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Abstract—A smart grid (SG) is a network of interconnected
nodes that can generate, consume, and share energy. In this paper,
we consider a game theoretic approach to its management aimed
to balance the monetary and energy transactions between users.
We analyze the efficiency of the proposed approach for a smart
grid consisting of a set of prosumers connected to an energy
router that manages energy and monetary transactions. We
compare our game theoretic approach with alternative strategies
available to a prosumer, i.e., to sell, buy or store the energy
whenever possible. For each strategy, the monetary outcome was
compared, showing some interesting results.

Index Terms—Game Theory; Smart Grid; Energy manage-
ment; Energy harvesting.

I. INTRODUCTION

A smart grid (SG) uses advanced technology and commu-
nication systems to improve the efficiency, reliability, and sus-
tainability of electricity generation, distribution, and consump-
tion [1]–[3]. This results in a self-sufficient system resembling
the Internet or other self-healing network structures, whose
advantages include reducing blackouts and transmission losses
[4], integrating renewable energy sources, and harmonzing
the management and monitoring of multiple devices so as to
obtain real-time data analysis [5], [6]. The participation of
users playing the double role of consumer and producer (often
dubbed “prosumers”) in the grid is strongly encouraged and
transactions between different prosumers are allowed, as they
may improve the overall system benefit [7]–[9].

This results in a complex system behavior, for which several
proposals exist in the literature pertaining to its optimization
and management [10], [11]. However, the perspective is often
holistic, i.e., the improvement of the smart grid is sought in
economic or energy terms, considering the system as a single
entity, and formulating the problem as an optimization with a
single objective function. Unfortunately, these approaches do
not consider that SGs consist of multiple entities with different
objectives. To overcome this problem, different methodologies
are employed and one of them is represented by game theory
that studies the interaction among rational players [12]–[14].
In this paper, we propose a game theoretic approach for the
specific purpose of managing an SG with a proper balance of
energy and monetary flows of all participants of the system.

In general, game theory has been successfully applied to
many network scenarios since it is an effective way to combine
different objectives of multiple agents interacting in an selfish

way [15]. For the case of smart grid networks, the majority
of the approaches adopt a non-cooperative framework to
model interactions among players [8]. The problem is often
formulated as a trading by different prosumers of their stored
energy in a double auction market, with multiple buyers and
sellers [9]. In this case, a proper modeling of the utility
function of the players is key, and game theoretic approaches
accounting for the tradeoff between profits and costs are shown
to perform better than greedy algorithms [13]. Another way of
modelling an SG system has been proposed in [7] and [16],
where power stations and prosumers interact as leaders and
followers inside a Stackleberg game [17].

Micro-grids, instead, represent a setup of internal trading
among prosumers or between interconnected micro-grids [18].
In [19], an optimization approach for energy transfer is pre-
sented, to guarantee that nodes will not be depleted during
operation and the energy demands will be satisfied but not
exceeded. This can be further extended to game theoretic
models for real-time energy trading between interacting pro-
sumers, for example as a Stackelberg game with energy sellers
being leaders and energy buyers who are the followers [20].
Pricing competition is then modelled as a non-cooperative
game among sellers. Finally, in [21] a model of economic
incentives is suggested for market participants who cooperate
in developing a micro-grid. The results show the impact on
prices and costs for all players in different scenarios, so as
to avoid micro-grids failures and maximize the benefits of the
involved users.

In this paper, we consider a binary interaction between two
prosumers, which is further expanded to an N player scenario,
where prosumers are strategic agents trying to optimize their
energy and monetary balances in a static game. This approach
is compared with strategies where the nodes just always buy,
sell, or store their energy, showing a significant advantage to-
wards the individual optimization of the utility. This motivates
us to explore intelligent solutions for a local maximization of
objectives of the individual nodes and may open new avenues
for game theoretic applications in this field [14], [22].

The rest of this paper is organized as follows. The game
theoretic framework of the problem is given in Section II. To
verify and analyze the efficiency of the proposed approach,
we performed a numerical analysis whose results are reported
in Section III. The paper is concluded in Section IV.



Fig. 1. Schemes for the 2 player game (left) and the N player game (right).

II. GAME THEORETIC SETUP

We consider a smart grid, whose prosumers are capable
to generate and store energy by harvesting it from renewable
sources [23]. A visual representation is given in Fig. 1. The
prosumers can either exchange energy among each other
and/or with the main grid. The set of prosumers is divided
on two groups: connected to the main grid (ongrid) and those
who have no access to it (offgrid). The smart grid acts as a
router, to which prosumers communicate their own demand
or supply. Having a router allows to track various attributes
such as energy availability, amount of sold energy, and energy
price.

We consider a discrete time axis. In each time step, pro-
sumers can independently choose one of three possible actions:
to store, to buy, or to sell energy [7], [23]. Every prosumer
decides the action to be taken based on its current status. The
grid manages each request according to the overall demand
and energy availability, while the chosen policy defines the
payout to each player.

The set of attributes of every prosumer includes: (i) the
amount of stored energy, which must satisfy the constraint of
being within the accumulator capacity; (ii) energy production;
(iii) energy consumption; (iv) monetary balance, which is
strictly related to the transactions made with the grid. The
status of each attribute is monitored and updated in every
round.

We start by considering a scenario with two players. The
strategy set of a player is S = {buy, sell, store} described
below:

STORE: The player stores the generated energy in its
accumulator. If the accumulator reaches its capacity the excess
energy is directly sold to the main grid and not to other
prosumers. Instead, if the player decides to store energy and
its consumption exceeds the total energy available, the needed
energy is directly bought from the main grid.

BUY: The player buys from the grid or other prosumer,
deciding the amount to order, and the smart grid handles the
request by either giving energy from other prosumers, the main
grid or a combination of the two.

SELL: The player sells energy to the grid, choosing the
amount being sold and the smart grid handles the transaction.

TABLE I
PRICE RATIO TABLE

Type of exchange Price Ratio
Buy energy from the grid (Gb) 1
Buy energy from other prosumers (Pb) 0.75
Sell energy to the grid (Gs) 0.75
Sell energy to other prosumers (Ps) 0.5

Each player has no knowledge of the attributes of other
players, and has no access to the chosen strategy of another
player. Each player has access to the information provided
by the router like energy price, and is fully aware of its
own production, consumption, and stored energy at each time
frame. This information is private for every player [12].

We start by considering a single-stage game, which will be
further extended as a repeated game with T time instances. In
the former case, the game is framed as static, which implies
that it is either just played once or alternatively there is
no memory of previous strategic decisions. To outline the
utilities of each player, we denote the attributes of every player
as including the amount b0 of available energy before any
strategic interaction between players; the produced energy to
be stored Gprod; the energy Gb bought from the grid;’ the
energy Pb bought from other prosumers; the energy Gs sold
to the grid; and finally, the energy Ps sold to other prosumers.

We introduce a conditional variable x to avoid negative
levels in the energy storage, as

x =


1 if


b0 + Gprob ≥ 0

b0 + Gb + Pb − 100 ≥ 0

b0 + Gb − 100 ≥ 0

0 otherwise

(1)

The inequalities above trigger the possibility to sell the
excessive energy to the grid, i.e., we set x = 1. The aim for
each player is to maximize its profit from a monetary point
of view, therefore the following rules are applied, where pe
is a price per unit of energy, and balance(i) is the amount of
available energy at a current time step i before initiating the
strategic interaction, so that balance(i) = b0pe:

∆
(i)
balance = pe( 0.75Ps + 0.5Gs − 0.75Pb −Gb)

balance(i+1) = balance(i) + ∆
(i)
balance

(2)

Parameters Ps, Gs, Pb, Gb follows the rules above. The price
of energy is different if being bought or sold from grid, or
from other prosumers. The ratios between prices per unit are
in range [0,1], set to the sample values provided in Table I.

At iteration i, the energy balance is computed as:

∆E
(i)
balance = E

(i)
gained − E

(i)
consumed

E
(i+1)
balance = E

(i)
balance + ∆E

(i)
balance

(3)

where the energy gained and consumed take into account
both the energy produced and used and the energy bought



TABLE II
STATIC GAME OF COMPLETE INFORMATION

Prosumer 2
Buy Sell Store

Pr
os

um
er

1 B
uy b0−Gb+ 0.5x(b0+Gb+ Pb− 100) b0−Gb− 0.75Pb+ 0.5x(b0+Gb− 100) b0−Gb+ 0.5x(b0+Gb− 100)

b0−Gb+ 0.5x(b0+Gb+ Pb− 100) (b0+ 0.5Gs+ 0.75Ps) b0+Gprod+ 0.5x(b0+Gprod− 100)

Se
ll (b0+ 0.5Gs+ 0.75Ps) (b0− 0.5Gs) (b0− 0.5Gs)

b0−Gb− 0.75Pb+ 0.5x(b0+Gb− 100) (b0− 0.5Gs) b0+Gprod+ 0.5x(b0+Gprod− 100)

St
or

e b0−Gprod+ 0.5x(b0+Gprod− 100) b0−Gprod+ 0.5x(b0+Gprod− 100) b0−Gprod+ 0.5x(b0+Gprod− 100)
b0−Gb+ 0.5x(b0+Gb− 100) (b0− 0.5Gs) b0+Gprod+ 0.5x(b0+Gprod− 100)

TABLE III
INITIAL VALUES OF PARAMETERS

Parameters Value
Accumulator’s initial level of energy 50%
Initial wallet balance 500

Probability of renewable source generator for ongrid
prosumers

1
3

not available
1
3

solar panels
1
3

wind turbine
0 solar panels and wind turbine

Probability of renewable source generator for offgrid
prosumers

0 not available
2
5

solar panels
2
5

wind turbine
1
5

solar panels and wind turbine

and sold, therefore:

E
(i)
gained = E

(i)
bought + E

(i)
produced

E
(i+1)
consumed = E

(i)
sold + E

(i)
expended

(4)

Accounting for all considerations introduced above we can
formalize the interaction as a static game whose normal form
is displayed in Table II. Nine possible outcomes are shown
for the strategic interaction between two prosumers.

We further expand the game by simulating the case where
N players are interconnected in SG described in the following
section. The scheme of such a scenario is also presented in
Fig. 1, on the right side. In this case, the game reported in
Table II serves as a stage game for the repeated game [14].
At every round, nodes keep track of their actions, which is
reflected in a change of their state. For the sake of simplicity,
we just consider stationary strategies that only depend on the
status of the individual player choosing its own move. In a
more complex setup, the game can be extended to consider
also a Bayesian character [12] and possible anticipation of
future countermoves, which is left for future research.

III. SIMULATION RESULTS

The proposed framework was simulated for 1000 players
during 100 rounds. We set the monetary balance and accumu-
lator initial level of energy to the same value for everyone.
This simulation parameters are described in Table III. For
each round, parameters as energy production and consumption
are randomly set according to a normal distribution centered
around 75 units, in order to mimic daily changes. Even though
dynamic pricing is an important factor in a smart grids [11],
to simplify the formulation we consider a fixed pricing for the
energy being bought and sold.

Within each round, players independently choose one of the
following strategies.

Game Theoretic (GT) Strategy: The player decides to play
the store action whenever the accumulator capacity allows it.
Instead, if the consumption leads to a deficit not handled by
the energy balance and the production the player plays buy
with the minimum amount required to satisfy the current round
demand.
Finally, if the accumulator reaches the maximum capacity in a
given round the player plays sell with all the excess energy that
could not be stored. This strategy exploits players’ rationality
and is designed so as to limit the probability of bankruptcy,
due to the intrinsic penalization in buying or selling more than
needed.

Always Buy Strategy: The player plays buy whenever
possible, satisfying the constraint given by the accumulator’s
capacity, and buying the maximum amount possible. In any
other case, the player chooses the action store, hence buying
or selling the excess/needed energy directly from the main grid
if possible.

Always Sell Strategy: The player plays sell whenever pos-
sible, always satisfying the constraint given by the accumulator
capacity, always selling the maximum amount possible. In any
other case, store is played, therefore buying or selling the
excess/needed energy directly from the main grid if possible.

Always Store Strategy: At every time step, the player
simply plays store, thus if any excess energy is available or
there is energy needed, it can be bought or sold directly from
the main grid.

Randomized Unconstrained Strategy: The player decides
an action and the amount of energy randomly.

Playing these strategies could lead to bankruptcy from a
monetary point of view. When such a thing happens the player
is removed from the game, as it can no longer sustain itself.

The parameters of a game are set for each player and
provided in Table IV.

TABLE IV
LIST OF ATTRIBUTES

Initial attributes Range values
Accumulator capacity [0,100]
Initial energy stored [0,100]
Attributes set for each time instance
Energy production [0,150]
Energy consumption [0,150]



Fig. 2. Comparison of multiple strategies: mean battery level

Fig. 3. Comparison of multiple strategies: average wallet

Lastly, to control the distribution of demanded and requested
energy by the players, three distinctive policies were intro-
duced: “split equally,” “priority queue,” and “mixed”. “Split
equally” implies an equal division of the supplied energy
among every player. “Priority queue,” instead, prioritizes of-
fgrid players requests. Once these demands are satisfied, the
grid manages the ongrid players by prioritizing larger requests.
Finally, the “mixed” policy combines the two approaches:
it assures bigger requests of offgrid players are prioritized,
and then splits the remaining energy evenly between ongrid
players.

Firstly, we analyzed the case when all players are ongrid,
those strategies are uniformly distributed among them. We
computed the average energy level of ongrid players at every
round of the game for all three energy split policies presented
above. Since adopting different policies do not provide any
difference in terms of plot patterns, we chose “split equally”
policy as a reference one. Obviously, as it can be seen from
Fig. 2 the prosumers adopting an “always buy” strategy have
the higher average energy level at each iteration, which leads
to a massive imbalance of their monetary state, which can
be seen in Fig. 3. Those players who, instead, adopted GT
strategy have an obvious monetary advantage.

Further, we performed the simulations for a set of players
consisting of 500 ongrid and 500 offgrid prosumers. The

Fig. 4. Comparison of multiple strategies: mean battery level of ongrid nodes

Fig. 5. Comparison of multiple strategies: average wallet of ongrid nodes

Fig. 6. Comparison of multiple strategies: mean battery level of offgrid nodes

“mixed” policy is chosen as a reference one. Ongrid players
preserves the same behavior as in the previous simulations
in terms of average energy and monetary level (see Figs. 4
and 5). However, from 500 offgrid players just 24 of them
survived till the last round, and the large majority of them
were adopting the GT Strategy as depicted from a combined
analysis of the offgrid average battery level and wallet graphs
as can be seen from Figs. 6 and 7.



Fig. 7. Comparison of multiple strategies: average wallet of offgrid nodes

Fig. 8. Only GT strategy: mean battery level of ongrid nodes

Fig. 9. Only GT strategy: mean battery level of offgrid nodes

Finally, in Figs. 8–11, we analyzed the case when all the
mixed players adopt the GT strategy. To have a complete view
of the results, notice that just 295 ongrid players and 104
off-set players reached the final round. We explain this by
considering: (i) the analysis of the wallets, showing that the GT
strategy allows players to increase their amount of money; (ii)
battery level behavior, which is different between players since
ongrid ones are able to stabilize it, despite random consump-

Fig. 10. Only GT strategy: average wallet of ongrid nodes

Fig. 11. Only GT strategy: average wallet of offgrid nodes

Fig. 12. Average supply and demand

tion and production, while offgrid ones struggle to survive due
to their exchanges with the grid; (iii) the decreasing number
of offgrid players, which leads to a decreasing value of energy
demand.

A similar reasoning applies to ongrid players, which is
caused by the constant value for supply and demand associates
with a drop of consumers. It means that the amount of shared
energy is increased comparing with the previous rounds. At the



same time the grid was set to play the “mixed” policy, which
determines the supply and demand results shown in Fig. 12.

IV. CONCLUSIONS

We considered an SG scenario, where offgrid and ongrid
prosumers perform money and energy exchanges, among
themselves and the main grid. We approached this scenario
through game theory, showing results for a static and further,
a repeated game. We compared a game theoretical strategy
exploiting players’ individual rationality with alternative ones
where the players always buy, sell, store, or behave at random.
Simulation results demonstrated the advantage of a game
theoretic strategy, in terms of balancing money and energy
flows.

The scenario chosen could serve as basis for further research
by considering dynamic pricing [11], real data distributions for
parameter generation [24], more realistic benefit calculations
[25], as well as other parameters such as line losses or battery
degradation [26], [27], and more.
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