-naive 4.34 0.90 0.22 0.00

Uncoverages Mixture 9.20 5.44 3.34 1.00

Mixture appr. 2.42 1.54 0.78 0.16

Split-exact 7.88 4.54 2.76 0.88

Split-naive 43.00 20.34 8.76 1.34

displayed in Table 5. The mixture, approximate mixture, and split-exact intervals look very
conservative. On the other hand, the split-naive intervals are always anti-conservative.

4. CONFIDENCE SEQUENCES ON A PARAMETER OF INTEREST

When 𝑝 > 1 and the parameter is partitioned as 𝜃 = (𝜓, 𝜆), where 𝜓 ∈ Ψ is a 𝑝0-dimensional
component of interest and 𝜆 is nuisance, in special models, safe inference about 𝜓 can be based
on a statistic 𝑡

(𝑛) = 𝑡(𝑦(𝑛)) inducing a marginal or conditional model free of 𝜆. In full generality,
anytime-valid inference about 𝜓 may be obtained from the profile likelihood using the mixture
or the data splitting device.

The projection on the subspace Ψ of a confidence sequence Θ̂1−𝜀(𝑦(𝑛)) for 𝜃 with persistence
level 1 − 𝜀,

Ψ̂1−𝜀(𝑦(𝑛)) =
{
𝜓 ∈ Ψ ∶ (𝜓, 𝜆) ∈ Θ̂1−𝜀

(
𝑦
(𝑛)) for some 𝜆

}
, (15)

is clearly a confidence sequence for 𝜓 with persistence level 1 − 𝜀. The confidence sequence (15)
turns out to be based on the profile likelihood. For instance, with mixture confidence sequences
we obtain

Ψ̂1−𝜀
(
𝑦
(𝑛)) =

{
𝜓 ∈ Ψ ∶ 𝑝

𝑛

(
𝑦
(𝑛);𝜓, 𝜆̂

𝜓

)
> 𝜀𝑞

𝑛

(
𝑦
(𝑛))}

, (16)

where 𝜆̂
𝜓

is the maximum likelihood estimate of 𝜆 in the model for 𝑦(𝑛) with 𝜓 fixed and

𝑞
𝑛
(𝑦(𝑛)) =

∫Θ
𝑝
𝑛

(
𝑦
(𝑛); 𝜃

)
𝜋(𝜃) 𝑑𝜃.

If a normal approximation is available for the maximum likelihood estimator 𝜓̂
𝑛

of a scalar 𝜓 ,
that is, 𝜓̂

𝑛
∼ 𝑁

(
𝜓, v2

𝑛
(𝜃)

) ⋅∼𝑁
(
𝜓, v̂2

𝑛

)
, with v̂2

𝑛
an estimate of the asymptotic variance of 𝜓̂

𝑛
,

and an 𝑁
(
𝜓0, 𝜏

2
0

)
density is used as a weight function, where 𝜓0 is the conjectured central value

for 𝜓 , a closed-form confidence sequence for 𝜓 , analogous to sequence (11) is

𝜓̂
𝑛
± v̂

𝑛

√√√√log
𝜏

2
0 + v̂2

𝑛

v̂2
𝑛

+
(𝜓̂

𝑛
− 𝜓0)2

𝜏
2
0 + v̂2

𝑛

− 2 log 𝜀. (17)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11749
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 889

Like sequence (11), closed-form intervals (17) have a Wald-type structure and consequently they
are not exactly equivariant under interest-respecting reparameterizations, that is, reparameteri-
zations 𝜔 = 𝜔(𝜃) = (𝜙, 𝜒) where 𝜙 = 𝜙(𝜓) and 𝜒 = 𝜒(𝜓, 𝜆).

Also, the splitting device may be applied to the profile likelihood, as we see substituting
Θ̂1−𝜀

(
𝑦
(𝑛)) in (15) with the split-exact set Θ1−𝜀

(
𝑦
(2𝑛)) or even the split-naive set Θ̃1−𝜀

(
𝑦
(2𝑛)),

obtaining the confidence sequences Ψ1−𝜀
(
𝑦
(𝑛)) and Ψ̃1−𝜀

(
𝑦
(𝑛)), respectively. See Wasserman,

Ramdas & Balakrishnan (2020, Section 5) for details on Ψ1−𝜀
(
𝑦
(𝑛)). Admittedly, the persistence

level of Ψ̃1−𝜀
(
𝑦
(2𝑛)) will be 1 − 𝜀 asymptotically at best. However, confidence sequences

Ψ̂1−𝜀
(
𝑦
(𝑛)) are likely to be much more conservative than confidence sequences Θ̂1−𝜀

(
𝑦
(𝑛)). The

same remark holds for the analogous confidence sequences from the splitting device, Ψ1−𝜀
(
𝑦
(𝑛))

and Ψ̃1−𝜀
(
𝑦
(𝑛)). Thus, conservativeness should ease the task of respecting the nominal persistence

level for Ψ̃1−𝜀
(
𝑦
(𝑛)).

Unfortunately, the computational burden imposed by definition (16) may be very heavy.
In this respect, things are a little bit better for the confidence sequence Ψ̃1−𝜀

(
𝑦
(𝑛)). In regular

models, asymptotic sufficiency and asymptotic normality of the maximum likelihood estimator
of 𝜃 offer a comfortable way out of the predicament.

5. CONFIDENCE SEQUENCES FROM COMPOSITE LIKELIHOODS: NO NUISANCE
PARAMETERS

In this section, after a brief review of composite likelihood theory, we focus on confidence
sequences from composite likelihoods when the parameter of the model is scalar and the
maximizer of the composite likelihood is asymptotically normal. The more general case of a
scalar parameter of interest in the presence of nuisance parameters will be treated in the next
section.

In complex models, complexity often entails that the full likelihood 𝐿(𝜃) = 𝑝
𝑌
(𝑦; 𝜃) is

computationally intractable, or even difficult to specify. It is then convenient to trade a certain
loss of efficiency for material relief of the computational burden. In their simplest form, composite
likelihoods are pseudo-likelihoods for 𝜃 composed by multiplying elemental contributions 𝐿

𝑗
(𝜃),

𝑗 = 1,… , 𝑞. Contributions 𝐿
𝑗
(𝜃) are in turn genuine likelihoods for 𝜃 based on low-dimensional

but dependent parts of the data. Dependence occurs when 𝑌 has dependent components or
when the same block of the data appears in more than one of the factors 𝐿

𝑗
(𝜃). For spatial

data, Besag (1974) proposed to use elemental likelihoods 𝐿
𝑗
(𝜃) from conditional densities.

More generally, likelihoods 𝐿
𝑗
(𝜃) from conditional or marginal densities were considered in

Lindsay (1988). See Varin, Reid & Firth (2011) for a comprehensive review of composite
likelihoods.

A composite log likelihood has the general form

𝓁
𝐶𝑃
(𝜃) =

𝑞∑

𝑗=1

w
𝑗
𝓁
𝑗
(𝜃), (18)

where 𝓁
𝑗
(𝜃) = log𝐿

𝑗
(𝜃) and w

𝑗
are convenient weights, often chosen all equal to 1 (Sang & Gen-

ton, 2014). When the contributions 𝓁
𝑗
(𝜃) are independent random variables, unitary weights are

optimal and make𝓁
𝐶𝑃
(𝜃) a genuine log likelihood. Under regularity conditions, the score function

and the Fisher information matrix of 𝓁
𝑗
(𝜃) are 𝑢

𝑗
(𝜃) = 𝜕∕(𝜕𝜃)𝓁

𝑗
(𝜃) and 𝐼

𝑗𝑗
(𝜃) = 𝑉 𝑎𝑟

𝜃

{
𝑢
𝑗
(𝜃)

}
=

𝐸
𝜃

{
−𝜕∕

(
𝜕𝜃

⊤
)
𝑢
𝑗
(𝜃)

}
. The score function from the composite likelihood 𝓁

𝐶𝑃
(𝜃) is then

𝑢
𝐶𝑃
(𝜃) = 𝜕∕(𝜕𝜃)𝓁

𝐶𝑃
(𝜃) =

𝑞∑

𝑗=1

w
𝑗
𝑢
𝑗
(𝜃).
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890 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

The estimating equation 𝑢
𝐶𝑃
(𝜃) = 0 is unbiased, meaning that 𝐸

𝜃

(
𝑢
𝐶𝑃
(𝜃)

)
= 0. Under the usual

regularity conditions, the resulting estimator 𝜃
𝐶𝑃

is asymptotically normal with mean 𝜃 and
variance equal to the inverse of the Godambe information matrix, that is,

𝜃
𝐶𝑃

⋅∼𝑁
𝑝

(
𝜃, 𝐺

−1
𝐶𝑃
(𝜃)

)
. (19)

The Godambe information matrix is the 𝑝 × 𝑝 matrix

𝐺
𝐶𝑃
(𝜃) = 𝐻

𝐶𝑃
(𝜃)𝐽−1

𝐶𝑃
(𝜃)𝐻

𝐶𝑃
(𝜃),

where 𝐽
𝐶𝑃
(𝜃) and 𝐻

𝐶𝑃
(𝜃) are, respectively, the variability and sensitivity matrices of the

estimating function 𝑢
𝐶𝑃
(𝜃):

𝐽
𝐶𝑃
(𝜃) = 𝑉 𝑎𝑟

𝜃

{
𝑢
𝐶𝑃
(𝜃)

}

and
𝐻

𝐶𝑃
(𝜃) = 𝐸

𝜃

{
−𝜕∕(𝜕𝜃⊤)𝑢

𝐶𝑃
(𝜃)

}
.

Both matrices 𝐽
𝐶𝑃
(𝜃) and 𝐻

𝐶𝑃
(𝜃) are symmetric and are assumed to be invertible. When

𝐽
𝐶𝑃
(𝜃) = 𝐻

𝐶𝑃
(𝜃), the Godambe information simplifies and the composite likelihood behaves

more like a genuine likelihood. The estimating equation 𝑢
𝐶𝑃
(𝜃) = 0 is then called information

unbiased (Lindsay, 1982). As an illustrative example, we consider below inference about a scalar
𝜃, with true value 𝜃

∗, using a composite likelihood and even the optimal composite likelihood.
Concatenating, for 𝑗 = 1,… , 𝑞, the quantities 𝓁

𝑗
(𝜃), 𝑢

𝑗
(𝜃), and 𝐼

𝑗𝑗
(𝜃) = 𝑉 𝑎𝑟

𝜃

{
𝑢
𝑗
(𝜃)

}
, we

obtain three 𝑞 × 1 vectors, 𝓁
𝑉
(𝜃) = [𝑙

𝑗
(𝜃)], 𝑢

𝑉
(𝜃) = [𝑢

𝑗
(𝜃)], and 𝑖

𝑉
(𝜃) = [𝐼

𝑗𝑗
(𝜃)]. Consider

also the 𝑞 × 𝑞 matrix Σ
𝑉
(𝜃) = [𝐼

𝑗𝑘
(𝜃)], where 𝐼

𝑗𝑘
(𝜃) = 𝐶𝑜v

𝜃
(𝑢

𝑗
(𝜃), 𝑢

𝑘
(𝜃)), 𝑗, 𝑘 = 1,… , 𝑞. The

vector 𝑖
𝑉
(𝜃) has the same entries as the main diagonal of Σ

𝑉
(𝜃), and we will write in short

𝑖
𝑉
(𝜃) = diag

(
Σ
𝑉
(𝜃)

)
.

The composite log likelihood (18) may be written as

𝓁
𝐶𝑃
(𝜃) = w⊤𝓁

𝑉
(𝜃),

where w = [w
𝑖
] are weights that may depend on 𝜃

∗. The score function from 𝓁
𝐶𝑃
(𝜃) is

𝑢
𝐶𝑃
(𝜃) = w⊤

𝑢
𝑉
(𝜃).

Differentiating 𝐸
𝜃
(𝑢

𝐶𝑃
(𝜃)) = 0 with respect to 𝜃 gives

𝐶𝑜v
𝜃

(
𝑢
𝐶𝑃
(𝜃), 𝑢(𝜃)

)
=

𝑞∑

𝑗=1

w
𝑗
𝐼
𝑗𝑗
(𝜃) = w⊤

𝑖
𝑉
(𝜃),

where 𝑢(𝜃) = 𝜕∕(𝜕𝜃) log𝐿(𝜃) is the score from the full likelihood. Variability and sensitivity of
𝑢
𝐶𝑃
(𝜃) are 𝐽

𝐶𝑃
(𝜃) = w⊤Σ

𝑉
(𝜃)w and 𝐻

𝐶𝑃
(𝜃) = w⊤

𝑖
𝑉
(𝜃), whence we see that to have meaningful

weights we have to restrict w so that that 𝐻
𝐶𝑃
(𝜃) > 0.

The Godambe information of the estimating function 𝑢
𝐶𝑃
(𝜃) is

𝐺
𝐶𝑃
(𝜃) =

{w⊤
𝑖
𝑉
(𝜃)}2

w⊤Σ
𝑉
(𝜃)w

,

such that, under 𝜃,
𝜃
𝐶𝑃

⋅∼𝑁(𝜃,w⊤Σ
𝑉
(𝜃)w∕{w⊤

𝑖
𝑉
(𝜃)}2). (20)

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11749
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 891

In the asymptotic variance, 𝜃 may be substituted by a consistent estimator, such as 𝜃
𝐼
, the

maximizer of the so-called independence likelihood corresponding to the widely used pseudo-log
likelihood 𝓁̃

𝐼
(𝜃) =

∑𝑞

𝑗=1𝓁𝑗(𝜃) = 1⊤
𝑞
𝓁
𝑉
(𝜃), where 1⊤

𝑞
= (1,… , 1).

Following Fraser & Reid (2020) and Pace, Salvan & Sartori (2019), the asymptotically most
efficient estimator from a composite log likelihood of the form (18), 𝜃∗, is obtained when the
weights are

w∗ = w(𝜃∗) = Σ
𝑉
(𝜃∗)−1

𝑖
𝑉
(𝜃∗);

that is, w∗ are the regression coefficients of the multiple linear regression of 𝑢(𝜃∗) on 𝑢
𝑉
(𝜃∗),

because 𝑖
𝑉
(𝜃∗) = 𝐶𝑜v

𝜃∗ (𝑢𝑉 (𝜃∗), 𝑢(𝜃∗)). To use the optimal composite log likelihood in practice,
the unknown 𝜃

∗ has, of course, to be replaced by a consistent estimator such as 𝜃
𝐼
.

When the maximizer of the composite likelihood is asymptotically normal and we use a
𝑁(𝜃0, 𝜏

2
0 ) density as a weight function for 𝜃, a confidence sequence consisting of closed-form

intervals is obtained. From approximation (20) we get an interval of the form (11), where 𝜃̂
𝑛
= 𝜃

𝑛

and v̂
𝑛
= ṽ =

√
w⊤Σ

𝑉

(
𝜃
𝐼

)
w∕{w⊤

𝑖
𝑉
(𝜃

𝐼
)} for a given vector of weights w. Refining the above

formula, a sequence obtained from the composite likelihood that uses the optimal weights w∗ has

v∗ instead of ṽ, with v∗ = 1∕
√

𝑖
𝑉

(
𝜃
𝐼

)⊤Σ
𝑉

(
𝜃
𝐼

)−1
𝑖
𝑉

(
𝜃
𝐼

)
or v∗ = 1∕

√
𝑖
𝑉

(
𝜃
∗)⊤Σ

𝑉

(
𝜃
∗)−1

𝑖
𝑉

(
𝜃
∗).

6. CONFIDENCE SEQUENCES FROM COMPOSITE LIKELIHOODS WITH
NUISANCE PARAMETERS: AN EXAMPLE

When the 𝑝-dimensional parameter of the model is 𝜃 = (𝜓, 𝜆), where 𝜓 is a scalar parameter of
interest and 𝜆 is a nuisance parameter, suppose that a composite log likelihood 𝓁

𝐶𝑃
(𝜃) provides

the estimate 𝜃
⊤ = (𝜓̃ , 𝜆̃

⊤). If approximation (19) holds, the asymptotic sampling distribution of
𝜓̃ under 𝜃 is

𝜓̃
⋅∼𝑁

(
𝜓, v2(𝜃)

)
,

where v2(𝜃) = 𝐺
−1
𝐶𝑃
(𝜃)11 is the entry of the inverse of the Godambe information matrix at the

first row and first column. Obtaining optimal weights for profile inference about 𝜓 is not
straightforward: see Pace, Salvan & Sartori (2019, Section 3). Here, we suppose therefore that
the composite likelihood is defined using a given vector of weights w, in general, unrelated to
optimality.

With the weight function𝜋(𝜓) corresponding to the𝑁
(
𝜓0, 𝜏

2
0

)
density, if we put ṽ =

√
v2

(
𝜃
)
,

a confidence sequence for 𝜓 is then given by formula (17) with 𝜓̂
𝑛

replaced by 𝜓̃ and v̂2
𝑛

replaced
by ṽ2. We conjecture that this method provides a confidence sequence with asymptotic persistence
level 1 − 𝜖. To support this conjecture, a simulation study has been performed, considering the
following example.

6.1. Example 3. Symmetric Multivariate Normal Population, Scalar 𝜇 of Interest
Inspired by an example in Section 1 of Cox & Reid (2004), let 𝑌 ⊤

𝑖
= (𝑌

𝑖1,… , 𝑌
𝑖𝑞
), for 𝑖 = 1,… , 𝑛,

be i.i.d. with
𝑌1 ∼ 𝑁

𝑞

(
𝜇1

𝑞
, 𝜎

2(1 − 𝜌)𝐼
𝑞
+ 𝜎

2
𝜌1

𝑞
1⊤
𝑞

)
,

where 1⊤
𝑞
= (1,… , 1) is the vector in IR𝑞 having all components 1, 𝐼

𝑞
denotes the identity

matrix of order 𝑞, and 𝜇 ∈ IR is unknown, while parameters 𝜎2
> 0 and 𝜌 ≥ 0 are provisionally

supposed to be known.
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The process generating the data 𝑦
𝑖𝑗

, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑞, can be analyzed as

𝑌
𝑖𝑗
= 𝜇 + 𝛼

𝑖
+ 𝜖

𝑖𝑗
𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑞,

where 𝛼
𝑖
, 𝑖 = 1,… , 𝑛, and 𝜖

𝑖𝑗
, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑞, are independent random variables having

marginal distributions 𝛼
𝑖
∼ 𝑁

(
0, 𝜎2

𝛼

)
and 𝜖

𝑖𝑗
∼ 𝑁

(
0, 𝜎2

𝜖

)
. Then

𝜎
2 = 𝜎

2
𝛼
+ 𝜎

2
𝜖
, 𝜌 =

𝜎
2
𝛼

𝜎
2
𝛼 + 𝜎

2
𝜖

.

A collection of 𝑞 genuine log likelihoods for 𝜇 provided by the independent marginals 𝑌1𝑗 ,… , 𝑌
𝑛𝑗

is given by

𝓁
𝑗
(𝜇) = − 1

2𝜎2

𝑛∑

𝑖=1

(𝑦
𝑖𝑗
− 𝜇)2, 𝑗 = 1,… , 𝑞,

with corresponding score functions

𝑢
𝑗
(𝜇) =

𝑛∑

𝑖=1

(𝑦
𝑖𝑗
− 𝜇)∕𝜎2

, 𝑗 = 1,… , 𝑞.

The estimating equation that is most efficient among the scores from the combined log likelihoods
of the form (18) is obtained with w∗ = 1

𝑞
: that is, from

𝓁
𝐼
(𝜇) =

𝑞∑

𝑗=1

𝓁
𝑗
(𝜇) = − 1

2𝜎2

𝑞∑

𝑗=1

𝑛∑

𝑖=1

(𝑦
𝑖𝑗
− 𝜇)2 (21)

with corresponding estimating function

𝑢
𝐼
(𝜇) =

𝑞∑

𝑗=1

𝑢
𝑗
(𝜇) = 1

𝜎2

𝑞∑

𝑗=1

𝑛∑

𝑖=1

(𝑦
𝑖𝑗
− 𝜇).

Indeed, the maximizer of 𝓁
𝐼
(𝜇) is 𝑦 =

∑𝑛

𝑖=1
∑𝑞

𝑗=1𝑦𝑖𝑗∕(𝑛𝑞), which is also the maximizer of the
full likelihood.

We have 𝐼
𝑗𝑗
(𝜇) = 𝑉 𝑎𝑟(𝑢

𝑗
(𝜇)) = 𝑛∕𝜎2, and therefore

𝑖
𝑉
(𝜇) = 𝑛

𝜎2
1
𝑞
,

and from 𝐼
𝑗𝑘
(𝜇) = 𝐶𝑜v(𝑢

𝑗
(𝜇), 𝑢

𝑘
(𝜇)) = 𝑛𝜌∕𝜎2 when 𝑗 ≠ 𝑘 we obtain

Σ
𝑉
(𝜇) = 𝑛

𝜎2

{
(1 − 𝜌)𝐼

𝑞
+ 𝜌1

𝑞
1⊤
𝑞

}
.

It is easily checked from the above expressions that

[
Σ
𝑉
(𝜇)

]−1
𝑖
𝑉
(𝜇) = 1

𝑞
,

that is, w∗ = 1
𝑞
.
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2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 893

The Godambe information of the estimating function 𝑢
𝐼
(𝜇) is

𝐺
𝐼
(𝜇) =

{
𝑢
⊤
𝑖
𝑉
(𝜇)

}2

𝑢⊤Σ
𝑉
(𝜇)𝑢

= 𝑛

𝜎2

𝑞

1 + (𝑞 − 1)𝜌
.

It follows that

𝑌 ∼ 𝑁

(
𝜇,

𝜎
2

𝑛

1 + (𝑞 − 1)𝜌
𝑞

)
.

The sampling distribution of 𝑌 is exact and not merely asymptotic. Therefore, when 𝜌 and 𝜎
2

are known, using the weight function 𝜋(𝜇) corresponding to the 𝑁(𝜇0, 𝜏
2
0 ) density, the mixture

confidence sequence for 𝜇 with exact persistence level 1 − 𝜀 is

𝑦 ± v

√√√√log
𝜏

2
0 + v2

v2
+

(
𝑦 − 𝜇0

)2

𝜏
2
0 + v2

− 2 log 𝜀 , (22)

where v =
√
𝜎2{1 + (𝑞 − 1)𝜌}∕(𝑞𝑛). The sequence is obtained by increasing 𝑛 for a fixed 𝑞.

The parameter 𝜇 is orthogonal to the block of parameters (𝜎2
, 𝜌). This entails that 𝓁

𝐼
(𝜇), cf.

(21), with 𝜎
2 and 𝜌 substituted by a consistent estimate, has the same asymptotic properties as a

profile likelihood. In particular the optimality of the estimating function 𝑢
𝐼
(𝜇) with estimated 𝜎

2

and 𝜌 is preserved. Moment estimates of 𝜎2 and 𝜌 are based on the sum of squares statistics

𝑆𝑆
𝐸
=

𝑛∑

𝑖=1

𝑞∑

𝑗=1

(
𝑦
𝑖𝑗
− 𝑦

𝑖

)2
, 𝑆𝑆

𝐵
= 𝑞

𝑛∑

𝑖=1

,
(
𝑦
𝑖
− 𝑦

)2
,

where 𝑦
𝑖
=

∑𝑞

𝑗=1𝑦𝑖𝑗∕𝑞. They have the following expressions (see Searle, Casella & McCul-
loch, 1992, Section 3.5):

𝜎̃
2 =

𝑆𝑆
𝐵

(𝑛 − 1)𝑞
+

𝑆𝑆
𝐸

𝑛𝑞
, 𝜌̃ = max

(
𝑆𝑆

𝐵
∕(𝑛 − 1) − 𝑆𝑆

𝐸
∕(𝑛(𝑞 − 1))

𝑆𝑆
𝐸
∕𝑛 + 𝑆𝑆

𝐵
∕(𝑛 − 1)

, 0
)
.

Inserting these estimates in Equation (22), we obtain the confidence sequence for 𝜇 with (𝜎2
, 𝜌)

nuisance:

𝑦 ± ṽ

√√√√log
𝜏

2
0 + ṽ2

ṽ2
+

(
𝑦 − 𝜇0

)2

𝜏
2
0 + ṽ2

− 2 log 𝜀 , (23)

where ṽ =
√
𝜎̃

2{1 + (𝑞 − 1)𝜌̃}∕(𝑞𝑛).
Finally, a simulation to investigate the conjecture that, for conveniently large sample sizes,

the confidence sequence (23) has approximately persistence level 1 − 𝜀 is in order. For 10,000
replications, sequences of samples with 𝑛 from 𝑛min to 𝑛max have been generated with 𝑛min = 25
and 𝑛max = 10,000. The behaviour along the sequence of intervals (22) and (23) has been
observed, with the aim of detecting incompatibilities and uncoverages, at various nominal
persistence levels 1 − 𝜀 and 𝑞 = 5. The results are displayed in Table 6. The exact intervals
look very conservative. The intervals with estimated v show some more incompatibilities and
uncoverages.
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894 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

TABLE 6: Symmetric multinormal population with mean 𝜇1
𝑞
, variances 𝜎21

𝑞
, equicorrelation 𝜌: empirical

percentages of incompatibilities and uncoverages of mixture intervals (22) (exact) and (23) (estimated)
with 𝜇0 = 0 and 𝜏

2
0 = 1, at various nominal persistence levels 1 − 𝜀, in 10,000 sequences of samples from

𝑛min = 25 to 𝑛max = 10,000. The true values of 𝜇 and 𝜎
2 are zero and one, respectively, 𝑞 = 5.

100 × 𝜀

𝜌 Property Method 20 10 5 1

0.3 Incompatibilities Exact 1.85 0.84 0.34 0.06

Estimated 3.42 1.95 1.14 0.25

Uncoverages Exact 5.23 2.87 1.53 0.27

Estimated 7.57 4.66 2.98 0.95

0.5 Incompatibilities Exact 2.20 0.94 0.41 0.08

Estimated 3.80 2.14 1.29 0.27

Uncoverages Exact 5.94 3.24 1.68 0.27

Estimated 8.45 5.12 3.24 1.02

0.8 Incompatibilities Exact 2.50 1.16 0.47 0.09

Estimated 4.28 2.46 1.41 0.30

Uncoverages Exact 6.84 3.68 1.93 0.35

Estimated 9.54 5.73 3.52 1.12

7. CONCLUSIONS

In this article, we have dealt with a concept of replicability according to which, under the assumed
statistical model, the current region and regions from arbitrarily enlarged samples have a large
enough probability of overlapping. The definition of the persistence level 1 − 𝜀 makes the idea
precise. We have emphasized, as a means to reach this end, the mixture confidence sequences
described in Robbins (1970). An advantage of mixture confidence sequences is their justification
under various views of inference, as stressed in Pace & Salvan (2020). The price to pay for
controlling for the probability of sequence-wise overlapping of confidence regions is that wider
regions are needed in comparison with the usual confidence regions with the same confidence
level. These results are exact and refer to using the full likelihood as the grounds of parametric
inference. Using an asymptotic normal approximation for the estimator of a scalar parameter
of interest, approximate closed-form confidence sequences are easily calculated. This article
has explored such a shortcut to extend the application of approximate confidence sequences
to composite likelihoods. Simulation results support the conjecture that confidence sequences
obtained in this way, with nominal persistence level 1 − 𝜀, have guaranteed sequence-wise
compatibility.

Although all the examples in the article consider a scalar parameter of interest, the general
construction based on (2) applies naturally to a multiparameter setting. Moreover, the approximate
expression based on asymptotic normality of the estimator of the parameter extends easily to a
vector parameter of interest using a Wald-type statistic.

Directions of future investigation include the efficient computation of confidence sequences
when the estimator has no closed-form expression and is the solution of an estimating equation.
Focusing on estimating equations might also overcome the lack of parameterization equivariance
of the approximate solution considered here.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11749

 1708945x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11749 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [21/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2023 CONFIDENCE SEQUENCES WITH COMPOSITE LIKELIHOODS 895

ACKNOWLEDGEMENT

It is a great pleasure to contribute to this special issue in honour of Nancy Reid, whose deep
and far-reaching contributions to statistical theory have been highly influential for our work.
We gratefully acknowledge an Associate Editor and a Reviewer for their useful suggestions.
We also thank the organizers and participants of the workshop “Safe, Anytime-Valid Inference
(SAVI) and Game-theoretic Statistics”, Eindhoven (NL), 2022, for enlightening contributions
and discussions on confidence sequences. Nicola Sartori’s work was supported by a grant from
the University of Padova (BIRD203991). Open Access Funding was provided by Università
degli Studi di Padova within the CRUI-CARE Agreement.

REFERENCES
Benjamini, Y. (2020). Selective inference: The silent killer of replicability. Harvard Data Science Review,

2(4). https://doi.org/10.1162/99608f92.fc62b261
Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal

of the Royal Statistical Society B, 36, 192–236.
Cox, D. R. (1975). A note on data-splitting for the evaluation of significance levels. Biometrika, 62,

441–444.
Cox, D. R. & Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika,

91, 729–737.
Csenki, A. (1979). A note on confidence sequences in multiparameter exponential families. Journal of

Multivariate Analysis, 9, 337–340.
Darling, D. A. & Robbins, H. (1967a). Iterated logarithm inequalities. Proceedings of the National Academy

of Sciences USA, 57, 1188–1192.
Darling, D. A. & Robbins, H. (1967b). Confidence sequences for mean, variance and median. Proceedings

of the National Academy of Sciences USA, 58, 66–68.
Fraser, D. A. S. & Reid, N. (2020). Combining likelihoods and significance functions. Statistica Sinica, 30,

1–15.
Howard, S. R., Ramdas, A., McAuliffe, J., & Sekhon, J. (2021). Time-uniform, nonparametric, nonasymp-

totic confidence sequences. The Annals of Statistics, 49, 1055–1080.
Howard, S. R. & Ramdas, A. (2022). Sequential estimation of quantiles with applications to A/B testing

and best-arm identification. Bernoulli, 28, 1704–1728.
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2, e124.
Jacod, J. & Protter, P. (2000). Probability Essentials, Springer, Berlin.
Johari, R., Koomen, P., Pekelis, L., & Walsh, D. (2021). Always valid inference: Continuous monitoring

of A/B tests. Operations Research, 70, 1806–1821.
Lai, T. L. (1976). On confidence sequences. Annals of Statistics, 4, 265–280.
Lindsay, B. (1982). Conditional score functions: Some optimality results. Biometrika, 69, 503–512.
Lindsay, B. (1988). Composite likelihood methods. Contemporary Mathematics, 80, 221–240.
Nguyen, H. D. (2020). Universal inference with composite likelihoods. arXiv preprint, arXiv:2009.00848v4.
Pace, L., Salvan, A., & Sartori, N. (2019). Efficient composite likelihood for a scalar parameter of interest.

Stat, 8, e222.
Pace, L. & Salvan, A. (2020). Likelihood, replicability and Robbins’ confidence sequences. International

Statistical Review, 88, 599–615.
Robbins, H. (1970). Statistical methods related to the law of the iterated logarithm. Annals of Mathematical

Statistics, 41, 1397–1409.
Robbins, H. & Siegmund, D. (1972). A class of stopping rules for testing parametric hypotheses. In

Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, University
of California, Vol. 4, 37–41.

Robbins, H. & Siegmund, D. (1974). The expected sample size of some tests of power one. Annals of
Statistics, 2, 415–436.

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm, Chapman and Hall, London.
Sang, H. & Genton, M. G. (2014). Tapered composite likelihood for spatial max–stable models. Spatial

Statistics, 8, 86–103.

DOI: 10.1002/cjs.11749 The Canadian Journal of Statistics / La revue canadienne de statistique

 1708945x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11749 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [21/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1162/99608f92.fc62b261


896 PACE, SALVAN, AND SARTORI Vol. 51, No. 3

Searle, S., Casella, G., & McCulloch, C. (1992). Variance Components, Wiley, New York.
Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica,

21, 5–42.
Vovk, V. & Wang, R. (2021). E-values: Calibration, combination and applications. The Annals of Statistics,

49, 1736–1754.
Wald, A. (1947). Sequential Analysis, Wiley, New York.
Wasserman, L., Ramdas, A., & Balakrishnan, S. (2020). Universal inference. Proceedings of the National

Academy of Sciences USA, 117, 16880–16890.

Received 4 April 2022
Accepted 12 June 2022

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11749

 1708945x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cjs.11749 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [21/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Confidence sequences with composite likelihoods
	1 INTRODUCTION
	2 CONFIDENCE SEQUENCES
	3 MIXTURE AND SPLIT CONFIDENCE SEQUENCES
	3.1 Example 1. Normal Population with Known Variance
	3.2 Example 2. Poisson Population

	4 CONFIDENCE SEQUENCES ON A PARAMETER OF INTEREST
	5 CONFIDENCE SEQUENCES FROM COMPOSITE LIKELIHOODS: NO NUISANCE PARAMETERS
	6 CONFIDENCE SEQUENCES FROM COMPOSITE LIKELIHOODS WITH NUISANCE PARAMETERS: AN EXAMPLE
	6.1 Example 3. Symmetric Multivariate Normal Population, Scalar [[math]] of Interest

	7 CONCLUSIONS

	ACKNOWLEDGEMENT
	References

