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Advances in medicine have led to a growing number of people with compromised or suppressed immune sys-
tems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming in-
creasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is 
exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary as-
pergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19- 
associated pulmonary aspergillosis. 
The treatment landscape for haematological malignancies has changed considerably in recent years, and some 
recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. 
Consideration must also be given to the risk of drug–drug interactions between mould-active azoles and 
small-molecule kinase inhibitors. 
At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be 
challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating con-
tinuous surveillance and personalized treatment strategies. 
It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will 
be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and 
broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain 
an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad 
antifungal spectrum, low level of acquired resistance and limited potential for drug–drug interactions.
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Introduction
The end of the Cretaceous period was characterized by a fungal 
bloom, which favoured the selection of endothermic mammals 
over ectothermic reptiles because their warm body temperatures 
protected them from fungal diseases.1 Of the millions of fungal 
species on earth, only a few dozen regularly cause human dis-
ease; however, in an era of climate change, the world is becom-
ing a warmer place and an increasing number of fungal species 
are adapting to high temperatures1 and emerging as important 

pathogens in humans and endothermic mammals.2 Also, ad-
vances in medicine have led to a growing number of people 
with compromised or suppressed immune systems whose bodies 
can be overrun by a fungal invader. For example, the prevalence 
of invasive aspergillosis (IA) continues to increase in non- 
neutropenic patients with severe underlying diseases, including 
patients in the ICU;3–6 this is particularly true for patients requir-
ing intensive care for influenza5 or severe acute respiratory 
syndrome coronavirus type 2 (SARS-CoV-2)-associated acute re-
spiratory distress syndrome,7,8 solid organ transplant recipients,9
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patients receiving systemic glucocorticoids,10 patients with 
underlying respiratory conditions,3,11,12 patients with solid can-
cers,3,13 patients receiving ibrutinib or other tyrosine kinase inhi-
bitors14,15 and patients receiving chimeric antigen receptor (CAR) 
T cell therapy.16

On the other hand, in patients with traditional risk factors for 
IA, such as those with underlying haematological malignancy 
and prolonged neutropenia or HSCT recipients, the use of 
mould-active prophylaxis has been associated with a decrease 
in prevalence of IA.17,18 However, if breakthrough infections oc-
cur, they are often caused by previously less common invasive 
moulds including Mucorales spp., Fusarium spp., Lomentospora 
spp. and Scedosporium spp., which have been described as op-
portunistic pathogens in patients with a variety of underlying dis-
eases.19–22 In addition, rare yeast infections continue to 
increase.23,24 While the prevalence of these pathogens varies 
widely between geographical regions,22,25–27 they are associated 
with resistance to many classes of antifungal treatments28,29

and with devastating mortality rates.27,30 Early diagnosis and ap-
propriate treatment remain the most important predictors of sur-
vival,31 although diagnosis remains difficult to establish22,32 and 
treatment is becoming increasingly complicated due to increas-
ing primary and secondary resistance to various classes of anti-
fungal drugs.22,33 Even once a fungal infection is diagnosed, 
mixed fungal infections remain a threat.34,35 Finally, the emer-
gence of antifungal resistance among the more commonly iden-
tified pathogens, such as echinocandin and azole resistance in 
Candida spp.36 and triazole resistance in Aspergillus spp., caused 
by mutations in certain genes such as cyp51A,37 complicates the 
selection of appropriate antifungal treatment.33,38,39

For these reasons, broad-spectrum antifungal agents will be-
come even more essential for reducing morbidity and mortality in 
the future. Amphotericin B and in particular its liposomal formu-
lation (liposomal amphotericin B) may be considered the epit-
ome of a broad-spectrum antifungal agent, showing excellent 
activity against a wide range of moulds,22 including most 
Aspergillus spp., Mucorales spp., Fusarium spp., Schizophyllum 
spp., Scopulariopsis spp., Paecilomyces spp. and pathogens caus-
ing phaeohyphomycosis, but also yeasts including Candida spp. 
and Cryptococcus spp.24,40 Given that (i) rare fungal infections 
are likely to increase, (ii) difficulties in diagnosing these infections 
are likely to persist, (iii) the numbers of mixed mould and mixed 
yeast infections are rising41 and (iv) rates of azole and echinocan-
din resistance are increasing, the importance of empirical or pre- 
emptive broad-spectrum antifungal treatment will also increase. 
Liposomal amphotericin B will therefore remain a gold standard 
for primary treatment of unspecified invasive fungal disease, as 
well as targeted therapy of infections caused by the multitude 
of pathogens in its spectrum. One of the major advantages of li-
posomal amphotericin B compared with modern triazoles that 
makes it a particularly compelling choice for ICU physicians and 
for primary treatment of IA is the comparatively low number of 
drug–drug interactions; in comparison, voriconazole, for ex-
ample, is among the drugs most frequently associated with ma-
jor drug–drug interactions in the ICU.42 It is not hard to predict 
that the proportion of invasive fungal infections (IFIs) reported 
from patients being treated with multiple medications is set to in-
crease further, for example, patients in the ICU outside of the 
traditional at-risk populations. The low number of drug–drug 

interactions sets liposomal amphotericin B apart from its compe-
titors for primary monotherapy of mould infections in the ICU and 
promises to remain a valuable feature determining the drug’s 
role in the future. It must be acknowledged that there is still a 
risk of nephrotoxicity associated with liposomal amphotericin B, 
albeit lower than with amphotericin B deoxycholate, highlighting 
the continued challenges of treating severe fungal infections in 
patients in the ICU.43

This review will provide an overview of the role of liposomal 
amphotericin B in the next 30 years. It will focus specifically on 
the risk of fungal disease as well as drug–drug interactions in pa-
tients receiving new biological and targeted treatments for 
underlying malignancies, the risk of viral–fungal coinfections in 
the ICU and the emergence of antifungal resistance as well as 
fungal infections caused by rare and multiresistant pathogens.

New biologics, targeted agents and drug–drug 
interactions
Major progress has been made in the past two decades in under-
standing the genetic basis of haematological malignancies and 
mechanisms of immune escape of neoplastic cells. These ad-
vances have led to the development of precision therapies with 
monoclonal antibodies or small-molecule kinase inhibitors 
(SMKIs) that target specific cytogenetic abnormalities or abnor-
mal signalling in tumours.44 Personalized cellular therapies 
such as CAR T cells and other synthetic immunity approaches 
can elicit powerful host immune responses against tumour cells, 
leading to durable remission of previously treatment-refractory 
lymphoid malignancies.45 Together, these treatments have gen-
erated optimism that many haematological malignancies can be 
controlled chronically, if not cured, without conventional chemo-
therapy or HSCT.46

IFIs have been a major challenge in the supportive care of pa-
tients with haematological malignancies since the dawn of the 
modern chemotherapy era in the 1960s. However, knowledge 
of how these newer targeted treatments impact a patient’s risk 
of developing an IFI is still evolving.47 Some monoclonal anti-
bodies and SMKIs inhibit pathways involved in protective innate 
and adaptive immune responses to fungi.48,49 Some targeted 
therapies can induce complex iatrogenic immunodeficiencies 
that result in unique and sometimes unpredictable risks of infec-
tion with specific fungal pathogens.47 Furthermore, inflamma-
tory reactions against tumour cells by CAR T cells can result in 
collateral damage to host organs. Control of these 
immune-related adverse effects often requires powerful im-
munosuppressive therapy that weakens immunity against fungal 
pathogens.48 Hence, IFIs will continue to be a serious complica-
tion in the treatment of haematological malignancies, even in a 
‘post-chemotherapy’ future.

What do we know about the risk of fungal infections with precision 
treatments and personalized immunotherapy?

Several reviews and expert guidelines have summarized the evi-
dence of how targeted therapies alter the risk of IFIs.50–55 Most of 
these reviews have concluded that robust data on the risk of fun-
gal infections are lacking, and interpretation of case series and 
clinical trials is often confounded by the chemotherapy or corti-
costeroids administered prior to the SMKI or monoclonal 
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antibody.56 Therefore, clinical judgement remains the most im-
portant guide for identifying which patients receiving targeted 
therapies are at sufficiently high risk to justify routine diagnostic 
screening or antifungal prophylaxis.56

An example of how targeted therapy with SMKIs may affect 
IFI risk is exemplified by the Bruton’s tyrosine kinase (BTK) inhibi-
tor ibrutinib. The BTK pathway is essential for B cell receptor and 
chemokine signalling in lymphocytes, which regulates cell sur-
vival, proliferation and tissue homing.57 By inhibiting the BTK 
pathway, ibrutinib blocks B lymphocyte proliferation, resulting 
in significantly prolonged survival in patients with CLL and mantle 
cell lymphoma.58,59 However, BTK signalling also plays an import-
ant role in macrophage chemotaxis, adhesion and transmigra-
tion, reactive oxygen species production, cytokine response and 
inflammasome activation.15,60 After approval of ibrutinib for 
the treatment of B cell cancers, a number of case series were 
published describing unexpectedly high rates of Pneumocystis jir-
ovecii pneumonia, Cryptococcus pneumonia and meningo-
encephalitis, and IA frequently involving the CNS.14,15,61 In a 
retrospective analysis of over 841 treatment courses at MD 
Anderson Cancer Center in Houston, TX, USA, 21/841 patients 
(2.5%) developed proven or probable mould infections, with inva-
sive pulmonary aspergillosis (IPA) as the most common presen-
tation.62 These reports suggested that ‘off-target’ effects of 
ibrutinib may predispose patients who were classically consid-
ered ‘lower risk’ to fungal disease reactivation or higher risk of pri-
mary infections.15

The ibrutinib experience also highlighted the challenges in 
studying the epidemiology of IFIs with SMKIs, for which the ma-
jority of therapy is administered in the outpatient setting. In a re-
view of 378 ibrutinib-treated patients, Varughese et al.61 reported 
IFIs in 16 patients (37.2% of 43 serious infections; 8 IA, 3 P. jiro-
vecii pneumonia, 1 mixed P. jirovecii pneumonia plus IA, 3 pul-
monary cryptococcoses, 1 invasive candidiasis). Nearly 
two-thirds of patients lacked ‘classic’ IFI risk factors and some in-
fections were diagnosed more than 2–3 years into treatment. 
Future epidemiological studies are likely to be even more com-
plex as patients receive a broadening array of novel SMKI regi-
mens, often in combination.63

In contrast, personalized immunotherapies such as CAR T cell 
therapy do not appear to specifically increase a patient’s risk of 
developing an IFI unless their treatment is complicated by either 
prolonged neutropenia or severe cytokine release syndrome/ 
immune-effector cell-associated neurotoxicity syndrome requir-
ing treatment with cytokine inhibitors or high-dose corticoster-
oids.64 However, this risk may change as CAR T cell therapy is 
adapted to the treatment of patients with myeloid malignancies 
who have a higher baseline risk of developing IFIs.

The risk of antifungal drug interactions with targeted therapy

Nearly all SMKIs are metabolized through CYP3A4/A5, making 
them susceptible to pharmacokinetic drug–drug interactions 
with triazole antifungals.65,66 Mould-active triazoles (i.e. isavuco-
nazole, itraconazole, posaconazole, voriconazole) can interfere 
with intestinal transport and hepatic metabolism of SMKIs, po-
tentially resulting in unpredictably high drug exposure.65

Depending on the SMKI, elevated drug exposure may carry a 
greater risk for haematological, cardiovascular, pulmonary, 

hepatic, CNS and cutaneous toxicities.65 The degree and timing 
of these toxicities can be unpredictable.67–70 For some SMKIs, 
dose reduction or interruption may place the patient at an in-
creased risk of relapse of the malignancy.70

Consequently, many Phase II/III trials of novel SMKIs have ex-
cluded the concomitant use of mould-active triazoles, which is 
reflected in prescribing information that often recommends 
avoiding coadministration when possible.69,71 In the case of 
the B cell lymphoma protein 2 inhibitor venetoclax, empirical 
dose reductions were proposed several years after the drug 
was introduced into clinical practice.72 Graded reductions in the 
daily dose of venetoclax are recommended depending on the 
presumed potency of CYP3A4/A5 inhibition by the respective tri-
azole. Nevertheless, it is still uncertain if empirical dose reduc-
tions of venetoclax during triazole therapy are sufficient 
because prolonged cytopenias are still reported with all concomi-
tant triazole therapy.73

Given the ambiguity of managing these drug–drug interac-
tions, therapeutic drug monitoring (TDM) to guide dosing of tar-
geted therapies would seem justified. However, therapeutic 
serum drug concentration ranges are not well defined for many 
SMKIs and testing is not currently available in most centres. It 
also remains to be seen whether TDM would be more effective 
than empirical dose reductions or careful monitoring of tox-
icity.67,68 However, given the critical role of these targeted ther-
apies for maintaining remission of haematological diseases, 
empirical dose reductions in the absence of toxicities should be 
undertaken carefully to ensure that control of the underlying ma-
lignancy is not jeopardized. The inevitable use of combination 
SMKI regimens in the future, some of which may have active me-
tabolites with varying potency and off-target effects on treat-
ment response or drug toxicity, could further complicate efforts 
to develop straightforward TDM recommendations.

This drug–drug interaction dilemma also highlights an urgent 
need for oral broad-spectrum antifungal agents that do not in-
hibit human CYP3A4/A5. Some promising new antifungals are 
in the pipeline,74 and isavuconazole may have some advantages 
over other triazoles with respect to drug toxicity, drug interaction 
severity and QTc prolongation risk. However, the immediate chal-
lenge of using SMKIs with triazole antifungals has prompted re-
commendations to use IV echinocandins as prophylaxis to 
avoid drug interactions and QTc prolongation risk.75

Nevertheless, this strategy may be limited by a higher rate of 
breakthrough infections,74,76 including fulminant infections 
caused by intrinsically echinocandin-resistant yeasts.77,78

Ultimately, some patients receiving targeted therapies will re-
quire outpatient antifungal therapy for months or years, making 
IV-administered antifungal agents impractical.

In summary, advances in cytogenetic analysis and drug dis-
covery have brought new promise for the effective management 
and potential cure of haematological malignancies. A major 
challenge in the next decade will be to adapt current supportive 
care approaches to ensure that IFIs do not compromise a pa-
tient’s opportunity to benefit from these groundbreaking therap-
ies. In this respect, liposomal amphotericin B will undoubtably 
play an important role in the future of empirical treatment of fun-
gal infections, as there will be a persistent need for broad- 
spectrum therapy that does not interfere with the metabolism 
of novel precision and personalized therapies.
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Influenza and COVID-19
Viral pneumonia is a global health concern that is highlighted by 
the current ongoing COVID-19 pandemic. In particular, the pan-
demic influenza viruses and SARS-CoV-2 can infect large groups 
of individuals, including many healthy young people, and lead 
to considerable societal and economic disruption. The clinical se-
verity of the viral infection depends on many factors, such as the 
immune status of the host and the presence of comorbidities, 
and a subset of patients with influenza or COVID-19 will develop 
severe mono-organ failure of the lung requiring admission to the 
ICU.79–82 After the influenza H1N1 pandemic in 2009, it became 
clear that patients with influenza who were admitted to the ICU 
were at an increased risk of developing IA.5,83 Several reports 
over recent years have shown that the incidence of IPA in pa-
tients with influenza in the ICU is at least 20% in Europe, but 
numbers from other continents such as in the USA are lacking.5,84

The incidence of IPA is even higher for patients who also have 
classical risk factors for IFIs.5 Notably, a substantial number of 
patients with influenza who developed IPA were relatively young 
and had no relevant medical history.83 It was later discovered 
that influenza itself is an independent risk factor for IPA, and 
influenza-associated pulmonary aspergillosis (IAPA) was recog-
nized as a new clinical entity that unfortunately is associated 
with considerable morbidity and mortality.5

IAPA and COVID-19-associated pulmonary aspergillosis (CAPA)

Understanding the pathophysiology of IAPA is crucial to develop 
novel management strategies and guide antifungal treatment. 
Influenza is a lytic infection that damages the lung epithelial bar-
rier that protects against IPA. Importantly, the use of corticoster-
oids in the ICU was identified as a risk factor for IAPA, supporting 
the concept that a weakened antifungal host response due to im-
munosuppressive treatment might also play an important role in 
the development of IAPA.5 When COVID-19 emerged, there was 
a real concern that IPA might also prove to be an important com-
plication of SARS-CoV-2 infection, similar to influenza.85 Initially, 
the use of corticosteroids was not recommended for the treat-
ment of COVID-19 due to concerns of weakening the host re-
sponse against the virus and other pathogens, including 
Aspergillus spp., that could subsequently cause secondary infec-
tions.86 However, after several months, data from large platform 
trials pointed to a beneficial effect of corticosteroids, especially in 
the more severely ill patients with COVID-19 requiring oxygen 
supplementation.87,88 This led to a change in clinical guidelines 
and the use of corticosteroids to treat COVID-19 in the ICU be-
came the standard of care. Several months later it was shown 
that blocking the IL-6 pathway with tocilizumab or sarilumab re-
duced mortality when given in combination with corticoster-
oids.89 Daily practice changed again and treatment with both 
corticosteroids and an IL-6 blocker (when available) became 
the standard of care in some parts of the world when a patient 
was admitted with COVID-19 and was hypoxic. Since corticoster-
oids reduce phagocytic capacity against Aspergillus, and IL-6 is 
important for induction of protective antifungal Th17 responses, 
it could be anticipated that an increased risk of developing CAPA 
would emerge.90,91 Notably, in one of the first studies that sys-
tematically and prospectively investigated the incidence of 
CAPA, it was indeed observed that CAPA was present in an 

unexpectedly high number of patients (28% of patients admitted 
to the ICU with COVID-19).92 Most patients to date with CAPA had 
received corticosteroids and were also treated with tocilizumab, 
both of which were independent risk factors for CAPA.93,94

These data triggered a debate on how to diagnose and define 
CAPA and whether we would be undertreating or overtreating 
this new clinical entity.8,95 Many studies that followed showed 
a variable incidence of CAPA in different countries, which could 
be explained by the lack of a uniform definition of CAPA and pos-
sibly a difference due to geographical variations in environment 
and clinical practice.96,97 This is reminiscent of the variable inci-
dence of IAPA described in different countries.5,83,84,98 Although 
there are many uncertainties at this point, CAPA, like IAPA, seems 
to be a relevant clinical entity since it is associated with increased 
mortality and is difficult to diagnose and treat.93

Treatment

The current recommendation is to treat IAPA once it is diag-
nosed and the choice of treatment depends on local azole sus-
ceptibility data for Aspergillus.99 When surveillance data 
indicate a high rate of azole resistance in Aspergillus, the recom-
mended regimen for a patient with IAPA in the ICU is a combin-
ation of an azole with an echinocandin or liposomal 
amphotericin B.100 It must be underscored that IAPA is a severe 
and acute disease and any delay in effective treatment could 
lead to increased risk of treatment failure.101 When diagnostic 
workup identifies an Aspergillus sp. susceptible to an azole, 
combination therapy should be stopped and monotherapy 
with an azole continued.99 However, if an azole-resistant isolate 
is identified, the use of liposomal amphotericin B is recom-
mended, either alone or in combination with an azole pending 
the results of MIC testing.

Other IFIs associated with viral pneumonitis have also been 
noted. In particular, invasive mucormycosis has been described 
in both influenza and COVID-19 infections.97,102–105

Mucormycosis is an acute and devastating fungal infection 
caused by fungal species belonging to the order Mucorales.32

Pulmonary mucormycosis that is left untreated has a poor prog-
nosis and should be promptly diagnosed and adequately mana-
ged to prevent angioinvasion and dissemination to other 
organs.32 Classical risk factors for developing mucormycosis are 
uncontrolled diabetes mellitus and immunosuppressive condi-
tions, such as neutropenia or the use of corticosteroid therapy.106

Mucormycosis frequently results in an angioinvasive infection, es-
pecially when hyperglycaemia, ketoacidosis, iron overload and/or 
neutropenia are present.106 The severity of the infection at this 
stage is characterized by endothelial damage, and local (micro) 
thrombosis, bleeding and necrosis can develop. Eventually, dis-
semination to multiple organs including the brain can occur, 
which has a poor prognosis. Influenza-associated mucormycosis 
and COVID-19-associated mucormycosis have both been de-
scribed and can be added to the list of emerging infections asso-
ciated with viral pneumonitis that clinicians should be aware of. 
Liposomal amphotericin B will be an important agent in this con-
text because it is recommended as first-line therapy in the global 
guidelines for management of mucormycosis.32

Viral pneumonitis in the ICU is characterized by a detrimental 
hyperinflammatory response.107 This had been long recognized 
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in influenza, but COVID-19 has made many clinicians aware of 
the cytokine storm that can be observed with severe infection.108

COVID-19 has shown that in infectious diseases, host-directed 
therapy with corticosteroids and anti-cytokine strategies can be 
successful in reducing mortality. Therefore, fungal infections as-
sociated with influenza and COVID-19 will likely occur or already 
be present when immune modulatory therapy is initiated. 
Therefore, antifungal therapy will in certain conditions be com-
bined with immunomodulatory strategies in the ICU. This was 
anticipated for the future but since the COVID-19 pandemic it 
has become a reality in daily practice.

Liposomal amphotericin B is an interesting drug in this con-
text since both amphotericin B and liposomes have immuno-
modulatory properties. Fever and chills can be adverse events 
of amphotericin B deoxycholate and it has been shown to in-
duce transcription of immune mediators and production of 
proinflammatory cytokines, such as IL-1, TNF and IFN-γ, that 
are crucial for optimal antifungal host defence.109–113

Induction of cytokines by amphotericin B in macrophages is de-
pendent on Toll-like receptor (TLR)2, CD14 and MyD88, which 
are important for innate pattern recognition signalling.114

Moreover, amphotericin B can increase crucial protective anti-
fungal pathways such as production of NADPH-dependent re-
active oxygen species and boosting the Th1 response.110,115–117

In addition to the effects of amphotericin B, liposomes can induce 
immune modulatory effects. It was shown that empty liposomes 
can skew the response of neutrophils from a predominantly 
TLR2- to a TLR4-induced cytokine profile, with TLR2 inducing 
proinflammatory cytokines (TNF) and TLR4 anti-inflammatory 
cytokines (IL-10). Finally, amphotericin B has also been shown 
to enhance protective IFN-γ-induced nitric oxide production 
and antifungal activity of macrophages.118 This is especially rele-
vant for the novel trials that are being performed in which treat-
ment with recombinant IFN-γ is being explored to treat invasive 
infection in addition to standard antifungal therapy. The combin-
ation of liposomal amphotericin B with immunotherapy, such as 
anti-inflammatory agents (e.g. corticosteroids, cytokine blockers) 
and/or immune-boosting strategies (e.g. checkpoint inhibitors, 
recombinant IFN-γ), should be systematically investigated and 
trialled in the future.

Increasing azole resistance
Emergence of azole resistance

Azoles represent a major drug class for the management of IFIs 
and are commonly recommended as the preferred drug class for 
treatment of mould infections, including aspergillosis, scedos-
poriosis and fusariosis.22,119 There is increasing concern about ac-
quired resistance to azole drugs emerging in fungal pathogens. 
Azole resistance has emerged as a clinical problem in Candida 
spp., notably Candida glabrata, in Aspergillus fumigatus, and 
more recently in dermatophytes.120–123 In addition, new 
drug-resistant species, such as Candida auris, have emerged.123

In principle, two routes of selection for resistance are recognized: 
in-host resistance selection and environmental resistance selec-
tion. Although these two routes differ with regard to clinical im-
plications, resistance mutations and pathogens involved, the 
dynamics of resistance evolution are similar. Emergence of 

resistance involves generation of spontaneous mutations by a 
fungus in combination with selection pressure by an azole.124

As some of the spontaneous mutations may confer azole resist-
ance, the resistant clone will have a survival advantage over WT 
clones when in an azole environment (i.e. during azole therapy) 
and become dominant in the population. Various factors impact 
the risk of resistance development, including the size of the fun-
gal population and the concentration of the antifungal drug 
involved.

In general, resistance selection in Candida spp. takes place in 
the host during azole therapy, while both in-host and environ-
mental resistance selection has been reported for A. fumigatus. 
Candida spp. are generally present in the human gut and may re-
present large populations due to previous antibacterial therapy. 
It is thought that antifungal therapy may enable selection of re-
sistant Candida spp., which may subsequently cause resistant in-
fections.125 Therefore, previous azole therapy is an important 
factor in the development of azole-resistant invasive candidiasis. 
Candida spp. are known to develop a wide variety of complex 
azole resistance mechanisms, including mutations in the ERG11 
target gene and overexpression of target genes and/or drug 
transporters.126 In addition, a ‘mutator’ phenotype has been de-
scribed in C. glabrata, in which a mutation in the DNA mismatch 
repair gene was associated with a high mutational supply.127 This 
mechanism would enhance the probability of escaping azole 
pressure and was found to be present in 55% of clinical iso-
lates.127 A. fumigatus may also develop azole resistance in the 
host during azole therapy. Itraconazole resistance was observed 
in 11% of patients with chronic pulmonary aspergillosis treated 
with itraconazole and in 5% of those treated with voricon-
azole.128 Most of these patients have lung cavities that allow A. 
fumigatus to produce spores, which is believed to enhance the 
risk of resistance selection compared with hyphal growth (the 
predominant morphotype in patients with IA).129 However, re-
cently, in-host development of azole resistance was reported in 
patients with cystic fibrosis, in which the fungus is also confined 
to the hyphal state as it forms biofilms.130 The fungus was shown 
to create genetic variation through parasexual recombination, 
which underscores the versatility of A. fumigatus to overcome 
(azole) stress. The main route of azole resistance selection in A. 
fumigatus involves resistance selection in the environment 
through exposure to azole fungicides. Although these fungicides 
are targeted at fungi pathogenic to plants, A. fumigatus grows in 
decaying plant materials and is thus exposed to azole fungicides 
when residues are present in the waste.131 As the molecular 
structures of some azole fungicides and medical triazoles are 
similar, cross resistance develops. Similar to Candida spp., a broad 
range of resistance mechanisms may develop in A. fumigatus, in-
cluding mutations in the cyp51A gene.121 Unlike in-host resist-
ance selection, azole-resistant Aspergillus disease may develop 
in patients who have not been previously treated with azoles, 
through inhalation of azole-resistant conidia.

Acquired resistance to polyenes has rarely been reported des-
pite this drug class being used in medicine for several decades.132

Amphotericin B binds to ergosterol which, unlike a protein target, 
is not genetically encoded, and results in a fungicidal effect. This 
mode of action reduces the ability of the fungus to develop resist-
ance mechanisms and may prolong the clinical use of amphoter-
icin B in a landscape of emerging resistance.
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Treatment implications

With the limited arsenal of antifungal drug classes, azole resist-
ance immediately impacts clinical management and subsequent 
treatment options. Strategies to manage drug resistance in fungi 
involve various approaches. An initial step would be to know the 
local azole resistance epidemiology in a certain hospital, region or 
country. However, despite an increasing number of publications 
on resistance in fungi, the epidemiology of azole-resistant fungi 
remains poorly documented.133 Although (inter)national surveil-
lance programmes are operational for bacterial resistance, fun-
gal resistance has long been excluded from antimicrobial 
resistance initiatives. To monitor resistance trends in various fun-
gal pathogens, such programmes are urgently needed. The re-
cent listing of three fungi (C. auris, drug-resistant Candida and 
azole-resistant A. fumigatus) on the antibiotic resistance threats 
list in the USA, published by the CDC, has contributed to the real-
ization that resistance in fungi is a growing concern for public 
health and should be added to the antimicrobial resistance prior-
ities.134 Initiatives such as the incorporation of Candida in the 
Global Antimicrobial Resistance and Use Surveillance System 
(GLASS) by the WHO will help us to determine resistance frequen-
cies in various countries. Specific challenges regarding surveil-
lance in fungi include the limited number of clinical 
microbiology laboratories that perform resistance testing of fun-
gi, especially of moulds, and the difficulty in classifying fungal dis-
eases in the expanding host groups.

Resistance surveillance data will help to guide empirical treat-
ment choices and institutional guideline recommendations for 
patients who are suspected to have invasive fungal diseases. 
Personalized approaches will benefit from detecting resistance 
at diagnosis or in patients for whom antifungal therapy is failing. 
Species identification would be sufficient to help select an appro-
priate drug in the absence of resistance or for intrinsically resist-
ant species. Acquired resistance requires demonstration of 
resistance markers or a resistant phenotype, which requires add-
itional tests, time and expertise. Molecular detection of resist-
ance mutations will allow a shorter turnaround time and 
detection of resistance in culture-negative cases, but an import-
ant condition is that the resistant mutation corresponds with a 
specific phenotype. In azole-resistant A. fumigatus, changing 
voriconazole resistance phenotype was recently observed in iso-
lates harbouring the dominant TR34/L98H resistance muta-
tion,135 which has the consequence that detection of the TR34/ 
L98H genotype may not predict voriconazole resistance. 
Furthermore, persisting azole resistance selection pressure in 
the environment will cause the number and diversity of resist-
ance mechanisms to increase over time. Increasing range and 
complexity of resistance mechanisms will challenge our capabil-
ity to diagnose azole resistance. The limitation of current 
PCR-based methods remains the number of resistance mutations 
that can be detected and the limited sensitivity of the assays.136

Therefore, methods need to be developed that overcome these 
limitations, possibly involving sequence-based techniques. 
However, time to resistance detection must be rapid as inappro-
priate initial antifungal therapy was shown to be associated with 
increased mortality in patients with voriconazole-resistant IA.137

In addition to diagnostic challenges, treatment response may 
not correspond with the resistance phenotype of the fungus 

(i.e. with azole-susceptible cases failing on azole therapy and 
azole-resistant cases responding). There are numerous factors 
that contribute to treatment response, including timing of anti-
fungal therapy, drug exposure, drug penetration at the site of in-
fection and resolution of underlying immune defects. Although 
pre-clinical studies, including those using animal models, gener-
ally show a good correlation between MIC and treatment re-
sponse, variable correlations between MIC and outcome have 
been reported in clinical studies.138

Understanding the reasons for treatment failure is important 
for the design of strategies to improve treatment outcomes. 
Given the limited number of antifungal drug classes, a strategy 
involving empirical broad-spectrum therapy followed by narrow- 
spectrum targeted therapy, which is commonly used for bacterial 
infection, is not widely used in clinical mycology. A de-escalation 
strategy is recommended for treatment of suspected IA in re-
gions with high azole resistance in A. fumigatus.100 Such a strat-
egy might involve initial therapy with liposomal amphotericin B or 
a combination of an azole with an echinocandin, followed by de- 
escalation to azole therapy in patients with documented azole- 
susceptible infection or in those who are clinically responding. 
Such a strategy has been recommended for regions with 
azole-resistance rates exceeding 10%.100 A drawback of the de- 
escalation strategy is the overtreatment of most patients who 
still have an azole-susceptible infection. Future strategies should 
move away from the current generalized strategies towards per-
sonalized strategies, which can take into account factors relevant 
to the host, fungus and drug (Figure 1). Combining information 
from each of these determinants will help to provide the best 
treatment for the individual patient.

Emerging and rare invasive fungal infections
Pathogens expected in the future

Fungal infections can spread globally but do so at a slower pace 
than respiratory viral infections, for example. One reason may be 
that most fungal infections are not easily transmitted from per-
son to person. However, global epidemiology is preceded by local 
epidemiological patterns, so it is worth identifying ecological 
niches harbouring future global threats. Since such threats may 
emerge from low- and middle-income countries, it is essential 
to establish reliable mycology laboratories and networks led by 
dedicated experts capable of identifying, analysing and publish-
ing local and regional trends.139

During recent years, the global spread of C. auris, a pathogen 
that was previously regionally confined, has been observed. This 
pathogen was first identified in Japan in 2009 and spread within 
South-East Asia over the next 4 years,140 from where the first 
outbreaks were reported.139 Its spread then gained pace and it 
reached all inhabited continents in less than 6 years. The first 
hospital outbreak in Europe was reported in the UK in 2016 and 
was soon followed by an independent outbreak due to 
multi-azole-resistant isolates in Spain.141,142 The virulence of C. 
auris has been described as similar to Candida albicans in a rodent 
model and this was supported by clinical data.143,144 In the UK 
outbreak, the capability of C. auris to persist in the environment 
and to be transmitted nosocomially was documented.145 There 
has been speculation about whether climate change facilitated 
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the global spread of C. auris, but other factors may have contrib-
uted, and the weight of individual factors has not yet been quan-
tified. Hence, the actual impact of climate change remains 
unclear for now.146 The clades of C. auris differ in their suscepti-
bility patterns.147 While they are generally resistant to flucon-
azole, they may be resistant to echinocandins and 
amphotericin B.148,149 Pan-resistance to all three major antifun-
gal drug groups has been described.150 The CDC listed C. auris 
as an urgent threat in their 2019 antibiotic resistance report.134

This was an improvement in the level of awareness, given that 
the listing of fluconazole-resistant Candida as a serious antibiotic 
resistance threat carried the explanatory remark ‘a fungus’ in 
2013.151

Candida parapsilosis may in some settings be considered an 
exception to the rule that invasive candidiasis and candidaemia 
should be treated with an echinocandin;152 however, the emer-
gence of fluconazole-resistant C. parapsilosis has to some extent 
changed that paradigm.153 Echinocandin treatment of a yeast in-
fection is often initiated based on the first microbiological result 
available, namely microscopy.154 Species identification is usually 
pending until the next day. If the pathogen is identified as C. para-
psilosis, some guidelines recommend switching treatment to flu-
conazole, assuming that fluconazole MICs have been low for 
most C. parapsilosis strains.152,155 Indeed, breakthrough infec-
tions in the echinocandin Phase III drug development 
programmes were disproportionately often caused by C. parapsi-
losis, but the overall number was too low to allow significant 
analyses.156–158 Given that C. parapsilosis isolates are now 
more often fluconazole resistant and echinocandins cannot be 
regarded as ideal treatment, then the therapeutic choices would 

be narrow and treatment algorithms would need to be re- 
written. That is exactly what is happening currently with 
azole-resistant C. parapsilosis cases and outbreaks being 
reported.153,155

While echinocandins are generally an appropriate treatment 
for C. glabrata, triazoles are not.155 Fluconazole is not usually a re-
liable treatment, and although high doses may be effective in 
certain isolates, current guidelines support a recommendation 
for triazoles with marginal strength at best.152 In recent years, 
more and more reports have brought echinocandin resistance 
in C. glabrata to the attention of the scientific community.155

Long duration of echinocandin exposure in patients who could 
not undergo surgical removal of abscesses appears to be a 
setting that promotes echinocandin resistance.159,160

Echinocandin-resistant C. glabrata has already become an ac-
cepted differential diagnosis in patients with difficult-to-treat or 
refractory invasive candidiasis, particularly those previously ex-
posed to echinocandins.161

Implications for treatment

Echinocandins and azoles, specifically fluconazole, are the anti-
fungal agents currently listed as first-line treatment for candi-
daemia and invasive candidiasis. With increasing rates of 
infections caused by Candida strains resistant to these standard 
treatments, guidelines will need to be re-written and amphoter-
icin B would advance back into first line in the future, whereas it 
was once replaced by the drugs now apparently losing efficacy. 
Current guideline recommendations, for example those of 
ESCMID, support the recommendation to use liposomal 
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amphotericin B in the first line with moderate strength,152 and an 
‘A’ recommendation may be more appropriate in the future.

Conclusions
The epidemiology of IFIs has changed dramatically over the past 
two decades and will continue to change. New groups of patients 
at risk will continue to emerge, driven by advances in medicine 
and new viral pandemics. Some of these populations will receive 
antifungal prophylaxis, and liposomal amphotericin B will remain 
a preferred initial therapy for breakthrough mycoses that affect 
2% or more of patients receiving prophylactic treatment.162 At 
the same time, climate change will result in expansion of the re-
gions where mycoses are endemic and will potentially continue 
to lead to the emergence of fungal pathogens that are adapting 
to higher temperatures and thereby becoming a threat for 
humans.

The treatment landscape of IFIs will continue to change, with 
a number of new antifungal drugs, including three new drug 
classes, currently in the pipeline.74 While these new drugs, which 
are all in late-stage clinical development, are unlikely to match 
the efficacy of liposomal amphotericin B against Mucorales,74

some could be candidates for antifungal combination therapy 
with liposomal amphotericin B due to synergistic effects. In par-
ticular, the results of synergy studies with fosmanogepix and 
ibrexafungerp are emerging that show strong synergism in ani-
mal models.163,164 In addition, these new drugs will target 
some of the (rare) pathogens that show intrinsic resistance to li-
posomal amphotericin B, such as Lomentospora prolificans.74

Nanoparticle-based encochleated amphotericin B (MAT2203), 
which is currently being evaluated in Phase II studies, may pro-
vide oral availability of amphotericin B, serving a potential future 
role as step-down therapy after hospital discharge.165 Also, dos-
ing of liposomal amphotericin B may change, with less frequent 
but higher dose applications, as shown recently for cryptococcal 
meningitis in patients with advanced HIV, for which single high- 
dose liposomal amphotericin B combined with flucytosine and 
fluconazole was non-inferior to 2 weeks of amphotericin B deox-
ycholate, while providing a better safety profile.40

While resistance to most classes of antifungals, particularly 
azoles, has been emerging over the past decades,36,166 the low 
level of acquired resistance to polyenes/amphotericin B in 
Aspergillus spp. stands out as a major strength of this drug class. 
However, susceptibility testing of fungal pathogens will need to 
improve to become a reliable measure for guiding therapy. At 
present, MICs frequently do not correlate with outcomes, particu-
larly for rare moulds such as Fusarium spp.22,28 Development of a 
‘pharmacodynamic index’ analogous to an in vivo MIC could 
overcome that limitation. As well as its other major strengths, in-
cluding the broad antifungal spectrum and efficacy, there is an-
other major reason for liposomal amphotericin B to prevail, 
namely its comparatively low number of drug–drug interactions; 
this will become even more important in the future when the 
number of pharmaceutical treatments for patients at risk of 
IFIs will only increase further.167 There are important questions 
that need to be answered, including those on the exact pharma-
cokinetics and the half-life of liposomal amphotericin B tissue 
concentrations, which could guide alternate dosing algorithms, 

for example in patients with less invasive disease and those 
with renal compromise.

There is an urgent need for biomarkers for treatment stratifi-
cation and outcome prediction that can be broadly applied to 
various IFIs, in line with serum galactomannan, which currently 
can only be applied to the minority of patients with IA and a posi-
tive baseline serum galactomannan result.168 Molecular imaging, 
such as positron emission MRI, may have an important role in the 
future, not only for response assessment but also for estimating 
the fungal burden at baseline,169,170 which could for example be 
used for stratifying patients to receive combination antifungal 
therapy.

In patients without neutropenia in whom IPA primarily in-
volves tissue invasion with delayed angioinvasion, inhaled treat-
ment and particularly prophylaxis171 will become a cornerstone 
of antifungal management, resulting in very high drug concen-
trations at the site of infection with limited or no systemic toxicity 
or risk of drug–drug interactions. At that point, very high inhaled 
dosages of antifungals may become feasible, but for now more 
studies and research evaluating how to best deliver liposomal 
amphotericin B via inhalation are needed.

Multiple studies performed in vitro and in vivo have demon-
strated that amphotericin B has an effect on the host, not only 
in the presence of a pathogen but also when uninfected cell lines 
or animals are treated with the antifungal agent, inducing a 
proinflammatory response via various mechanisms, which has 
been associated with a protective effect as well as toxicity.172

The immunomodulatory properties of liposomal amphotericin B 
lead to many questions about how it acts during infection, not 
only on the pathogen but also the immunocompromised host, 
which should be the subject of future research. Indeed, liposomal 
amphotericin B may have different effects on patients with differ-
ent immunological states and therefore could have unpredicted 
consequences on disease outcome.172 In addition, the use of im-
munomodulatory treatment strategies in fungal infections in 
combination with amphotericin B needs to be systematically 
studied.

In conclusion, we have reached the end of the mycology world 
as we know it, and the next 30 years will not only bring solutions 
but also new challenges. In this new world, liposomal amphoter-
icin B will remain an important asset within a broad armament-
arium of antifungal drugs and continue to shape the history of 
clinical mycology and help save the lives of patients.
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