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Abstract: We prove spectral stability results for the curlcurl operator subject to electric boundary
conditions on a cavity upon boundary perturbations. The cavities are assumed to be sufficiently smooth
but we impose weak restrictions on the strength of the perturbations. The methods are of variational
type and are based on two main ingredients: the construction of suitable Piola-type transformations
between domains and the proof of uniform Gaffney inequalities obtained by means of uniform a priori
H2-estimates for the Poisson problem of the Dirichlet Laplacian. The uniform a priori estimates
are proved by using the results of V. Maz’ya and T. Shaposhnikova based on Sobolev multipliers.
Connections to boundary homogenization problems are also indicated.

Keywords: Maxwell’s equations; spectral stability; cavities; shape sensitivity; boundary
homogenization

1. Introduction

In this paper we study the spectral stability of the curlcurl operator on an electromagnetic cavity Ω

in R3 upon perturbation of the shape of Ω. The cavity Ω is a bounded connected open set (shortly, a
bounded domain), the boundary of which is enough regular to guarantee the validity of the celebrated
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Gaffney inequality, that is

‖u‖H1(Ω)3 ≤ C
(
‖u‖L2(Ω)3 +

∥∥∥curl u
∥∥∥

L2(Ω)3 +
∥∥∥div u

∥∥∥
L2(Ω)

)
(1.1)

for all vector fields u ∈ L2(Ω)3 with distributional curl u ∈ L2(Ω)3 and div u ∈ L2(Ω), and satisfying the
so-called electric boundary conditions

ν × u = 0, on ∂Ω .

Here ν denotes the unit outer normal to ∂Ω and H1(Ω) is the standard Sobolev space of functions in
L2(Ω) with first order weak derivatives in L2(Ω). It is classical that the Gaffney inequality holds for
domains Ω with boundaries of class C2, but the regularity can be relaxed in order to include boundaries
of class C1,β with β > 1/2, see [22, 38].

The eigenvalue problem under consideration is curl curl u = λu, in Ω,

ν × u = 0, on ∂Ω,
(1.2)

and is immediately derived from the time-harmonic Maxwell’s equations

curl E − iωH = 0 , curl H + iω E = 0 , (1.3)

where E,H denote the spatial parts of the electric and the magnetic field respectively and ω > 0 is
the angular frequency. Indeed, taking the curl in the first equation of (1.3) and setting λ = ω2, one
immediately obtains problem (1.2). Note that here the medium filling Ω is homogeneous and isotropic
and for simplicity the corresponding electric permittivity ε and magnetic permeability µ have been
normalized by setting ε = µ = 1. The boundary conditions are those of a perfect conductor, namely
ν×E = 0 and H ·ν = 0. Thus, the vector field u in (1.2) plays the role of the electric field E (similarly,
the magnetic field would satisfy the same equation but with the other boundary conditions u · ν = 0 and
ν × curl u = 0).

We observe that the study of electromagnetic cavities is quite important in applications, for example
in designing cavity resonators or shielding structures for electronic circuits, see e.g., [24, Chp. 10]. We
also refer to [12, 17, 30, 35, 36, 39] for details and references concerning the mathematical theory of
electromagnetism. See also [13–16, 31, 32, 37, 41–44].

The spectrum of problem (1.2) is discrete and consists of a divergent sequence of positive
eigenvalues λn[Ω] of finite multiplicity.

In this paper, we study the dependence of λn[Ω] and the corresponding eigenfunctions upon
variation of Ω. It seems to us that very little is known in the literature. The case of domain
perturbations of the form Φ(Ω) where Φ is a regular diffeomorphism from Ω to Φ(Ω) are considered
in [29] and [33] where differentiability results and Hadamard type formulas for shape derivatives are
proved. We also quote the pioneering work [28] where the Hadamard formula was found on the base
of heuristic computations. We note that shape derivatives are used in inverse electromagnetic
scattering in [25–27].

The aim of the present paper is to prove spectral stability results under less stringent assumptions on
the families of domain perturbations. For this purpose, we adopt the approach of [3] further developed
in [2, 18–20].
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Given a fixed domain Ω, we consider a family of domains Ωε , ε > 0 converging to Ω as ε → 0.
The convergence of Ωε to Ω will be described by means of a fixed atlas A, that is a finite collection
of rotated parallelepipeds V j, j = 1, . . . , s covering the domains under consideration and such that if
V j touches the boundaries of the domains then Ω ∩ V j and Ωε ∩ V j are given by the subgraphs of two
functions g j, gε, j in two variables, say x̄ = (x1, x2). Thus the convergence of Ωε to Ω is understood in
terms of the convergence of gε, j to g j as ε → 0.

It is not surprising that if gε, j converges uniformly to g j together with its first and second derivatives
as ε → 0 (in which case one talks of C2-convergence) then we have spectral stability of the curlcurl
operator, which means that the eigenvalues and eigenfunctions of the problem in Ωε converge to those
in Ω as ε → 0. It is also not surprising that if gε, j converges uniformly to g j together with its first
derivatives and

sup
ε>0

sup
x̄∈R2
|D2gε, j(x̄)| , ∞ (1.4)

then we have spectral stability again. (These results are also immediate consequences of the results
of the present paper.) The main question here is whether it is possible to relax condition (1.4). For
example, if we assume that gε, j is of the form

gε, j = εαb j(x̄/ε) (1.5)

where α > 0 and b j is a fixed C1,1 function, condition (1.4) is encoded by the inequality α ≥ 2. In
this model case, the question is whether one can get spectral stability for α < 2. Note that a profile of
the form (1.5) is typical in the study of boundary homogenization problems and thin domains, see for
example [2–4, 9, 11, 19–21].

This problem was solved for the biharmonic operator with intermediate boundary conditions
(modelling an elastic hinged plate) in [3] where condition (1.4) is relaxed by introducing a suitable
notion of weighted convergence which allows to prove spectral stability for α > 3/2 in the model
problem above. That condition is described here in (3.14). It is remarkable that the threshold 3/2 is
sharp since for α ≤ 3/2 spectral stability does not occur for the problem discussed in [3] (in particular,
it is proved in [3] that for α < 3/2 a degeneration phenomenon occurs and for α = 3/2 a strange term
in the limit appears, as in many homogenization problems). An analogous trichotomy is found in [20]
for the biharmonic operator subject to certain Steklov type boundary conditions.

In this paper, we prove that the relaxed convergence (3.14) guarantees the spectral stability of the
curlcurl operator. Our result requires that the Gaffney inequality (1.1) holds for all domains Ωε with
a constant C independent of ε. Again, if one does not assume the validity of the uniform bound (1.4),
then proving that a uniform Gaffney inequality holds is highly non-trivial. Here we manage to do this,
by exploting the approach of [34, Ch. 14] based on the use of Sobolev multipliers and the notion of
domains of classM3/2

2 (δ). In particular, if we assume that

|∇gε, j(x̄) − ∇gε, j(ȳ)| ≤ M|x̄ − ȳ|β (1.6)

for all x̄, ȳ ∈ R2, with β ∈]1/2, 1] and M independent of ε, and we also assume that the sup-norms
of functions |∇gε, j| are sufficienlty small, then our domains belong to the class M3/2

2 (δ) with δ small
enough. This allows to apply [34, Thm. 14.5.1] which guarantees the validity of a uniform H2- a priori
estimate for the Dirichlet Laplacian which, in turn, is equivalent to the uniform Gaffney inequality.
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In conclusion, the convergence of the domains Ωε to Ω in the sense of (3.14) combined with the
validity of (1.6) and the smallness of the gradients of the profile functions gε, j guarantees the spectral
stability of the curlcurl operator. Note that, in principle, since Ω is of class C1 one may think of
choosing from the very beginning an atlas which guarantees that the gradients of the profile functions
are as small as required (indeed, it is enough to adapt the atlas to the tangent planes of a sufficiently
big number of boundary points of Ω). Then the convergence in the sense of (3.14) would imply the
smallness of the gradients of the profile functions of Ωε as well.

By setting β = α − 1, we deduce that a uniform Gaffney inequality holds for the example provided
by (1.5) if α > 3/2. Moreover, if α > 3/2 then spectral stability occurs for the same example since in
this case also the convergence (3.14) occurs.

The case α ≤ 3/2 is more involved and we plan to address it in a forthcoming paper, see Remark 4.
We note that if α < 3/2 one cannot expect the validity of uniform Gaffney inequalities, in particular
because the regularity assumptions C1,β for β > 1/2 is optimal for the validity of the Gaffney inequality
itself, see [22, 38].

One of the main tools used in this paper is a Piola-type transform which allows to pull back functions
from Ω to Ωε preserving the boundary conditions. In particular the transformation depends on ε and is
constructed in such a way that for any fixed compact set K contained in Ω∩Ωε , it does not modify the
values of the vector fields on K for ε sufficiently small. Our Piola transform is constructed by pasting
together local Piola transforms defined in each local chart of the atlas and for this reason it is called
here Atlas Piola transform. We believe that our construction has its own interest.

This paper is organized as follows. Section 2 is devoted to preliminaries and notation concerning
the atlas classes, the functions spaces and the weak formulations of our problems. Section 3 is devoted
to the construction of the Atlas Piola transform and to the proof of its main properties, see Theorem 2.
In Section 4 we prove our main stability theorem, namely Theorem 4. Section 5 is devoted to the proof
of uniform a priori estimates and uniform Gaffney inequalities - see Corollaries 1, 2 - and contains the
corresponding applications to the spectral stability problems, see Theorems 8, 9.

2. Preliminaries and notation

2.1. Classes of open sets

In this paper we consider open sets Ω in RN , in particular in R3, with sufficiently regular boundaries.
This means that Ω can be described in a neighborhood of any point of the boundary as the subgraph
of a sufficiently regular function g defined in a local system of orthogonal coordinates. The regularity
of Ω depends on the regularity of the functions g. Since we aim at studying domain perturbation
problems, following [8] and [20], we find convenient to use the notion of atlas, that is a collection A
of rotated parallelepipeds V j, j = 1, . . . , s, which cover Ω and such that if V j touches the boundary of
Ω then Ω∩V j is a subgraph of a function g j. The parallelepipeds will also be called local charts. More
precisely, in Definition 1 below the atlas A is defined as (ρ, s, s′, {V j}

s
j=1, {r j}

s
j=1) where s is the total

number of cuboids used to cover Ω, s′ is the number of cuboids touching the boundary of Ω, V j are the
cuboids, r j are the rotations used to change variables in the representations of the local charts, and ρ is
a parameter controlling the minima and maxima of the functions g j. Note that in this paper the atlasA
will be often fixed, while the functions g j, hence Ω, will be perturbed.

Given a set V ⊂ RN and a parameter ρ > 0, we write Vρ :=
{
x ∈ V : d(x, ∂V) > ρ

}
.
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Definition 1. Let ρ > 0, s, s′ ∈ N, s′ ≤ s and {V j}
s
j=1 be a family of bounded open cuboids (i.e.,

rotations of rectangle parallelepipeds in RN) and {r j}
s
j=1 be a family of rotations in RN . We say that

A = (ρ, s, s′, {V j}
s
j=1, {r j}

s
j=1) is an atlas in RN with parameters ρ, s, s′, {V j}

s
j=1, {r j}

s
j=1, briefly an atlas in

RN .
A bounded domain Ω ⊂ RN is said to be of class Ck,γ

M (A) with k ∈ N ∪ {0}, γ ∈ [0, 1] and M > 0 if
it satisfies the following conditions:

(i) Ω ⊂
⋃s

j=1(V j)ρ and (V j)ρ ∩Ω , ∅;

(ii) V j ∩ ∂Ω , ∅ for j = 1, . . . , s′ and V j ∩ ∂Ω = ∅ for s′ + 1 ≤ j ≤ s;

(iii) for j = 1, . . . , s we have

r j(V j) =
{
x ∈ RN : ai j < xi < bi j, i = 1, . . . ,N

}
,

for j = 1, . . . , s′ we have

r j(V j ∩Ω) =
{
x = (x̄, xN) ∈ RN : x̄ ∈ W j, aN j < xN < g j(x̄)

}
,

where x̄ = (x1, x2),
W j =

{
x̄ ∈ RN−1, ai j < xi < bi j, i = 1, . . . ,N − 1

}
and the functions g j ∈ Ck,γ(W j) for any j = 1, . . . , s′. Moreover, for j = 1, . . . , s′

aN j + ρ ≤ g j(x̄) ≤ bN j − ρ

for all x̄ ∈ W j.

(iv)

sup
|α|≤k
‖Dαg j‖L∞(W j) + sup

|α|=k
sup

x̄,ȳ∈W j
x̄,ȳ

|Dαg j(x̄) − Dαg j(ȳ)|
|x̄ − ȳ|γ

≤ M

for j = 1, . . . , s′.

We say that Ω is of class Ck,γ(A) if it is of class Ck,γ
M (A) for some M > 0; we say that Ω is of class Ck,γ

if it is of class Ck,γ(A) for some atlasA.

2.2. Function spaces

In this section, we recall basic facts and notation for the function spaces that will be used in the
following. We refer e.g., to [23, Ch. 2] for more details.

Here by Ω we denote a bounded domain - that is, a bounded connected open set - in R3. Since the
differential problems under consideration are associated with self-adjoint operators, the space L2(Ω) is
understood here as a space of real-valued functions and is endowed with the scalar product

∫
Ω

u · v dx
defined for all vector fields u, v ∈ L2(Ω)3. The space of vector fields u ∈ L2(Ω)3 with distributional curl
in L2(Ω)3 is denoted by H(curl,Ω) and is endowed with the norm defined by

||u||H(curl,Ω) =
(
||u||2L2(Ω)3 + || curl u||2L2(Ω)3

)1/2
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for all u ∈ H(curl,Ω). The closure in H(curl,Ω) of the space of C∞-functions with compact support in
Ω is denoted by H0(curl,Ω). The following lemma characterizes the space H0(curl,Ω) and is analogous
to the well-known characterization of the Sobolev space H1

0(Ω) (see e.g., [6]). We include a short proof.
Here by v0 we denote the extension-by-zero of a vector field v, that is

v0 =

v if x ∈ Ω,

0 if x ∈ R3 \Ω .

Lemma 1. Let Ω be a bounded open set of class C0,1 and u ∈ H(curl,Ω). Then u ∈ H0(curl,Ω) if and
only if u0 ∈ H(curl,R3), in which case curl(u0) = (curl u)0.

Proof. Suppose that u0 belongs to H(curl,R3). Thus, there exists v ∈ (L2(R3))3 such that∫
Ω

u · curlϕ dx =

∫
R3

v · ϕ dx for all ϕ ∈ (C∞c (R3))3. (2.1)

Since it holds in particular for all test functions ϕ ∈ (C∞c (Ω))3, then necessarily v = curl u on Ω. On
the other hand, since we can take any ϕ ∈ (C∞c (R3 \ Ω̄))3, we see that v = 0 outside Ω. Hence we can
rewrite (2.1) as follows∫

Ω

u · curlϕ dx =

∫
Ω

curl u · ϕ dx for all ϕ ∈ (C∞c (R3))3. (2.2)

By [23, Lemma 2.4] it follows that u ∈ H0(curl,Ω). The converse implication is straighforward. �

We note that if Ω is sufficiently regular, say of class C0,1, the space H0(curl,Ω) coincides with the
set of square integrable vector fields in Ω whose curl is also square integrable, and such that their
tangential trace at the boundary ∂Ω is zero (see [23, Thm. 2.12]). In particular, we have that

H0(curl,Ω) ∩ (C∞(Ω̄))3 =
{
u ∈ (C∞(Ω̄))3 : ν × u|∂Ω = 0

}
,

where C∞(Ω̄) denotes smooth compactly supported functions of R3 restricted to Ω̄.
We denote by H(div,Ω) the space of vector fields u ∈ L2(Ω)3 with distributional divergence in

L2(Ω)3, endowed with the norm defined by

||u||H(div,Ω) =
(
||u||2L2(Ω)3 + || div u||2L2(Ω)

)1/2

for all u ∈ H(div,Ω). Finally, we set

||u||X(Ω) =
(
||u||2L2(Ω)3 + || curl u||2L2(Ω)3 + || div u||2L2(Ω)

)1/2
,

and we consider the space
XN(Ω) := H0(curl,Ω) ∩ H(div,Ω)

endowed with the norm defined above, that is ||u||XN(Ω) = ||u||X(Ω) for all u ∈ XN(Ω). We also set
XN(div 0,Ω) := {u ∈ XN(Ω) : div u = 0 in Ω}.

Recall that H1(Ω) is the standard Sobolev space of functions in L2(Ω) with first order weak
derivatives in L2(Ω). The celebrated Gaffney inequality allows to prove that the space XN(Ω) is
continuously embedded into the space H1(Ω)3 provided Ω is sufficiently regular. Namely, we have the
following result, see e.g., [23, Theorem 3.7].
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Theorem 1. Let Ω is a bounded open set in R3 of class C1,1. Then XN(Ω) is continuously embedded
into H1(Ω)3, and there exists C > 0 such that the Gaffney inequality

‖u‖H1(Ω)3 ≤ C||u||XN(Ω), (2.3)

holds for all u ∈ XN(Ω).

By the previous theorem it immediately follows that the space XN(Ω) is compactly embedded into
L2(Ω)3, since this is true for the space H1(Ω)3.

As we shall see, the regularity assumptions on Ω in Theorem 1 can be relaxed since the inequality
holds for domains of class C1,β with β ∈]1/2, 1], but some care is required, see Section 5.

2.3. Weak formulations and resolvent operators

Since for our purposes we prefer to work in the space XN(Ω) rather than in the space XN(div 0,Ω),
following [14, 15], we introduce a penalty term in the equation and we replace problem (1.2) by the
problem 

curl curl u − τ∇ div u = λu, in Ω,

div u = 0, on ∂Ω,

ν × u = 0, on ∂Ω,

(2.4)

where τ is any fixed positive real number.
It is easy to see that problem (2.4) can be formulated in the weak sense as follows∫

Ω

curl u · curlϕ dx + τ

∫
Ω

div u divϕ dx = λ

∫
Ω

u · ϕ dx, for all ϕ ∈ XN(Ω), (2.5)

in the unknowns u ∈ XN(Ω) and λ ∈ R. Is obvious that the solutions of (1.2) are exactly the divergence
free solutions of (2.5). (Moreover, the weak formulation of (1.2) can be obtained simply by replacing
XN(Ω) by XN(div 0,Ω) in (2.5).)

Problem (2.5) admits also solutions which are not divergence free and which are given by the
gradients of the solutions to the Helmohltz equation with Dirichlet boundary conditions. Namely,
u = ∇ f where f solves the following problem −∆ f = Λ f , in Ω,

f = 0, on ∂Ω,
(2.6)

with Λ = λ
τ
. In fact, we have the following result from [15].

Lemma 2. If Ω is a bounded domain in R3 of class C0,1, then the set of all eigenpairs (λ, u) of problem
(2.4) is the union of the set of all eigenpairs (λ, u) of problem (1.2) and the set of all eigenpairs of the
form (τΛ,∇ f ) where (Λ, f ) is an eigenpair of problem (2.6).

Thus, we can directly study problem (2.5) rather than the original problem (1.2): this will always
be understood in the following. In fact, studying the spectral stability of problem (2.5) is equivalent
to studying the spectral stability of problem (1.2) because the spurious eigenpairs introduced by the
penalty term are given by the eigenpairs of the Dirichlet Laplacian which are stable for our class of
domain perturbations (see [3]).
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In order to study spectral stability problems, it is also convenient to recast the eigenvalue problems
under consideration in the form of eigenvalue problems for compact self-adjoint operators and this can
be done by passing to the analysis of the corresponding resolvent operators. A direct way of doing so,
consists in defining the operator T from XN(Ω) to its dual (XN(Ω))′ by setting

< Tu, ϕ >=

∫
Ω

curl u · curlϕ dx + τ

∫
Ω

div u divϕ dx, (2.7)

for all u, ϕ ∈ XN(Ω), and considering the map J from L2(Ω)3 to (XN(Ω))′ defined by

< Ju, ϕ >=

∫
Ω

u · ϕ dx,

for all u ∈ L2(Ω)3 and ϕ ∈ XN(Ω). By restricting J to XN(Ω) (and denoting the restriction by the same
symbol J), and using the Riesz Theorem it turns out that the operator T + J is a homeomorphism from
XN(Ω) to its dual. The inverse operator (T + J)−1 will serve for our purposes as discussed above. In
fact, the following theorem holds.

Lemma 3. If Ω is a bounded domain in R3 such that the embedding ι of XN(Ω) into L2(Ω)3 is compact,
then the operator S Ω from L2(Ω)3 to itself defined by

S Ωu = ι ◦ (T + J)−1 ◦ J

is a non-negative compact self-adjoint operator in L2(Ω)3 whose eigenvalues µ are related to the
eigenvalues λ of problem (2.5) by the equality µ = (λ + 1)−1.

By the previous lemma and standard spectral theory it follows that the spectrum σ(S Ω) of S Ω can
be represented as σ(S Ω) = {0} ∪ {µn(Ω)}n∈N, where µn(Ω), n ∈ N is a decreasing sequence of positive
eigenvalues of finite multiplicity, which converges to zero. Consequently, the eigenvalues of problem
(2.5) can be represented by the sequence λn(Ω), n ∈ N defined by λn(Ω) = µ−1

n (Ω) − 1. Moreover, the
classical Min-Max Principle yields the following variational representation

λn(Ω) = min
V⊂XN(Ω)
dimV=n

max
u∈V\{0}

∫
Ω
| curl u|2dx + τ

∫
Ω
| div u|2dx∫

Ω
|u|2 dx

. (2.8)

3. A Piola-type approximation of the identity

Given two domains Ω and Ω̃ in R3 and a diffeomorphism Φ : Ω̃ → Ω of class C1,1, the standard
way to pull-back vector fields from XN(Ω) to XN(Ω̃) consists in using the (covariant) Piola transform
defined by

u(x) =
(
(v ◦ Φ) D Φ

)
(x), for all x ∈ Ω̃, (3.1)

for all v ∈ XN(Ω), see e.g., [35]. In fact, it turns out that v ∈ H0(curl,Ω) if and only if u ∈ H0(curl, Ω̃),
in which case we have

(curl v) ◦ Φ =
curl u (D Φ)T

det (D Φ)
. (3.2)
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Note that for functions u, v in H1 we also have

(div v) ◦ Φ =
div

[
u(D Φ)−1(D Φ)−T det(D Φ)

]
det(D Φ)

, (3.3)

and in this case v ∈ XN(Ω) ∩ H1(Ω)3 if and only if u ∈ XN(Ω̃) ∩ H1(Ω̃)3. See [33] for more details.
Unfortunately, given two domains Ω and Ω̃, in general it is not possible to define explicitly a
diffeomorphism between Ω and Ω̃ (even if it is known a priori that the two domains are
diffeomorphic). Nevertheless, it is important for our purposes to define an operator which allows to
pass from XN(Ω) to XN(Ω̃) as the Piola transform does. This can be done by assuming that Ω and Ω̃

belong to the same atlas class and using a partition of unity in order to paste together Piola transforms
defined locally, as described in the following. Note that the specific choice of local Piola transforms
reflects our need for a transformation close to the identity.

Let A be a fixed atlas in R3 and let Ω, Ω̃ be two domains of class C1,1(A). Let g j, g̃ j be the profile
functions of Ω and Ω̃ as in Definition 1. Assume that k ∈]0,+∞[ is such that

k > max
j=1,...,s′

‖g̃ j − g j‖∞, and g̃ j − k > a3, j + ρ, ∀ j = 1, . . . , s′. (3.4)

For any j = 1, . . . , s′ we set
ĝ j := g̃ j − k (3.5)

and we define the map h j : r j(Ω̃ ∩ V j)→ R

h j(x̄, x3) :=


0, if a3 j ≤ x3 ≤ ĝ j(x̄),

(g̃ j(x̄) − g j(x̄))
(

x3−ĝ j(x̄)
g̃ j(x̄)−ĝ j(x̄)

)3
, if ĝ j(x̄) < x3 ≤ g̃ j(x̄),

(3.6)

and the map
Φ j : r j(Ω̃ ∩ V j)→ r j(Ω ∩ V j), Φ j(x̄, x3) := (x̄, x3 − h j(x̄, x3)). (3.7)

Note that Φ j coincides with the identity map on the set

K j :=
{
(x̄, x3) ∈ W j×]a3 j, b3 j[ : a3 j < x3 < ĝ j(x̄)

}
. (3.8)

Finally, if s′ + 1 ≤ j ≤ s we define Φ j : r j(V j)→ r j(V j) to be the identity map.

Observe that since h j ∈ C1,1(r j(Ω̃ ∩ V j)), then Φ j is of class C1,1, and so is the following map

Ψ j : Ω̃ ∩ V j → Ω ∩ V j, Ψ j := r−1
j ◦ Φ j ◦ r j. (3.9)

An easy computation shows that if

k >
3
α

max
j=1,...,s′

‖g̃ j − g j‖∞ (3.10)

for some constant α ∈]0, 1[ then

0 < 1 − α ≤ det(D Ψ j(x)) ≤ 1 + α for any x ∈ Ω̃ ∩ V j. (3.11)
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Let {ψ j}
s
j=1 be a C∞-partition of unity associated with the open cover {V j}

s
j=1 of the compact set∪s

j=1(V j)ρ
that is 0 ≤ ψ j ≤ 1, supp(ψ j) ⊂ V j for all j = 1, . . . , s, and

∑s
j=1 ψ j ≡ 1 in ∪s

j=1(V j)ρ, in particular also in

Ω ∪ Ω̃. Note that this is a partition of unity is independent of Ω, Ω̃ in the atlas class under consideration.
Since for any ϕ ∈ XN(Ω) we have ϕ =

∑s
j=1 ϕ j where ϕ j = ψ jϕ, then it is natural to give the following

definition (note that here we consider open sets of class C1,1 hence the spaces XN are embedded into
H1).

Definition 2. Let A be an atlas in R3 and Ω, Ω̃ be two domains of class C1,1(A). Assume that k > 0
satisfies (3.4), and {ψ j}

s
j=1 is a partition of unity as above. The Atlas Piola transform from Ω to Ω̃, with

parametersA, k, and {ψ j}
s
j=1, is the map from XN(Ω) to XN(Ω̃) defined by

Pϕ :=
s′∑

j=1

ϕ̃ j +

s∑
j=s′+1

ϕ j (3.12)

for all ϕ ∈ XN(Ω), where

ϕ̃ j(x) :=

 (ϕ j ◦ Ψ j(x)) D Ψ j(x), if x ∈ Ω̃ ∩ V j,

0, if x ∈ Ω̃ \ V j,
(3.13)

for any j = 1, . . . , s′.

Note thatPϕ ∈ XN(Ω̃) because (ϕ j◦Ψ j) D Ψ j ∈ XN(Ω̃∩V j) (observe that the support of ϕ j is compact
in V j), hence ϕ̃ j ∈ XN(Ω̃).

This Atlas Piola transform will be used in this paper for a family Ωε , ε > 0 of domains of class
C1,1(A), converging in some sense to a domain Ω of class C1,1(A). In this case, Ωε will play the role
of the domain Ω̃ and the corresponding transformation will allow us to pass from XN(Ω) to XN(Ωε).

Given a family of domains Ωε , ε > 0, and a fixed domain Ω, all of class C1,1(A), we shall denote
by gε, j and g j the corresponding profile functions (defined on W j) of Ωε and Ω respectively, as in
Definition 1. Following [3, 20], we use a notion of convergence for the open sets Ωε to Ω, which is
expressed in terms of convergence of the the profile functions gε, j to g j. Namely, we assume that for
any ε > 0 there exists κε > 0 such that for any j ∈ {1, . . . , s′}

(i) κε > max
j=1,...,s′

∥∥∥gε, j − g j

∥∥∥
L∞(W j)

;

(ii) lim
ε→0

κε = 0;

(iii) lim
ε→0

max j=1,...,s′
∥∥∥Dβ(gε, j − g j)

∥∥∥
L∞(W j)

κ
3/2−|β|
ε

= 0 for all β ∈ N3 with |β| ≤ 2.

(3.14)

Note that if every function gε, j converges to g j uniformly together with the first order derivatives
and condition (1.4) is satisfied (in particular, if the second order derivatives of gε, j converge uniformly
to those of g j) then conditions (3.14) are fulfilled, see [3]. Note also that the exponent 3/2 in (3.14)
turns out to be optimal in the analysis of [3] and plays a crucial role for instance in proving inequality
(3.41).

We now fix a partition of unity {ψ j}
s
j=1 associated with the covering of cuboids of the atlas A as

above, and independent of Ωε and Ω. We also choose k = 6κε and we denote by Pε the Atlas Piola
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transform from Ω to Ωε (with parameters A, k, {ψ j}
s
j=1 ). Note that conditions (3.4), (3.10) (3.11) are

satisfied with α = 1/2 if ε is sufficiently small.
In the following, we shall denote by ĝε, j, hε, j, Φε, j, Kε, j, Ψε, j, ϕ̃ε, j all quantities defined in (3.5), (3.6),

(3.7), (3.8), (3.9), (3.13) respectively, with Ω̃ = Ωε and k = 6κε .
Then we can prove the following theorem. We note that in the proof, some technical issues related

to pasting together functions defined in different charts are treated in the spirit of the arguments used
in [20] for the Sobolev spaces H2(Ω).

Theorem 2. Let Ωε , ε > 0, and Ω be bounded domains of class C1,1(A). Assume that Ωε converges
to Ω as ε → 0 in the sense of (3.14). Let Pε be the Atlas Piola transform from Ω to Ωε defined for ε
sufficiently small as above. Then the following statements hold:

(i) for any ε > 0 the function Pε maps XN(Ω) to XN(Ωε) with continuity;

(ii) for any compact set K contained in Ω there exists εK > 0 such that

(Pεϕ)(x) = ϕ(x), ∀x ∈ K (3.15)

for all ε ∈]0, εK [ and ϕ ∈ XN(Ω);

(iii) the limit ∥∥∥Pεϕ∥∥∥XN(Ωε )
−−−→
ε→0

∥∥∥ϕ∥∥∥
XN(Ω)

, (3.16)

holds for all ϕ ∈ XN(Ω);

(iv) the limit ∥∥∥Pεϕ − ϕ∥∥∥X(Ωε∩Ω)
−−−→
ε→0

0, (3.17)

holds for all ϕ ∈ XN(Ω).

Proof. Let ϕ ∈ XN(Ω) be fixed. Note that Ω is of class C1,1 hence the Gaffney inequality holds and ϕ ∈
H1(Ω)3. Moreover, ϕ j ∈ XN(Ω) for all j = 1, . . . , s′ hence ϕ̃ε, j belongs to XN(Ωε) for all j = 1, . . . , s′.
It follows that Pεϕ ∈ XN(Ωε). The continuity of the operator follows by standard calculus, the Gaffney
inequality and formulas (3.2), (3.3). Thus, statement (i) holds.

For any fixed compact set K contained in Ω, since ĝε, j converges uniformly to g j, we have

K ∩ V j ⊂ r−1
j (Kε, j)

for all j = 1, . . . , s′ and ε sufficiently small; this, combined with the fact that Φε, j coincides with the
identity on Kε, j, it follows that ϕ̃ε, j = ϕ j on K for all ε sufficiently small and (3.15) follows.

We now prove statement (iii). We have to prove the following limiting relations:

lim
ε→0

∫
Ωε

∣∣∣Pεϕ∣∣∣2 =

∫
Ω

∣∣∣ϕ∣∣∣2 , (3.18)

lim
ε→0

∫
Ωε

∣∣∣curlPεϕ
∣∣∣2 =

∫
Ω

∣∣∣curlϕ
∣∣∣2 , (3.19)

lim
ε→0

∫
Ωε

∣∣∣divPεϕ
∣∣∣2 =

∫
Ω

∣∣∣divϕ
∣∣∣2 . (3.20)
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We begin by proving (3.18). To see this, it just suffices to show that

lim
ε→0

∫
Ωε

ϕ̃ε, j · ϕ̃ε,h =

∫
Ω

ϕ j · ϕh, (3.21)

and

lim
ε→0

∫
Ωε

ϕ̃ε, j · ϕi =

∫
Ω

ϕ j · ϕi (3.22)

for any j, h ∈ {1, . . . , s′} and i ∈ {s′ + 1, . . . , s}. We will only show (3.21), since the computations to
prove (3.22) are similar. We will first see that

lim
ε→0

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2 = 0. (3.23)

Notice that for any j ∈ {1, . . . , s′} we have
∣∣∣∣(Ω ∩ V j) \ r−1

j (Kε, j)
∣∣∣∣→ 0 as ε goes to 0. Moreover, if w ∈ R3

is a vector, then
∣∣∣w D Ψε, j

∣∣∣ =
∣∣∣w D Φε, j

∣∣∣ ≤ C|w|, since

D Φε, j =


1 0 0
0 1 0
−
∂hε, j
∂x1

−
∂hε, j
∂x2

1 − ∂hε, j
∂x3


and the first derivatives of hε, j are all bounded due to the hypothesis on the functions gε, j (see also
(3.37)). Note that here and in what follows, by c we denote a constant independent of ε which may
vary from line to line. Then by using also (3.11), we have∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2 dy =

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣(ϕ j ◦ Ψε, j) D Ψε, j

∣∣∣2 dy

≤ c
∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣ϕ j ◦ Ψε, j

∣∣∣2 dy

= c
∫

(Ω∩V j)\r−1
j (Kε, j)

∣∣∣ϕ j

∣∣∣2∣∣∣∣det(D Ψε, j) ◦ Ψ
(−1)
ε, j

∣∣∣∣ dx

≤ c
∫

(Ω∩V j)\r−1
j (Kε, j)

∣∣∣ϕ j

∣∣∣2 dx −−−→
ε→0

0.

By (3.23) we deduce that

lim
ε→0

∫
Ωε

∣∣∣ϕ̃ε, j∣∣∣2 =

∫
Ω

∣∣∣ϕ j

∣∣∣2 . (3.24)

Indeed, since Ψε, j is the identity on r−1
j (Kε, j) ⊂ Ω ∩Ωε , using (3.23) yields∫

Ωε

∣∣∣ϕ̃ε, j∣∣∣2 =

∫
r−1

j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2 +

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2 −−−→
ε→0

∫
Ω∩V j

∣∣∣ϕ j

∣∣∣2 =

∫
Ω

∣∣∣ϕ j

∣∣∣2 .
Mathematics in Engineering Volume 5, Issue 1, 1–31.
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Observe now that∫
Ωε

ϕ̃ε, j · ϕ̃ε,h =

∫
Ωε∩V j∩Vh

ϕ̃ε, j · ϕ̃ε,h

=

∫
r−1

j (Kε, j)∩r−1
h (Kε,h)

ϕ̃ε, j · ϕ̃ε,h +

∫
(Ωε∩V j∩Vh)\(r−1

j (Kε, j)∩r−1
h (Kε,h))

ϕ̃ε, j · ϕ̃ε,h.
(3.25)

It is obvious that

lim
ε→0

∫
r−1

j (Kε, j)∩r−1
h (Kε,h)

ϕ̃ε, j · ϕ̃ε,h = lim
ε→0

∫
r−1

j (Kε, j)∩r−1
h (Kε,h)

ϕ j · ϕh =

∫
Ω

ϕ j · ϕh. (3.26)

Here and in the following we will make use of the identity

(Ωε ∩ V j ∩ Vh) \ (r−1
j (Kε, j) ∩ r−1

h (Kε,h)) =

[(Ωε ∩ V j ∩ Vh) \ r−1
j (Kε, j)] ∪ [(r−1

j (Kε, j) \ r−1
h (Kε,h)) ∩ Vh].

(3.27)

Observe that by (3.23), (3.24) we get∣∣∣∣∣∣∣∣
∫

(Ωε∩V j∩Vh)\r−1
j (Kε, j)

ϕ̃ε, j · ϕ̃ε,h

∣∣∣∣∣∣∣∣ ≤
∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2
1
2 ∫

Ωε∩Vh

∣∣∣ϕ̃ε,h∣∣∣2 1
2

−−−→
ε→0

0, (3.28)

and ∣∣∣∣∣∣∣∣
∫

(r−1
j (Kε, j)\r−1

h (Kε,h))∩Vh

ϕ̃ε, j · ϕ̃ε,h

∣∣∣∣∣∣∣∣ ≤
∫

r−1
j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2
1
2
∫

(Ωε∩Vh)\r−1
h (Kε,h)

∣∣∣ϕ̃ε,h∣∣∣2
1
2

−−−→
ε→0

0. (3.29)

Hence, by formula (3.27), we see that the second term of the sum in (3.25) vanishes as ε goes to zero,
hence we deduce the validity of (3.21) from (3.25) and (3.26).

We now prove (3.19). Again, we need to check that

lim
ε→0

∫
Ωε

curl ϕ̃ε, j · curl ϕ̃ε,h =

∫
Ω

curlϕ j · curlϕh (3.30)

for any j, h ∈ {1, . . . , s′}. Note that

D Φ
(−1)
ε, j =

1
det(D Φε, j)


1 − ∂hε, j

∂x3
0 0

0 1 − ∂hε, j
∂x3

0
∂hε, j
∂x1

∂hε, j
∂x2

1

 ◦ Φ
(−1)
ε, j ,

and recall that Ψε, j = r−1
j ◦ Φε, j ◦ r j. Moreover, by (3.2) we have

curl ϕ̃ε, j =
(
curlϕ j ◦ Ψε, j

)
(D Ψε, j)−T det D(Ψε, j) on Ωε ∩ V j

so that ∣∣∣curl ϕ̃ε, j
∣∣∣ ≤ c

∣∣∣curlϕ j ◦ Ψε, j

∣∣∣ .
Mathematics in Engineering Volume 5, Issue 1, 1–31.
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Then, with computations analogous to those performed above, we get

lim
ε→0

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣curl ϕ̃ε, j
∣∣∣2 = 0. (3.31)

It is also obvious that

lim
ε→0

∫
r−1

j (Kε, j)

∣∣∣curl ϕ̃ε, j
∣∣∣2 =

∫
Ω

∣∣∣curlϕ j

∣∣∣2 (3.32)

and thus

lim
ε→0

∫
Ωε

∣∣∣curl ϕ̃ε, j
∣∣∣2 =

∫
Ω

∣∣∣curlϕ j

∣∣∣2 . (3.33)

By using the same argument above, formula (3.27) together with the new identities (3.31)–(3.33), we
obtain (3.30) .

Finally, we prove (3.20). To do so, we need to prove that

lim
ε→0

∫
Ωε

div ϕ̃ε, j div ϕ̃ε,h =

∫
Ω

divϕ j divϕh (3.34)

for any j, h ∈ {1, . . . , s′}. Here and in the rest of the proof, the vectors under consideration will be
represented as follows: ϕ j = (ϕ1

j , ϕ
2
j , ϕ

3
j) and Ψε, j = (Ψ1

ε, j,Ψ
2
ε, j,Ψ

3
ε, j).

Since ϕ ∈ XN(Ω) and the Gaffney inequality holds on Ω, it follows that ϕ ∈ H1(Ω)3. Thus, recalling
that ϕ̃ε, j(x) = (ϕ j ◦Ψε, j(x)) D Ψε, j(x) for all x ∈ Ωε ∩V j, it is possible to apply the chain rule and obtain
that

div(ϕ̃ε, j) =

3∑
m,n,i=1

∂ϕm
j

∂xn
(Ψε, j)

∂Ψn
ε, j

∂xi

∂Ψm
ε, j

∂xi

︸                        ︷︷                        ︸
type A

+

3∑
m,i=1

ϕm
j (Ψε, j)

∂2Ψm
ε, j

∂x2
i︸            ︷︷            ︸

type B

in Ωε ∩ V j, (3.35)

where the terms in the first sum are called of type A and the others are called terms of type B.
Recall that hε, j are the functions in (3.6) used to define the diffeomorphisms Φε, j. We observe that

by the Leibniz rule we have

Dαhε, j(x) =
∑

0≤γ≤α

(
α

γ

)
Dγ

(
gε, j(x̄) − g j(x̄)

)
Dα−γ

 x3 − ĝε, j(x̄)
gε, j(x̄) − ĝε, j(x̄)

3

hence by standard calculus (note that the denominator in the previous formula is the constant k = 6κε)
and (3.14) we get ∣∣∣∣∣∣∣Dα−γ

 x3 − ĝε, j(x̄)
gε, j(x̄) − ĝε, j(x̄)

3
∣∣∣∣∣∣∣ ≤ c∣∣∣gε, j(x̄) − ĝε, j(x̄)

∣∣∣|α|−|γ| ≤ c

κ
|α|−|γ|
ε

. (3.36)

Therefore ∥∥∥Dαhε, j
∥∥∥
∞
≤ c

∑
0≤γ≤α

∥∥∥Dγ(gε, j − g j)
∥∥∥
∞

κ
|α|−|γ|
ε

(3.37)
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for all ε > 0 sufficiently small. It follows by the definitions of Ψε, j,Φε, j, by (3.37) and part (iii) of
condition (3.14), that for all m, i = 1, 2, 3∥∥∥∥∥∥∥∂

2Ψm
ε, j

∂x2
i

∥∥∥∥∥∥∥
L∞(Ωε∩V j)

= o(κ−1/2
ε ), as ε → 0. (3.38)

We claim that
lim
ε→0

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣div ϕ̃ε, j
∣∣∣2 = 0. (3.39)

To prove that, we analyse first the terms of type A in (3.35). By changing variables in integrals we get:∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣∣∣∣∣∂ϕ
m
j

∂xn
◦ Ψε, j

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∂Ψn

ε, j

∂xi

∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∂Ψm

ε, j

∂xi

∣∣∣∣∣∣∣
2

dy

≤ c
∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣∣∣∣∣∂ϕ
m
j

∂xn
◦ Ψε, j

∣∣∣∣∣∣∣
2

dy

= c
∫

(Ω∩V j)\r−1
j (Kε, j)

∣∣∣∣∣∣∣∂ϕ
m
j

∂xn

∣∣∣∣∣∣∣
2

1∣∣∣∣det(D Ψε, j) ◦ Ψ
(−1)
ε, j

∣∣∣∣ dx

≤ c
∫

(Ω∩V j)\r−1
j (Kε, j)

∣∣∣∣∣∣∣∂ϕ
m
j

∂xn

∣∣∣∣∣∣∣
2

dx −−−→
ε→0

0.

(3.40)

We now consider the terms of type B. By setting η j(z) := ϕ j(r−1
j (z)) and recalling (3.38) we have that∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣∣∣∣∣ϕm
j (Ψε, j)

∂2Ψm
ε, j

∂x2
i

∣∣∣∣∣∣∣
2

dy

≤

∥∥∥∥∥∥∥∂
2Ψm

ε, j

∂x2
i

∥∥∥∥∥∥∥
2

L∞(Ωε∩V j)

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣ϕ j(Ψε, j)
∣∣∣2 dy

= o(κ−1
ε )

∫
(Ω∩V j)\r−1

j (Kε, j)

∣∣∣ϕ j

∣∣∣2 1∣∣∣∣det(D Ψε, j) ◦ Ψ
(−1)
ε, j

∣∣∣∣ dx

≤ o(κ−1
ε )

∫
(Ω∩V j)\r−1

j (Kε, j)

∣∣∣ϕ j(x)
∣∣∣2 dx

= o(κ−1
ε )

∫
r j(Ω∩V j)\Kε, j

∣∣∣η j(z)
∣∣∣2 dz

= o(κ−1
ε )

∫
W j

∫ g j(z̄)

ĝε, j(z̄)

∣∣∣η j(z̄, z3)
∣∣∣2 dz3

 dz̄

≤ o(κ−1
ε )

∫
W j

∣∣∣g j(z̄) − ĝε, j(z̄)
∣∣∣∥∥∥η j(z̄, ·)

∥∥∥2

L∞(a3 j,g j(z̄))3 dz̄

≤ o(κ−1
ε )

∥∥∥g j − ĝε, j
∥∥∥

L∞(W j)

∫
W j

∥∥∥η j(z̄, ·)
∥∥∥2

H1(a3 j,g j(z̄))3 dz̄

≤ o(κ−1
ε ) κε

∥∥∥η j

∥∥∥2

H1(r j(Ω∩V j))3 −−−→
ε→0

0.

(3.41)
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Here we have used the following one dimensional embedding estimate for Sobolev functions (see e.g.,
Burenkov [7]): ∥∥∥ f

∥∥∥
L∞(a,b)

≤ c
∥∥∥ f

∥∥∥
H1(a,b)

for all f ∈ H1(a, b), where the constant c = c(d) is uniformly bounded for |b − a| > d. We conclude
that (3.39) holds.

Using (3.39), the fact that Ψε, j in r−1
j (Kε, j) coincides with the identity and that∣∣∣∣(Ω ∩ V j) \ r−1

j (Kε, j)
∣∣∣∣→ 0 as ε goes to 0, we deduce that

lim
ε→0

∫
r−1

j (Kε, j)

∣∣∣div ϕ̃ε, j
∣∣∣2 =

∫
Ω

∣∣∣divϕ j

∣∣∣2 , (3.42)

and
lim
ε→0

∫
Ωε

∣∣∣div ϕ̃ε, j
∣∣∣2 =

∫
Ω

∣∣∣divϕ j

∣∣∣2 . (3.43)

With (3.39), (3.42) and (3.43) in mind, in order to prove (3.34), it suffices to reproduce the same
argument used before starting from (3.25) combined with formula (3.27). We omit the details. Thus
statement (iii) is proved.

The proof of statement (iv) follows by the same considerations above. First of all, for any
j = 1, . . . , s′ the function ϕ̃ε, j coincides with ϕ j on r−1

j (Kε, j). Thus Pεϕ = ϕ on
(∪ j=1,...,s′r−1

j (Kε, j)) ∪ (∪ j=s′+1,...,sV j). It follows that

‖Pεϕ − ϕ‖X(Ωε∩Ω) ≤ ‖Pεϕ − ϕ‖X(∪ j=1,...,s′ (Ωε∩V j)\r−1
j (Kε, j))

This combined with by the limiting relations (3.23), (3.31) and (3.39) yields the validity of statement
(iv). �

4. Spectral stability

Let Ωε , ε > 0, and Ω be bounded domains in R3 of class C1,1(A). For simplicity, it is convenient to
set Ω0 = Ω. In this section, we prove that if Ωε converges to Ω as ε → 0 in the sense of (3.14), and
a uniform Gaffney inequality holds on the domains Ωε then we have spectral stability for the curl curl
operator defined on the domains Ωε with respect to the reference domain Ω. By uniform Gaffney
inequality, we mean that the spaces XN(Ωε) are embedded into H1(Ωε)3 and there exists a positive
constant C independent of ε such that

‖u‖H1(Ωε )3 ≤ C‖u‖XN(Ωε ) , (4.1)

for all u ∈ XN(Ωε) and ε > 0. (Note that by Theorem 1, for every ε > 0 there exists a positive constant
Cε , possibly depending on ε, such that (4.1) holds, but here we need a constant independent of ε).

To do so, for any ε ≥ 0, we denote by S ε the operator S Ωε
from L2(Ωε) to itself defined in Lemma 3.

Recall that if fε ∈ L2(Ωε)3 is the datum of the following Poisson problem
curl curl vε − τ∇ div vε + vε = fε , in Ωε ,

div vε = 0, on ∂Ωε ,

vε × ν = 0, on ∂Ωε ,

(4.2)
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then the unique solution vε ∈ XN(Ωε) is precisely S ε fε , that is vε = S ε fε . Recall that τ is a fixed
positive constant (one could normalise it by setting τ = 1 but we prefer to keep it as it is also with
reference to other papers where it is important to have the possibility to use different values of τ, see
for example [33, Remark 2.13]). In this section we prove that S ε compactly converges to S 0 as ε → 0,
and this implies spectra stability. This has to be understood in the following sense.

We denote by E = {Eε}ε>0 the family of the extension-by-zero operators Eε : L2(Ω)3 → L2(Ωε)3

defined by

Eεϕ = ϕ0 =

 ϕ, if x ∈ Ωε ∩Ω,

0, if x ∈ Ωε \Ω,
(4.3)

for all ϕ ∈ L2(Ω)3. Note that under our assumptions we have that for all ϕ ∈ L2(Ω)3

lim
ε→0

∥∥∥Eεϕ
∥∥∥

L2(Ωε )3 =
∥∥∥ϕ∥∥∥

L2(Ω)3 ,

since
∣∣∣Ω \ (Ωε ∩Ω)

∣∣∣ → 0 as ε goes to 0. We recall the following definition from [40], see also [1]
and [10].

Definition 3. Let uε ∈ L2(Ωε), for ε > 0, be a family of functions. We say that uε E-converges to

u0 ∈ L2(Ω) as ε → 0 and we write uε
E
−→ u0 if

‖uε − Eεu0‖L2(Ωε ) → 0, as ε → 0 .

We also say that S ε E-converges to S 0 as ε → 0 and we write S ε

EE
−−→ S 0 if for any family of functions

fε ∈ L2(Ωε), we have

fε
E
−→ f0 =⇒ S ε fε

E
−→ S 0 f0 .

Finally, we say that S ε E-compact converges to S 0 as ε → 0 and we write S ε

C
−→ S 0 if S ε

EE
−−→ S 0

and for any family of functions fε ∈ L2(Ωε), with ‖ fε‖L2(Ωε ) = 1 and any sequence of positive numbers

εn with εn → 0, there exists a subsequence εnk and u ∈ L2(Ω) such that S εnk
fnk

E
−→ u.

The following theorem from [40, Thm. 6.3] holds.

Theorem 3. If S ε

C
−→ S 0 then the eigenvalues of the operator S ε converge to the eigenvalues of the

operator S 0, and the eigenfunctions of the operator S ε E-converge to the eigenfunctions of the operator
S 0 as ε → 0.

If we denote by µn(ε), n ∈ N the sequence of eigenvalues of S ε and by un(ε), n ∈ N a corresponding
orthonormal sequence of eigenfunctions, then the stability of eigenvalues and eigenfunctions stated
above has to be interpreted in the following sense:

(i) µn(ε)→ µn(0) as ε → 0.

(ii) For any sequence εk, k ∈ N, converging to zero there exists an orthonormal sequence of
eigenfunctions un(0), n ∈ N in L2(Ω)3 such that, possibly passing to a subsequence of εk,

un(εk)
E
−→ un(0).
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(iii) Given m eigenvalues µn(0), . . . , µn+m−1(0) with µn(0) , µn−1(0) and µn+m−1(0) , µn+m(0) and
corresponding orthonormal eigenfunctions un(0), . . . , un+m−1(0), there exist m orthonormal
generalized eigenfunctions (i.e., linear combinations of eigenfunctions) vn(ε), . . . , vn+m−1(ε)

associated with µn(ε), . . . , µn+m−1(ε) such that vn+i(ε)
E
−→ un+i(0) for all i = 0, 1, . . . ,m − 1.

Recall that µ is an eigenvalue of S ε if and only if λ = µ−1 is an eigenvalue of the problem
curl curl vε − τ∇ div vε + vε = λvε , in Ωε ,

div vε = 0, on ∂Ωε ,

vε × ν = 0, on ∂Ωε ,

(4.4)

and that the corresponding eigenfunctions are the same. Note that the eigenvalues of (4.4) differ from
those of (2.4) just by a translation. Thus, studying the stability of eigenvalues and eigenfunctions of
the problem (4.4) or (2.4), is equivalent to studying the spectral stability of the family of operators S ε .
To do so, we recall that the weak formulation of problem (4.2) reads as follows: find vε ∈ XN(Ωε) such
that ∫

Ωε

vε · η dx +

∫
Ωε

curl vε · curl η dx + τ

∫
Ωε

div vε div η dx =

∫
Ωε

fε · η dx (4.5)

for all η ∈ XN(Ωε).
Suppose that for some C > 0 we have that

∥∥∥ fε
∥∥∥

L2(Ωε )3 ≤ C for every ε > 0. Then, setting η = vε in

(4.5) and observing that
∫

Ωε
fε · vε dx ≤ 1

2

∫
Ωε

∣∣∣ fε ∣∣∣2 dx + 1
2

∫
Ωε
|vε |2 dx, we get

1
2

∫
Ωε

|vε |2 dx +

∫
Ωε

∣∣∣curl vε
∣∣∣2 dx + τ

∫
Ωε

∣∣∣div vε
∣∣∣2 dx ≤

1
2

∫
Ωε

∣∣∣ fε ∣∣∣2 dx.

This in turn implies that for all ε > 0

‖vε‖XN(Ωε ) =

(
‖vε‖2L2(Ωε )3 +

∥∥∥curl vε
∥∥∥2

L2(Ωε )3 +
∥∥∥div vε

∥∥∥2

L2(Ωε )

)1/2
≤ c

∥∥∥ fε
∥∥∥

L2(Ωε )
= O(1). (4.6)

In order to prove the E-convergence of the operators S ε , it is necessary to consider the limit of
functions vε . We note that if Ω ⊂ Ωε for all ε > 0 then it would suffice to consider the restriction
of vε to Ω and pass to the weak limit in Ω. Otherwise, it is convenient to extend functions vε to the
whole of R3. To do so, we observe that by the uniform Gaffney inequality combined with inequality
(4.6) it follows that ‖vε‖H1(Ωε )3 is uniformly bounded. Moreover, the domains Ωε belong to the same
Lipschitz class C0,1

M (A) for some M > 0 hence the functions vε can be extended to the whole of R3

with a uniformly bounded norm, see e.g., [7]. Thus, in the sequel we shall directly make the following
assumption:

vε ∈ H1(R3)3 ∩ XN(Ωε), sup
ε>0
‖vε‖∈H1(R3)3 , ∞ . (4.7)

Thus the family {vε |Ω}ε>0 is bounded in H(curl; Ω)∩H(div; Ω) and we can extract a sequence {vεn |Ω}n∈N,
with εn → 0 as n goes to∞, such that

vεn |Ω ⇀
n→∞

v weakly in H(curl; Ω) ∩ H(div; Ω) (4.8)

for some v ∈ H(curl; Ω) ∩ H(div; Ω). It turns out that v preserves the boundary conditions as the
following lemma clarifies.
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Lemma 4. Assume that for some εn > 0 with εn → 0, there exists v ∈ H(curl,Ω) ∩ H(div,Ω) such that
{vεn |Ω}n∈N weakly converges to v in H(curl,Ω) ∩ H(div,Ω). Then v ∈ XN(Ω).

Proof. To prove that v ∈ XN(Ω) we just need to make sure that v ∈ H0(curl,Ω). Since vεn ∈ H0(curl,Ωεn)
for all n ∈ N, by Lemma 1 we know that the extension-by-zero v0

εn
of vεn belongs to H(curl,R3) for all

n ∈ N. By the reflexivity of H(curl,R3) and the boundedness of the sequence
{
v0
εn

}
n∈N

, we deduce that
possibly passing to a subsequence, there exists a function ṽ ∈ H(curl,R3) such that v0

εn
⇀ ṽ weakly in

H(curl,R3) as n goes to∞. It suffices to show that ṽ = v0. Since v0
εn

is equal to zero outside of Ωεn , it is
clear that ṽ = 0 a.e. in R3 \ Ω. Moreover, since vεn |Ω weakly converges to both v, ṽ in H(curl,Ω), we
have that v = ṽ a.e. in Ω. Thus the extension by zero of v to the whole of R3 is precisely ṽ and belongs
to H(curl,R3). Using Lemma 1 again, we see that v ∈ H0(curl,Ω). �

Lemma 5. Assume that condition (3.14) and the uniform Gaffney inequality (4.1) hold. For any ε > 0
let fε ∈ L2(Ωε)3. Suppose that supε>0

∥∥∥ fε
∥∥∥

L2(Ωε )3 , ∞ and that the extension-by-zero of the functions fε
converge weakly in L2(Ω)3 to some function f ∈ L2(Ω)3 as ε → 0. For all ε > 0, let vε := S ε fε the
(unique) weak solution in XN(Ωε) of (4.5) with datum fε . Assume (4.7) and suppose that vε ⇀ v weakly
in H(curl,Ω) ∩ H(div,Ω) to some v ∈ H(curl,Ω) ∩ H(div,Ω). Then v = S 0 f .

Proof. First of all, we note that by Lemma 4, v ∈ XN(Ω). Define for u,w ∈ H(curl,Ωε) ∩ H(div,Ωε)

QΩε
(u,w) :=

∫
Ωε

u · w dx +

∫
Ωε

curl u · curl w dx + τ

∫
Ωε

div u · div w dx,

which is equivalent to the scalar product for the space H(curl,Ωε) ∩ H(div,Ωε). The square of the
induced norm will be denoted with QΩε

(·). Note that since vε is the solution with datum fε , then we
have that

QΩε
(vε , η) =

∫
Ωε

fε · η

for all η ∈ XN(Ωε).
Let ϕ be any function in XN(Ω) and let Pεϕ the Atlas Piola trasform of ϕ. Since Pεϕ ∈ XN(Ωε), we

deduce tha
QΩε

(vε ,Pεϕ) =

∫
Ωε

fε · Pεϕ (4.9)

for all ε > 0. We now show that
lim
ε→0

∫
Ωε

fε · Pεϕ =

∫
Ω

f · ϕ (4.10)

and
lim
ε→0

QΩε
(vε ,Pεϕ) = QΩ(v, ϕ) (4.11)

In order to prove the first limit, it suffices to prove that∫
Ωε∩V j

fε · ϕ̃ε, j −−−→
ε→0

∫
Ω∩V j

f · ϕ j (4.12)

for any j = 1, . . . , s′, where ϕ̃ε, j is defined in (3.13) (with Ω̃ replaced by Ωε), since it is obvious that∫
Ωε∩V j

fε · ϕ j −−−→
ε→0

∫
Ω∩V j

f · ϕ j (4.13)
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for any j = s′ + 1, . . . , s. We have that∫
Ωε∩V j

fε · ϕ̃ε, j =

∫
r−1

j (Kε, j)
fε · ϕ j +

∫
(Ωε∩V j)\r−1

j (Kε, j)
fε · ϕ̃ε, j. (4.14)

Obviously

lim
ε→0

∫
r−1

j (Kε, j)
fε · ϕ j =

∫
Ω∩V j

f · ϕ j (4.15)

since the extension-by-zero of fε weakly converge to f in L2(Ω)3, supε>0

∥∥∥ fε
∥∥∥

L2(Ωε )3 < ∞ and∣∣∣∣(Ω ∩ V j) \ r−1
j (Kε, j)

∣∣∣∣ goes to 0 as ε → 0. Meanwhile∣∣∣∣∣∣∣∣
∫

(Ωε∩V j)\r−1
j (Kε, j)

fε · ϕ̃ε, j

∣∣∣∣∣∣∣∣ ≤
∥∥∥ fε

∥∥∥
L2(Ωε )3

∫
(Ωε∩V j)\r−1

j (Kε, j)

∣∣∣ϕ̃ε, j∣∣∣2
1
2

−−−→
ε→0

0 (4.16)

by (3.23) and the hypothesis that supε>0

∥∥∥ fε
∥∥∥

L2(Ωε )3 , ∞. From (4.14), (4.15) and (4.16) we immediately
deduce (4.12). Hence we have proved (4.10).

Let us now focus on (4.11). We write

QΩε
(vε ,Pεϕ) = QΩε∩Ω(vε ,Pεϕ) + QΩε\Ω(vε ,Pεϕ)

= QΩε∩Ω(vε ,Pεϕ − ϕ) + QΩε∩Ω(vε , ϕ) + QΩε\Ω(vε ,Pεϕ)
= QΩ(vε , ϕ) − QΩ\Ωε

(vε , ϕ) + QΩε∩Ω(vε ,Pεϕ − ϕ) + QΩε\Ω(vε ,Pεϕ) (4.17)

By the weak convergence of vε to v we have that

QΩ(vε , ϕ)→ QΩ(v, ϕ), as ε → 0. (4.18)

By the Cauchy-Schwarz inequality and Theorem 2, (iv) we get that

QΩε∩Ω(vε ,Pεϕ − ϕ) ≤ (QΩε∩Ω(vε))1/2(QΩε∩Ω(Pεϕ − ϕ))1/2 → 0, as ε → 0 (4.19)

Similarly,
QΩ\Ωε

(vε , ϕ) ≤ (QΩ\Ωε
(vε))1/2(QΩ\Ωε

(ϕ))1/2 → 0 as ε → 0. (4.20)

Finally,
QΩε\Ω(vε ,Pεϕ) ≤ (QΩε\Ω(vε))1/2(QΩε\Ω(Pεϕ))1/2 → 0 as ε → 0 (4.21)

since by (3.23), (3.31) and (3.39) it follows that QΩε\Ω(Pεϕ) → 0 as ε → 0. By combining (4.18)–
(4.21), we deduce that limit (4.11) holds.

In conclusion, by using the limiting relations (4.10) and (4.11) in equation (4.9) we conclude that

QΩ(v, ϕ) =

∫
Ω

f · ϕ

which means that v is the solution in XN(Ω) of the given problem with datum f ∈ L2(Ω), as required.
�
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Remark 1. A careful inspection of the proof of Lemma 5 reveals that the uniform Gaffney inequality
has been used only to prove the limiting relations (4.18)–(4.20) since the functions vε are required here
to be defined on Ω and to have uniformly bounded norms. This problem does not occur if Ω ⊂ Ωε in
which case only the Gaffney inequality in Ω is necessary. However, the uniform Gaffney inequality will
be used in an essential way in the following statements also in the particular case Ω ⊂ Ωε

In the next lemma we prove that S ε E-converges to S 0 as ε → 0.

Lemma 6. Assume that condition (3.14) and the uniform Gaffney inequality (4.1) hold. Let fε ∈

L2(Ωε)3, ε > 0 be such that fε
E
−−−→
ε→0

f ∈ L2(Ω)3 for some function f ∈ L2(Ω)3. Set vε := S ε fε and

v := S 0 f . Then vε
E
−−−→
ε→0

v, hence S ε

EE
−−−→
ε→0

S 0.

Proof. Since fε
E
−−−→
ε→0

f , then
∥∥∥ fε

∥∥∥
L2(Ωε )3 ≤ C for all ε > 0 sufficiently small and consequently‖vε‖XN(Ωε )

is uniformly bounded with respect to ε, as shown in (4.6). By the uniform Gaffney inequality it follows
that also‖vε‖H1(Ωε )3 is uniformly bounded. In particular

lim
ε→0
‖vε‖L2(Ωε\Ω)3 = 0

because
∣∣∣Ωε \Ω

∣∣∣ → 0 as ε goes to 0. This can be proved using the same argument used for (3.41) as
follows: ∫

(Ωε∩V j)\r−1
j (Kε, j)

∣∣∣vε(x)
∣∣∣2 dx =

∫
r j(Ωε∩V j)\Kε, j

∣∣∣∣vε ◦ r−1
j (z)

∣∣∣∣2 dz

=

∫
W j

∫ gε, j(z̄)

ĝε, j(z̄)

∣∣∣∣vε ◦ r−1
j (z̄, z3)

∣∣∣∣2 dz3

 dz̄

≤

∫
W j

∣∣∣gε, j(z̄) − ĝε, j(z̄)
∣∣∣∥∥∥∥vε ◦ r−1

j (z̄, ·)
∥∥∥∥2

L∞(a3 j,gε, j(z̄))3
dz̄

≤
∥∥∥gε, j − ĝε, j

∥∥∥
L∞(W j)

∫
W j

∥∥∥∥vε ◦ r−1
j (z̄, ·)

∥∥∥∥2

H1(a3 j,gε, j(z̄))3
dz̄

≤ κε

∥∥∥∥vε ◦ r−1
j

∥∥∥∥2

H1(r j(Ωε∩V j))3
−−−→
ε→0

0.

Hence to prove that vε
E
−−−→
ε→0

v we just have to show that

lim
ε→0

∥∥∥vε |Ω − v
∥∥∥

L2(Ω)3 = 0. (4.22)

Recall that {vε |Ω} ⊂ H1(Ω)3 is bounded in H1-norm. Select now a sequence {vεn}n∈N from the family. By
the compact embedding of H1(Ω)3 into L2(Ω)3 we have that, up to choosing a subsequence, vεn |Ω → v∗

strongly in L2(Ω)3 and vεn |Ω ⇀ v∗ weakly in H1(Ω)3 for some v∗ ∈ H1(Ω)3. By Lemma 5 we have that
v∗ = S 0 f = v ∈ XN(Ω). This shows that for any extracted sequence of the family {vε |Ω−v}ε>0, there exist
a subsequence such that

∥∥∥∥vεnk
|Ω − v

∥∥∥∥
L2(Ω)3

−−−→
k→∞

0. Thus we can conclude that
∥∥∥vε |Ω − v

∥∥∥
L2(Ω)3 −−−→

ε→0
0,

which is exactly (4.22). �
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Remark 2. The hypothesis of Lemma 6 can be weakened to only require that
∥∥∥ fε

∥∥∥
L2(Ωε )3 are uniformly

bounded and that the extenstion-by-zero of fε (restricted to Ω) weakly converges to f in L2(Ω)3 as ε

goes to 0, which is a weaker assumption than fε
E
−−−→
ε→0

f .

Finally we can state and prove the main theorem

Theorem 4. Let A be an atlas in R3 and {Ωε}ε>0 be a family of bounded domains of class C1,1(A)
converging to a bounded domain Ω of class C1,1(A) as ε → 0, in the sense that condition (3.14)
holds. Suppose that the uniform Gaffney inequality (4.1) holds. Then S ε

C
−→ S 0 as ε → 0. In particular,

spectral stability occurs: the eigenvalues of the operator S ε converge to the eigenvalues of the operator
S 0, and the eigenfunctions of the operator S ε E-converge to the eigenfunctions of the operator S 0 as
ε → 0.

Proof. By Lemma 6 we have that S ε

EE
−−−→
ε→0

S . Now, suppose that we are given a family of data { fε}ε>0

such that
∥∥∥ fε

∥∥∥
L2(Ωε )3 ≤ 1 for all ε > 0, and extract a sequence { fεn}n∈N from it. We have to show that we

can always find a subsequence εnk → 0 and a function v ∈ L2(Ω)3 such that

S εnk
fεnk

E
−−−→
k→∞

v. (4.23)

Possibly passing to a subsequence, we can find a function f to which the restriction to Ω of the
extension-by-zero of { fεn}n∈N weakly converge in L2(Ω)3. Setting v := S 0 f , we can apply Lemma 6
and Remark 2 to find out that (4.23) holds.

Finally, the spectral stability is a consequence of the compact convergence of compact operators as
stated in Theorem 3. �

5. Uniform Gaffney Inequalities and applications to families of oscillating boundaries

In this section we give sufficient conditions that guarantee the validity of a uniform Gaffney
inequality of the type (4.1) for a family of Lipschitz domains Ωε , ε > 0, belonging to the same class
C0,1

M (A). To do so, we exploit a known relation between Gaffney inequalities and a priori estimates for
the Dirichlet Laplacian that we formulate in our setting. We note that one of the two implications
(namely, the validity of the Gaffney inequality implies the validity of the a priori estimate) is quite
standard. The other one is a bit more involved, hence, for the sake of completeness, we include a
proof.

Theorem 5. Let Ω be a bounded domain in R3 of class C0,1
M (A). Then the Gaffney inequality (2.3)

holds for all u ∈ XN(Ω) and a constant C > 0 independent of u if and only if (the weak, variational)
solutions ϕ ∈ H1

0(Ω) to the Poisson problem −∆ϕ = f , in Ω,

ϕ = 0, on ∂Ω,
(5.1)

satisfy the a priori estimate
‖ϕ‖H2(Ω) ≤ C̃‖ f ‖L2(Ω) (5.2)

for all f ∈ L2(Ω) and a constant C̃ > 0 independent of f . In particular, the constants C and C̃ depend
on each other, M andA.
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Proof. Assume that the a priori estimate (5.2) holds. We set H1
N(Ω) := XN(Ω) ∩ H1(Ω)3 and E(Ω) =

{∇ϕ : ϕ ∈ H1
0(Ω), ∆ϕ ∈ L2(Ω)}. By [5, Thm. 4.1] there exists two linear operators P : XN(Ω)→ H1

N(Ω)
and Q : XN(Ω)→ E(Ω) such that u = Pu + Qu for all u ∈ XN(Ω) and such that

‖Pu‖H1(Ω)3 + ‖Qu‖L2(Ω)3 + ‖ div Qu‖L2(Ω)3 ≤ CBS ‖u‖XN(Ω)

for all u ∈ XN(Ω), for some positive constant CBS . A careful inspection of the proof of [5, Thm. 4.1]
reveals that CBS depends only on M, A. By definition, Qu = ∇ϕ with ϕ ∈ H1

0(Ω) and ∆ϕ ∈ L2(Ω).
Since we have assumed that (5.2) holds, then

‖ϕ‖H2(Ω) ≤ C̃‖∆ϕ‖L2(Ω) = C̃‖ div Qu‖L2(Ω) ≤ C̃CBS ‖u‖XN(Ω)

Thus, since ‖Qu‖H1(Ω)3 is obviously controlled by ‖ϕ‖H2(Ω) we deduce that

‖u‖H1(Ω)3 ≤ ‖Pu‖H1(Ω)3 + ‖Qu‖H1(Ω)3 ≤ C‖u‖XN(Ω),

for all u ∈ XN(Ω), and (2.3) is proved.
Viceversa, assume that (2.3) holds and let ϕ be a solution to (5.1). Since ∇ϕ ∈ XN(Ω), by (2.3) it

follows that

‖∇ϕ‖H1(Ω)3 ≤ C(‖∇ϕ‖L2(Ω)3 + ‖ curl∇ϕ‖L2(Ω)3 + ‖ div∇ϕ‖L2(Ω)3)
= C(‖∇ϕ‖L2(Ω)3 + ‖∆ϕ‖L2(Ω))
≤ C(cP‖∆ϕ‖L2(Ω) + ‖∆ϕ‖L2(Ω))
≤ C(cP + 1)‖ f ‖L2(Ω),

where we have used [20, Lemma 1] and cP denotes the usual Poincaré constant. This, combined with
the Poincaré’s inequality, immediately implies (5.2). �

Example 1. Let Ω be a bounded domain inRN of class C1 such that around a boundary point (identified
here with the origin) is described by the subgraph xN < g(x̄) of the C1 function defined by

g(x1, . . . , xN−1) = |x1|/ log |x1|

It is proved in [34, 14.6.1] that for this domain the a priori estimate (5.2) does not hold. Thus, by
Theorem 5 it follows that not even the Gaffney inequality holds for this domain for N = 3.

Theorem 5 highlights the importance of proving the a priori estimate (5.2) and getting information
on the constant C̃. We do this by following the approach of Maz’ya and Shaposhnikova [34] and
using the notion of domains Ω with boundaries ∂Ω of classM3/2

2 (δ). We re-formulate the definition in
Maz’ya and Shaposhnikova [34, § 14.3.1] by using the atlas classes. Here we can treat the general case
of domains in RN with N ≥ 2.

Note that in this section, following [34] we find it convenient to assume directly that the functions
g j describing the boundary of Ω as in Definition 1 are extended to the whole of RN−1 and belong to the
corresponding function spaces defined on RN−1.
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Definition 4. Let A be an atlas in RN and δ > 0. We say that a bounded domain Ω in RN is of class
M

3/2
2 (δ,A) if Ω is of class C0,1(A) and the gradients ∇g j of the functions g j describing the boundary

of Ω as in Definition 1 belong to the space MW1/2
2 (RN−1) of Sobolev multipliers with

‖∇g j‖MW1/2
2 (RN−1) ≤ δ (5.3)

for all j = 1, . . . s′. We say that a bounded domain Ω in RN is of classM3/2
2 (δ) if it is of classM3/2

2 (δ,A)
for some atlasA.

Recall that MW1/2
2 (RN−1) = { f ∈ W1/2

2,loc(R
N−1) : fϕ ∈ W1/2

2 (RN−1) for all ϕ ∈ W1/2
2 (RN−1)} and that

‖ f ‖MW1/2
2 (RN−1) = sup{‖ fϕ‖W1/2

2 (RN−1) : ‖ϕ‖W1/2
2 (RN−1) = 1}, where W1/2

2 (RN−1) denotes the standard Sobolev
space with fractional order of smoothness 1/2 and index of summability 2 (for simplicity, in (5.3) we
use the the same symbol for the norm of a vector field).

Remark 3. Note that by [34, Thm. 4.1.1] there exists c > 0 depending only on N such that the functions
g j in Definition 4 satisfy the estimate ‖∇g j‖L∞(RN−1) ≤ c‖∇g j‖MW1/2

2 (RN−1) ≤ cδ, see also [34, Thm. 14.6.4].

Thus, if Ω is of classM3/2
2 (δ,A) then it is also of class C0,1

M (A) with M = cδ.

The following theorem is a reformulation of [34, Thm. 14.5.1]

Theorem 6. Let A be an atlas in RN . If Ω is a bounded domain of class M3/2
2 (δ,A) for some δ

sufficiently small (depending only on N) then the a priori estimate (5.2) holds for some constant C̃
depending only on N andA.

By [34, Corollaries. 14.6.1, 14.6.2] it is possible to prove the following theorem based on the
condition (5.5) from [34, (14.6.9)] . Here, given an atlasA = (ρ, s, s′, {V j}

s
j=1, {r j}

s
j=1), by a refinement

of A we mean an atlas of the type Ã = (ρ̃, s̃, s̃′, {Ṽ j}
s̃
j=1, {r̃ j}

s̃
j=1) where ρ̃ ≤ ρ, s ≤ s̃, s′ ≤ s̃′,

∪s̃
j=1Ṽ j = ∪ s

j=1V j, {r̃ j}
s̃
j=1 ⊂ {r j}

s
j=1, which can be thought as an atlas constructed from A by replacing

each cuboid V j = r j(W j×]aN, j, bN, j[) by a finite number of cuboids of the form
Ṽ j,l = r j(W̃ j,l×]aN, j, bN, j[), l = 1, . . .m j, where W j = ∪

m j

l=1W̃ j,l.

Theorem 7. LetA be an atlas in RN and let Ω be a bounded domain of class C0,1
M (A). Let ω be a (non-

decreasing) modulus of continuity for the gradients ∇g j of the functions g j describing the boundary of
Ω, that is

|∇g j(x̄) − ∇g j(ȳ)| ≤ ω(|x̄ − ȳ|) (5.4)

for all x̄, ȳ ∈ RN−1. Assume that there exists D > 0 such that the function ω satisfies the following
condition∗ ∫ ∞

0

(
ω(t)

t

)2

dt ≤ D . (5.5)

Then there exists C > 0 depending only on N, A, D such that if M ≤ Cδ then, possibly replacing the
atlasA with a refinement ofA, Ω is of classM3/2

2 (δ,A).

Proof. We begin with the case N ≥ 3. By [34, Cor. 14.6.1] there exists c > 0 depending only on N
such that if x = (x̄, g j(x̄)) ∈ ∂Ω is any point of the boundary represented in local charts by a profile

∗Here only the integrability at zero really matters and one could consider integrals defined in a neigborhhood of zero.
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function g j and the following inequality

lim
ρ→0

(
sup

E⊂Bρ(x̄)

‖D3/2(g j, Bρ)‖L2(E)

|E|
N−2

2(N−1)

+ ‖∇g j‖L∞(Bρ(x̄))

)
≤ cδ (5.6)

is satisfied, then, possibly replacing the atlasA with a refinement of its, Ω is of classM3/2
2 (δ,A). Here

|E| denotes the N − 1-dimensional Lebesgue measure of E,

D3/2(g j, Bρ)(x̄) =

(∫
Bρ(x̄)
|∇g j(x̄) − ∇g j(ȳ)|2|x̄ − ȳ|−Ndȳ

)1/2

,

and Bρ(x̄) the ball in RN−1 of radius ρ and centre x̄. We refer to [34, §14.7.2] for the local
characterization of the boundaries of domains of classM3/2

2 (δ,A).
We have ∫

E

∫
Bρ(x̄)
|∇g j(x̄) − ∇g j(ȳ)|2|x̄ − ȳ|−Ndȳdx̄ ≤

∫
E

∫
Bρ(x̄)

ω2(|x̄ − ȳ|)
|x̄ − ȳ|N

dȳdx̄

=

∫
E

∫
Bρ(0)

ω2(|h̄|)
|h̄|N

dh̄dx̄ = σN−2|E|
∫ ρ

0

∣∣∣∣∣∣ω(t)
t

∣∣∣∣∣∣2 dt ≤ σN−2D|E| . (5.7)

Here σm denotes the m-dimensional measure of the m-dimensional unit sphere. Thus

‖D3/2(g j, Bρ)‖L2(E)

|E|
N−2

2(N−1)

≤ (σN−2D)1/2|E|
1

2(N−1) = O(ρ1/2),

hence
‖D3/2(g j, Bρ)‖L2(E)

|E|
N−2

2(N−1)

≤ cδ, (5.8)

provided ρ is sufficiently small. Thus, inequality (5.6) follows if we assume directly that ‖∇g j‖L∞(Bρ) ≤

cδ.
In the case N = 2, by [34, Cor. 14.6.1] it suffices to replace (5.6) by the following inequality

lim
ρ→0

(
sup

E⊂Bρ(x̄)
‖D3/2(g j, Bρ)‖L2(E)| log |E||1/2 + ‖∇g j‖L∞(Bρ(x̄))

)
≤ cδ (5.9)

and use the same argument as above. �

By combining Theorems 6 and 7, we deduce the validity of the following result

Corollary 1. Under the same assumptions of Theorem 7, there exists C̃ > 0 depending only on N, A,
D such that if M < C̃−1 then the a priori estimate (5.2) holds.

Finally, by Theorem 5 and Corollary 1 we deduce the following result ensuring the validity of
uniform Gaffney inequality that can be used in our spectral stability results.

Corollary 2. Under the same assumptions of Theorem 7 with N = 3, there exists C > 0 depending
only onA and D such that if M < C−1 then the Gaffney inequality (2.3).
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5.1. Applications to families of oscillating boundaries

It is clear that in order to apply Theorem 7 and Corollaries 1, 2, it suffices to assume that the
gradients ∇g j of the functions g j describing the boundary of a domain Ω as in Definition 1 are of class
C0,β with β ∈]1/2, 1], that is

|∇g j(x̄) − ∇g j(ȳ)| ≤ K|x̄ − ȳ|β (5.10)

for some positive constant K and all x̄, ȳ ∈ W j, and that the functions g j have sufficiently small Lipschitz
constants. As we have already mentioned, in principle, the second condition is not a big obstruction to
the application of these results, since for a domain of class C1 one can find a sufficiently refined atlas,
adapted to the tangent planes of a finite number of boundary points, such that the C1 norms, hence
the Lipschitz constants, of the profile functions g j are arbitrarily close to zero. Thus, we can apply
our results to uniform classes of domains of class C1,β since condition (5.5) would be satisfied exactly
because β > 1/2 (as we have said, here what matters is the behaviour of the modulus of continuity ω(t)
for t close to zero and one can assume directly that ω(t) is constant for t big enough).

Thus, we can prove the following result. Note that here the domains Ωε are assumed to be of class
C1,1 and that they belong to the uniform class C1,β

K (A) with K > 0 fixed, which in particular implies
the validity of (5.10) for all functions gε, j and all ε > 0. (Recall that the operators S ε are defined in the
beginning of Section 4.)

Theorem 8. Let A be an atlas in R3 and {Ωε}ε>0 be a family of bounded domains of class C1,1(A)
converging to a bounded domain Ω of class C1,1(A) as ε → 0, in the sense that condition (3.14) holds.
Suppose that Ω is of class C0,1

M (A) with M small enough as in Corollary 2. Suppose also that all
domains Ωε are of class C1,β

K (A) with the same parameters β ∈]1/2, 1] and K > 0. Then the uniform

Gaffney inequality (4.1) holds provided ε is small enough. Moreover, S ε

C
−→ S as ε → 0. In particular,

spectral stability occurs: the eigenvalues of the operator S ε converge to the eigenvalues of the operator
S 0, and the eigenfunctions of the operator S ε E-converge to the eigenfunctions of the operator S 0 as
ε → 0.

Proof. Since Ωε converges to Ω as ε → 0 in the sense that condition (3.14) holds, it follows that the
gradients of the functions gε, j describing the boundary of Ωε converge uniformly to the gradients of the
functions g j describing the boundary of Ω. Thus, Ωε is of class C0,1

M (A) provided ε is small enough. By
the discussion above, Corollary 2 is applicable and the uniform Gaffney inequality (4.1) holds provided
ε is small enough. Then the last part of the statement follows by Theorem 4. �

A prototype for the classes of domains under discussion is given by domains designed by profile
functions often used in homogenization theory, in particular in the study of thin domains. Namely,
assume that one of the profile functions gε, j, call it gε , is of the form

gε(x̄) = εαb(x̄/ε) (5.11)

for some function b of class C1,1(R2) and α > 0, and assume that the gradient of b is bounded. If ω∇b

is a (non-decreasing) modulus of continuity of ∇b, then we have

|∇gε(x̄) − ∇gε(ȳ)| = εα−1|∇b(x̄/ε) − ∇b(ȳ/ε)| ≤ εα−1ω∇b

(
x̄ − ȳ
ε

)
,
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hence the function ω to be considered in (5.4) is given by ω(t) = εα−1ω∇b(t/ε). Observe that∫ ∞

0

(
ω(t)

t

)2

dt = ε2α−2
∫ ∞

0

(
ω∇b(t/ε)

t

)2

dt = ε2α−3
∫ ∞

0

(
ω∇b(s)

s

)2

ds . (5.12)

Moreover, since b is assumed to be of class C1,1, we have that ω∇b(t) ≤ ct for t in a neighborhhood of
zero. Thus, if α ≥ 3/2 and ε0 is any fixed positive constant, it follows that that

sup
ε∈]0,ε0]

ε2α−3
∫ ∞

0

(
ω∇b(s)

s

)2

ds , ∞ . (5.13)

Since the gradient of gε is arbitrarily close to zero for ε sufficiently small, we have that Theorem 7 and
Corollaries 1, 2 are applicable and the Gaffney inequality (4.1) holds for all ε sufficiently small, with a
constant C > 0 independent of ε. The same arguments can be applied to families of profile functions
of the type

gε(x̄) = εαb(x̄/ε)ψ(x̄)

where b is as above and ψ is a fixed C1,1 function with bounded gradient. Thus, we can state the
following stability result concerning a local perturbation of a domain Ω.

Theorem 9. Let W be a bounded open rectangle in R2, b ∈ C1,1(R2) with bounded gradient, b ≥ 0,
and ψ ∈ C1,1

c (W), α > 3/2. Assume that Ω and Ωε , ε > 0 are domains of class C1,1 in R3 satisfying the
following condition:

(i) Ω ∩ (W×] − 1, 1[) = {(x̄, x3) ∈ R3 : x̄ ∈ W, −1 < x3 < 0};

(ii) Ωε ∩ (W×] − 1, 1[) = {(x̄, x3) ∈ R3 : x̄ ∈ W, −1 < x3 < εαb(x̄/ε)ψ(x̄)} where b ∈ C1,1(R2) has
bounded gradient, and ψ ∈ C1,1

c (W);

(iii) Ω \ (W×] − 1, 1[) = Ωε \ (W×] − 1, 1[);

Then the family {Ωε}ε>0 converges to Ω in the sense that condition (3.14) holds. Moreover, the uniform

Gaffney inequality (4.1) holds and S ε

C
−→ S as ε → 0. In particular, spectral stability occurs: the

eigenvalues of the operator S ε converge to the eigenvalues of the operator S 0, and the eigenfunctions
of the operator S ε E-converge to the eigenfunctions of the operator S 0 as ε → 0.

Proof. By assumptions, the domains Ω and Ωε belong to the same atlas class C1,1(A) for a suitable
atlas A, and W×] − 1, 1[ is one of the local charts of A. In particular, the profile functions describing
the boundaries of Ω and Ωε in that chart are given by g(x̄) = 0 and gε = εαb(x̄/ε)ψ(x̄) for all x̄ ∈ W.

As in the proof of [3, Thm. 7.4], if α̃ ∈]3/2, α[ is fixed then one can easily check that conditions
(3.14) are satisfied with kε = ε2α̃/3. By (5.2) and the discussion above, it follows that the Gaffney
inequality (2.3) holds with a constant C independent of ε, provided ε is sufficiently small. To complete
the proof it suffices to apply Theorem 4. �

Remark 4. It is clear that condition (5.13) is satisfied also in the case α = 3/2. Thus the uniform
Gaffney inequality (4.1) holds also in the case α = 3/2 in Theorem 9. However, in this case the
convergence of Ωε to Ω in the sense of (3.14) is not guaranteed hence we cannot directly deduce that
we have spectral stability. Thus, another method has to be used in the analysis of the stability problem
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for α = 3/2. For example, in the case of non-constant periodic functions b one could use the unfolding
method as in [11], adopted also in [2, 3, 19, 20]: in those papers, for α = 3/2 we have spectral
instability in the sense that the limiting problem differs from the given problem in Ω by a strange term
appearing in the boundary conditions (as often happens in homogenization problems). We plan to
discuss the details of this problem for the curlcurl operator in a forthcoming paper, but we can already
mention that a preliminary formal analysis would indicate that no strange limit appears in the limiting
problem for α = 3/2. On the other hand, at the moment we are not able to formulate any conjecture
for the case α < 3/2 although, on the base of the results of [11] concerning the Navier-Stokes system,
a degeneration phenomenon (to Dirichlet boundary conditions) could not be excluded.
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