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ABSTRACT This work proposes a metasurface-cladded waveguide which may be filled with positive- or
negative-epsilon materials. This design targets microwave plasma technology, particularly devices intended
to be loaded with tenuous and dense plasma. Namely, the dielectric permittivity of the filling material is
positive or negative, depending on the scenario. First, a theoretical model has been proposed to assess
the electromagnetic propagation regime. Specifically, the cladding metasurface is treated as an anisotropic
surface impedance imposed at the edge of the waveguide. Second, a possible design relying on a hollow
dielectric substrate whose internal surface is coated with a lattice of metallic patches is numerically
investigated. The results show that the waveguide propagates electromagnetic waves independently from the
sign of the dielectric permittivity of the filling material. The latter parameter and the geometry of the metallic
lattice are shown to be governing design parameters, in particular, in determining the cut-off frequency of
the fundamental mode.

INDEX TERMS Metasurface-cladded waveguide, cylindrical waveguide, filled waveguide, negative-
epsilon, microwave plasma.

I. INTRODUCTION
Plasma is usually referred to as the fourth state of matter.
It is an ionized gas composed of positively and negatively
charged particles [1]. Microwave plasma is a widespread
technology that finds application in several fields [2].
Examples worth to be mentioned are material etching [3],
electric space propulsion [4], [5], and plasma anten-
nas [6]. The solutions most frequently adopted to generate
plasma relying on microwave power are surface wave [7]
and electron cyclotron resonance [8] discharges. Microwave
systems, yet mature enough, are still susceptible to the typical
issues encountered in plasma discharges. These include
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the need for a power budget to sustain the plasma and
the challenge of impedance matching due to the variable
load presented by the plasma [9], [10]. Moreover, from
an electromagnetic (EM) perspective, plasma is a peculiar
medium whose dielectric permittivity can assume both
positive and negative values [11].

Plasma-loaded waveguides have been a topic of research
since the 1960s [12]. Most wave-driven plasma dis-
charges can be modeled as segments of waveguides filled
with either non-magnetized (isotropic) [13] or magnetized
(anisotropic) [14] plasma. Extensive experimental work has
been done to investigate EM plasma propagation in the
framework of material processing [15], space propulsion [4],
and plasma antennas [16]. Additionally, numerous theoretical
studies on plasma-loaded waveguides have been published
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since the 1960s. These studies include the analysis of plasma
layers in free space [12] and those confined by conductive
walls [17]. Both non-magnetized [18] and magnetized [19]
configurations have been considered. To address more
realistic, non-uniform plasma configurations, numerical
models have been developed for both plane [20], [21] and
cylindrical [22], [23] geometries. Other significant works
include the analysis of guided and leaky wave modes in
magnetized plasma layers [24], [25].
The EM propagation in waveguides filled with uncon-

ventional materials has attracted researchers over the last
decades. The propagation in waveguides lined with epsilon-
negative, mu-negative, or double-negative materials has been
assessed in several works, including cylindrical [26], and
parallel-plate geometries [27]. These configurations enable
below-cutoff propagation, field collimation, and miniatur-
ization [28], [29]. Notably, a proof-of-concept implemented
in cylindrical geometry has been assessed in [30]. Similar
analyses are performed for rectangular [31], [32] and
cylindrical [33] waveguides loaded with metamaterials.
Recently, the adoption of cladding-metasurfaces has been

proposed to modify the propagation in waveguides [34].
Specifically, metasurfaces are a technology that allows
controlling the EM fields tangential to the surface [35].
This, in turn, enables achieving epsilon-negative and mu-
negative behavior [36] or surface waves propagation [37].
Metasurfaces are adopted in waveguides to control cut-off,
enhance field confinement for electromagnetic bandgap,
and break the degeneracy of left-handed and right-handed
wave modes [38]. Theoretically, cladding-metasurfaces can
be treated as sub-wavelength thin layers whose properties
are derived from the bulk material parameters [39]. The
corresponding constitutive relation can be translated into
generalized sheet boundary conditions. Thus, they can
be interpreted as liners that transition the Perfect Elec-
tric Conductor (PEC) condition imposed in conventional
waveguides to an effective surface impedance [40]. This
methodology has been adopted to handle rectangular [41] and
cylindrical [42] geometries. Notably, proofs of concepts that
exploit cladding-metasurfaces in rectangular waveguides are
proposed in literature [43], [44].
This work focuses on EM propagation in cylindrical

metasurface-cladded waveguides loaded with generic dielec-
tric material. The proposed device allows EM waves to
propagate in the presence of either tenuous or dense plasma,
resulting in a dielectric permittivity that is either positive
or negative [11]. This capability is crucial for designing
efficient plasma discharges or waveguides that interface
the actual source with the microwave power unit [2].
Additionally, a metasurface-cladded waveguide can function
as a plasma diagnostic system [45], as waveguides are
commonly used in sensing applications where wave modes
are sensitive to the local dielectric environment [46]. While
EM propagation in cylindrical waveguides filled with plasma
has been extensively analyzed [47], [48], to the best of
the authors’ knowledge, this is the first study to propose

FIGURE 1. Scheme of the theoretical model.

using a metasurface to line a plasma-loaded waveguide.
Moreover, the proposed metasurface-cladded waveguide can
be loaded with both conventional and epsilon-negative mate-
rials, advancing the current literature, which only addresses
metasurface-cladded waveguides filled with positive-epsilon
dielectrics [49].

II. METHODOLOGY
A. THEORETICAL MODEL
The EM propagation within a metasurface-cladded waveg-
uide is studied, introducing the equivalent system depicted
in Fig. 1 [34], [40], [42]. A cylinder of radius a and infinite
axial extension is filled with a dielectric material of relative
permittivity εr . It is lined with a sheet of negligible thickness
that presents an anisotropic surface impedance (Zt , Zz) [34].
The sheet approximates the cladding metasurface and is
introduced, without loss of generality, to simplify the
analytical solutions of the problem at hand [40], [42].
Assuming a dependence from time and space in the form
exp[ȷ (ωt − βz ± mφ)], Maxwell’s equations are solved in
the cylindrical reference frame (ρ, φ, z) [50, Chap. 3.4] [51,
Chap. 5.3] [52] where ω is the angular frequency, β the axial
wavenumber, andm the azimuthal wavenumber. In particular,
m is a positive integer, and the sign ± determines if the
propagation is right-handed or left-handed [38]. Consistently
with the results presented in [53] and [54], the EM fields for
ρ ≤ a read

Ez = E0
Im(τρ)
Im(τa)

, (1)

Eρ = E0

[
ȷ
β

τ

I ′m(τρ)
Im(τa)
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η0H0
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τρ
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τ
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]
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m
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]
, (6)

where η0 is the impedance of free space, k0 = ω/c0 is the
wavenumber in vacuum, and c0 is the speed of light. E0 and
H0 are complex constants in V/m and A/m, respectively.
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Im indicates the modified Bessel function of the first kind
and order m. The parameter τ is equivalent to the transverse
wavenumber and reads

τ =

√
β2 − εrk20 . (7)

It is worth noting that the EM fields in Eqs. 1–6 are expressed
using the modified Bessel functions Im [51, Chap. 5.3], rather
than the Bessel functions Jm typically adopted for cylindrical
waveguides [50, Chap. 3.4]. Although both formalisms
yield equivalent results, the modified Bessel functions
are used because they are more suitable for describing
the surface waves that propagate in metasurface-cladded
waveguides [39] and waveguides filled with negative-epsilon
materials [13].
To determine the dispersion relation of the waveguide, the

following boundary conditions are imposed [34]

Zt =
Eφ

Hz

∣∣∣∣
ρ=a

, (8)

Zz = −
Ez
Hφ

∣∣∣∣
ρ=a

, (9)

where Zt and Zz are the transverse and axial surface
impedance, respectively. Relying on the expressions reported
in Eqs. 1-6, the following dispersion relation is obtained
solving simultaneously Eq. 8 and Eq. 9:

0 =

(
m
τa

β

τ

)2

+

(
ȷ
k0
τ

I ′m(τa)
Im(τa)

+
Zt
η0

)(
ȷ
εrk0
τ

I ′m(τa)
Im(τa)

+
η0

Zz

)
. (10)

Specifically, the axial wavenumber can be computed once
the adimensional parameters m, εr , k0a, Zt/η0, and Zz/η0 are
fixed. Notably, a second condition follows from the solution
of Eqs. 8, 9:

±
E0

η0H0
= −

(
τa
m

τ

β

)(
ȷ
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τ
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Im(τa)

+
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, (11)

or alternatively

±
η0H0

E0
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(
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τ

β

)(
ȷ
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Im(τa)

+
η0
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)
. (12)

Thus, the modes associated with right-handed and left-
handed propagation are degenerate, given that any ambiguity
between signs can be removed by introducing Eq. 11 or Eq. 12
in Eqs. 1-6 [38]. More interestingly, in a metasurface-cladded
waveguide, it is impossible to separate TE and TM modes
given that the coefficients E0 and H0 are not independent
of one another [55], [56], [57]. Specifically, a similar-TE
propagation is associated with the condition |η0H0/E0| ≳ 1
and is referred to as HE mode, otherwise the hybrid mode is
similar-TM and is called EH [55], [56], [57]. The only case in
which TE and TM modes are independent is for m = 0 [39].

In that case, the dispersion relation reduces to

Zt = −ȷη0
k0
τ

I1(τa)
I0(τa)

TE01 mode , (13)

Zz = ȷη0
τ

εrk0

I0(τa)
I1(τa)

TM01 mode . (14)

Notably, the expression reported in Eq. 14 is fully consistent
with the results presented in [39].

Manipulating Eq. 10, it is possible to prove that cut-off,
namely β = 0 [50, Chap. 3.4], occurs if one of the following
conditions is matched

Z ct = η0
ȷ

√
εr

J ′
m(

√
εrk0a)

Jm(
√

εrk0a)
HE modes , (15)

Z cz = −η0
ȷ

√
εr

Jm(
√

εrk0a)
J ′
m(

√
εrk0a)

EH modes , (16)

The cut-off condition associated with HE modes is given
in Eq. 15 since using the expression of Z ct in Eq. 11
results in |E0/η0H0| → 0. Vice versa, Eq. 16 refers to
EH modes [26], [28]. Eqs. 15, 16 also provide a second
preliminary verification of the theoretical model for Z ct =

Z cz = 0, namely if the cladding metasurface is a sheet
of Perfect Electric Conductor (PEC) [34]. In this case, the
cut-off conditions expressed in Eqs. 15, 16 match perfectly
the ones derived via the standard solution of cylindrical
metallic waveguides [50, Chap. 3.4]. Moreover, the electric
field parallel to the cladding metasurface and the magnetic
field perpendicular to it are null for ρ = a.

Finally, it is worth mentioning that the proposed theoretical
model can handle a generic expression for εr . In the case of
a plasma medium, which represents the main target of this
work, the relative dielectric permittivity reads

εr = 1 −
ω2
p

ω
(
ω − ȷνc

) , (17)

where ωp, evaluated in rad/s, is the plasma frequency
and νc, evaluated in Hz, is the collision frequency. Notably,
Re(εr ) ≥ 0 for ω ≥ ωp, otherwise plasma is an epsilon-
negative material [11].

B. NUMERICAL MODEL
The commercial software CST Studio Suite ®has been
exploited to simulate the EM propagation in the metasurface-
cladded waveguide. Maxwell’s equations are solved in the
frequency domain, relying on an unstructured tetrahedral
mesh and imposing open boundary conditions [39]. The
signal is coupled to the waveguide via a PEC ring excited
through a discrete face port [28]. The design depicted in Fig. 2
is numerically investigated to validate the theoretical model.
In the scheme, thematerial labeled ‘‘Dielectric’’ is assumed to
have a relative dielectric permittivity εr . An isotropic surface
impedance is imposed at the edge of the waveguide assigning
the native CST material named ‘‘Surface Impedance’’ to
the cladding. Since CST only allows for isotropic surface
impedance, the theoretical model is verified for Zt = Zz in
Section III.
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FIGURE 2. Axial cross-section of the numerical model used to verify the
theoretical model.

FIGURE 3. Axial cross-section of the proposed metasurface-cladded
waveguide.

On the other hand, Fig. 3 shows a realistic imple-
mentation of a metasurface-cladded waveguide. Here, the
surface impedance is not predetermined but results from the
metasurface design [44], [58]. The inner side of the dielectric
‘‘Substrate’’ is coated with a lattice of metallic patches.
By tuning the dimensions of each patch, the equivalent
surface impedance that governs EM propagation within
the waveguide can be controlled [59]. Specifically, cases
resulting in an anisotropic surface impedance are analyzed in
Section IV, providing further verification of the theoretical
model. Finally, the entire waveguide is enclosed within a
cylindrical metallic sheet for confinement.

III. THEORETICAL ANALYSIS
The theoretical model is exploited to assess the EM propa-
gation in the metasurface-cladded waveguide introduced in
section II. For simplicity’s sake, losses of the wall and the
dielectric material are neglected; this corresponds to having a
purely imaginary surface impedance and a real εr [34]. This
assumption is further delved into Appendix A.

A. DIELECTRIC PERMITTIVITY
The proposed design targets materials with positive or
negative values of εr . Thus, the dispersion relation in Eq. 10

FIGURE 4. Normalized axial wavenumber β/k0 vs. surface impedance for
k0a = 0.5, εr = 1, and (a) m = 0, or (b) m = 1.

is solved for εr = 1 and εr = −1; results are reported in
Fig. 4 and Fig. 5, respectively. The waveguide analyzed is
electromagnetically ‘‘small’’ being k0a = 0.5 as, in ametallic
cylindrical waveguide, propagation is possible only for k0a ≥

1.841 [50, Chap. 3.4].
In the case of εr = 1, the mode TE01 propagates for

negative values of Im(Zt ), in particular Z ct ≤ Zt ≤ 0 [42].
Instead, the mode TM01 is associated to positive values of
Im(Zz), specifically Zz ≥ Z cz [39]. Notably, in a system in
which Zt and Zz can be controlled separately, the two modes
associated with m = 0 are independent. If m = 1 the
combinations of Zt and Zz enabling propagation are less
trivial [34], [40]. Specifically, the cut-off condition occurs in
correspondence of Z ct and Z cz while, in ‘‘small’’ waveguides,
a resonance is encountered for Zt = 0 (i.e., β → ∞) [32].
Notably, the trend followed by higher order hybrid modes
(i.e., m ≥ 2) is similar to one for m = 1 as long as the cut-off
conditions prescribed in Eqs. 15, 16 are considered.
If εr = −1, the behavior of the TE01 mode is almost

unchanged with respect to the case εr = 1. The situation
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FIGURE 5. Normalized axial wavenumber β/k0 vs. surface impedance for
k0a = 0.5, εr = −1, and (a) m = 0, or (b) m = 1.

is different for the TM01 mode given that negative values of
Im(Zz) are required and, in particular, Zz ≤ Z cz . Nevertheless,
with εr < 0, the wave modes associated with m = 0 are
independent. Relying on suitable combinations of Zt and Zz,
the propagation of hybrid modes for m = 1 is also possible.
Specifically, the resonance condition for Zt = 0 still holds,
and the value of Z cz is almost the same as the case εr = 1;
on the contrary, Z ct changes sign. Similar considerations hold
for higher-order hybrid modes.

The trends reported in Figs. 4, 5 can be explained in
different ways. First, for εr = 1 and β ≤ k0 (i.e., Fig. 4),
waves propagate obliquely with respect to the axis of the
system, similarly to what happens in metallic cylindrical
waveguides [50, Chap. 3.2]. Given that the boundary condi-
tions do not necessitate the fields being null at the edge of the
waveguide, the cut-off conditions change consequently [38].
For εr = 1 and β > k0, instead, it is helpful to consider
the equivalence between a surface impedance sheet and the
discontinuity among different materials [39]. Specifically, the
EM propagation regime, in this case, is equivalent to a surface
wave occurring at the interface between the inner cylinder

FIGURE 6. (a) Transversal, and (b) axial threshold surface impedance to
stimulate modes m = 0, 1, 2 vs. dielectric permittivity εr .

and a fictitious background characterized by a negative
dielectric permittivity [39]. Similarly, for εr = −1, the same
equivalence still holds. In fact, the possibility of stimulating
surface waves within plasma columns (εr < 0) immersed in
air is well known [7], [60]. Thus, for εr = −1, an adequately
selected surface impedance allows the propagation of EM
signals equivalent to the surface waves mentioned above.

Fig. 6 depicts the cut-off conditions Z ct and Z cz to provide
a clearer picture of how εr affects the EM propagation.
Specifically, only the TE01 mode is not significantly affected
by εr . On the contrary, Z cz related to TM01 shows an almost
inverse proportionality with εr . The same occurs in HE hybrid
modes for which Z ct is concerned. At the same time, Z cz is not
particularly affected by εr if m ≥ 1. Finally, the resonance
condition occurring at Zt = 0 in electromagnetically ‘‘small’’
waveguides does not depend straightly on εr .

B. FREQUENCY ANALYSIS
The frequency response is a crucial design parameter of a
waveguide. Fig. 7 shows the normalized axial wavenumber
β/k0 as a function of the normalized propagation constant k0a

VOLUME 12, 2024 124541
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FIGURE 7. Dispersion relation for the modes m = 0, 1, 2, 3: (a) positive
and (b) negative arbitrary surface impedance. Plasma medium is
considered such that aωp/c0 = 0.33. Yellow background indicates ω < ωp.
Theoretical (continuous and dashed lines) and numerical (‘‘num’’) models
are compared.

(proportional to the signal frequency, as k0 = 2π f /c0).
Given the dispersive nature of the plasma medium, it is
worth performing this analysis considering εr as prescribed
by Eq. 17 rather than fixing its value. Specifically, ωp is
defined via an adimensional parameter that reads ωpa/c0 =

0.33 while arbitrary pairs of Zt and Zz are assumed. Notably,
the propagation associated with positive values of the surface
impedance requires εr > 0 being ω > ωp. Vice versa,
the condition εr < 0 holds if the surface impedance is
negative. This is coherent with the qualitative wave dynamics
described in Section III-A. Moreover, the fundamental mode
is HE11 regardless of the sign of the surface impedance
consistently with the inverse proportionality identified in
Fig. 6 between εr and the cut-off impedance for the TM01
and HE modes. In the case with positive surface impedance,
the only mode that propagates at k0a = 0.6 is HE11 (see
Fig. 7a). The EM fields evaluated in this condition are

FIGURE 8. Normalized EM fields vs. normalized radial coordinate ρ/a.
Same conditions as in Fig 7. The results of the theoretical (continuous
and dashed lines) and numerical (‘‘num’’) models are compared.

depicted in Fig. 8. Consistently with the results presented
in [39], a metasurface-cladded waveguide can be designed
to maximize the intensity of the fields on the system’s edge
rather than its axis because of the propagation of surface
waves.

Notably, the theoretical results depicted in Figs. 7, 8 are
verified against numerical estimations obtained using the
setup depicted in Fig. 2. The numerical simulations assume
a = 10 mm, ωp = 1010 rad/s, and L = 200 mm. The
frequency is varied in the range 0.5–5 GHz, with the specific
comparison in Fig. 8 obtained for f = 2.86 GHz. Theoretical
and numerical results are in close agreement. The axial
wavenumber is evaluated by applying a Fourier transform
to the computed fields along the z-axis [39], revealing a
negligible discrepancy of less than 1% between theoretical
and numerical calculations. A similar agreement is obtained
for the EM fields, as shown in Fig. 8. This constitutes a
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FIGURE 9. Cut-off frequency vs. number of azimuthal patches Nφ for
different values of the dielectric permittivity εr . The label ωp identifies a
dispersive plasma where ωp = 1010 rad/s. Markers indicate the
fundamental mode.

TABLE 1. Dielectric permittivity εr at the cut-off for ωp = 1010 rad/s.

verification of the theoretical model for an isotropic surface
impedance.

IV. NUMERICAL ANALYSIS
The design of the proposed metasurface-cladded waveguide
is depicted in Fig. 3. Specifically, the internal radius is
a = 20 mm, and the thickness of the substrate is h = 6 mm.
The substrate material is a dielectric with relative permittivity
εs = 10 (e.g., RT/duroid ® [61]). The internal side of
the waveguide is ‘‘coated’’ with a lattice of metallic patches
whose periodicity in the z-direction is D = πa/12 =

5.2 mm. The simulated waveguide comprises 50 rings of
metallic patches in the axial direction, namely L = 262 mm.
Along the azimuthal φ-direction, each patch is long Dφ ≈

2πa/Nφ , where the integer Nφ represents the number of
metallic elements on each ring and varies from 1 to 24. For
example, Fig. 3 corresponds to Nφ = 24 square patches
with Dφ = D. Instead, when Nφ = 1, the lattice is made
of uniform annuli [40]. Adjacent patches are separated from
one another by w = 0.3 mm. The waveguide is filled with a
uniformmaterial with relative permittivity εr that can assume
both arbitrary fixed values or follow the disperse behavior
prescribed by Eq.17 when ωp = 1010 rad/s.

FIGURE 10. Transverse surface impedance vs. number of azimuthal
patches Nφ for different values of εr . The label ωp identifies a dispersive
plasma where ωp = 1010 rad/s. Markers indicate the fundamental mode.

A. CUT-OFF ANALYSIS
Fig. 9 represents the cut-off frequency f c for different values
of εr and Nφ . The cut-off is first analyzed for fixed εr .
Subsequently, the dispersive nature of the plasma is taken into
account to prove that the dynamics of the system depend on
the actual value of εr . For a given filling material, the cut-off
frequency increases with Nφ . Interestingly, for Nφ = 1 and
εr = 1 the cut-off frequency is f c = 0.7 GHz. In a cylin-
drical metallic waveguide with comparable external radius
(i.e., a + h = 26 mm), the cut-off frequency is way
larger, namely f c = 3.4 GHz [50, Chap. 3.4]. As expected,
f c decreases for larger values of εr . Again, for metallic
waveguides f c ∝ 1/

√
εr while for the system at hand,

the dependence of f c from εr is weaker. More notably, the
same structure can support EM propagation if the filling
dielectric has, indifferently, positive or negative dielectric
permittivity. This property is extremely appealing to design
plasma sources in which EM waves propagate both in case
of tenuous (εr > 0) or dense (εr < 0) plasma [11]. Lastly,
Nφ determines also the fundamental mode of the waveguide.
Regardless of the value of εr , the fundamental mode is
associated with m = 1 unless for Nφ = 3, 4 where it can
be replaced by TE01.

Fig. 10 depicts the transverse surface impedance Zt
computed at the cut-off. Analyzing the surface impedance is
key to determining the cut-off dynamics since a mode exists
at a certain frequency only if Zt and Zz are compatible with its
propagation (e.g., see Figs. 4, 5). Nonetheless, when handling
a realistic cladding metasurface, Zt and Zz are unknown
a-priori [44]. In this work, they are estimated to satisfy the
dispersion relation Eq. 10, where β is computed Fourier
transforming results along the z-axis [39], and to fit the EM
fields propagating within the waveguide at best. As shown
in Section IV-B, this procedure, which relies on the least
square method [39], allows to reproduce the actual EM fields
with errors below a few percent points. In general, if the
fundamental mode is HE11, Im(Z ct ) is expected to have the
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same sign as εr . While the condition Im(Z cz ) < 0 holds if
the fundamental model is EH11 (see Fig. 6). Namely, if the
number of metallic patches is sufficiently high, cut-off occurs
since Zt follows the trend prescribed for Z ct (see the circle
markers in Fig. 10). Vice versa, the cut-off is driven by
negative Zz values that follow the trend of Z cz . When the
fundamental mode is TE01, Im(Z ct ) < 0.

If Nφ ≥ 6, the trend of Zt can be qualitatively
explained by relying on a simplified analytical model
of plane metasurfaces [37], [59], [62], [63]. The cut-off
frequency is the one that allows the surface impedance to
meet the conditions expressed in Eqs. 15, 16 [26], [28].
Specifically, the filling material affects the cut-off impedance
Z ct and Z cz (see Fig. 6) while the geometry of the patches
has a major effect on the actual surface impedance Zt
and Zz [37]; see Appendix B for further details. Specifically,
the value of Nφ , and in turn of Dφ , can produce an
inversion of the sign of the surface impedance [37] with
two important consequences. First, the EM propagation is
possible regardless of the value of εr since cut-off conditions
with opposite signs can be matched by adjusting Nφ and f .
Second, Nφ can produce a sign inversion in Zt [39]. If so,
the only option to meet the cut-off conditions is ensuring a
negative value of Im(Zz) that matches Z cz . As a result, the
fundamental mode changes from HE11 to EH11.

On the other hand, if Nφ ≤ 4, it is necessary to consider
that the cladding metasurface is a conformal structure whose
behavior departs from planar geometries [64]. Specifically,
Zt → 0 as in a metallic waveguide since Dφ ≈ a and,
thus, the homogenization of the lattice is no more consis-
tent [65], [66]. The fundamental mode for Nφ = 1 is
EH11, consistently with [34] and [40]. Namely, the cut-off
frequency is determined by Z cz being Im(Zz) < 0. On the other
hand, if the fundamental mode is TE01, then Im(Zt ) < 0 and
whatever value of Zz is acceptable. In summary, it is not
surprising that in certain conditions, TE01 is triggered at lower
frequencies than HE11 or EH11 given that the fundamental
mode depends on the ratio between Zt and Zz and, in turn,
on the geometry of the waveguide [34].

Finally, if a realistic plasma is considered, the dynamics
of the system depend on the actual value of εr reported in
Table 1. A notable features is registered for Nφ = 16 since
εr > 0 but the metasurface imposes Im(Zt ) < 0, namely the
fundamental mode is EH11 in spite being HE11 for Nφ = 12
and Nφ = 20. At the same time, the fundamental mode for
Nφ = 3, 4 is EH11 and not TE01. This discrepancy with
respect to fixed εr cases can be attributed to εr < −1.

B. EM FIELDS
Finally, the EM fields are analyzed to verify that the
propagation in the metasurface-cladded waveguide aligns
with theoretical predictions for a generic, not just isotropic,
surface impedance. Specifically, as outlined in Section IV-A,
Zt and Zz arise from the design of the waveguide and
are not predetermined. They are calculated to satisfy the

FIGURE 11. a) The electric field in the axial cross-section, and (b) a
comparison between the numerical and theoretical estimations of the
normalized EM fields at z = 150 mm. f = 1.8 GHz is close to cut-off for
Nφ = 24 and εr = 1.

dispersion relation in Eq. 10 and to best fit the EM
field profiles. The first condition establishes a one-to-one
relationship between Zt and Zz based on the system’s
geometry, the operation frequency, and the value of β, which
is determined by Fourier transforming the EM field maps
along the z-axis. Subsequently, the least square method is
used to determine the pair (Zt , Zz) that best fits the EM field
profiles. Therefore, using CST, the only way to verify the
theoretical formulation for an anisotropic surface impedance
is by comparing the numerically evaluated EM field profiles
with those derived from the best-fitting pair (Zt , Zz). To this
end, the case Nφ = 24 has been considered. Numerical and
theoretical results are compared in Fig. 11 for εr = 1, and
in Fig. 12 for εr = −1. Specifically, the modulus of the
radial electric fieldEρ is represented in the axial cross-section
of the waveguide; colored arrows represent the vector
(Eρ , Ez). Notably, theoretical and numerical predictions
match well unless in proximity to the cladding metasurface.
Such discrepancy is expected since homogenization fails
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FIGURE 12. (a) The electric field in the axial cross-section, and (b) a
comparison between the numerical and theoretical estimations of the
normalized EM fields at z = 150 mm. f = 2.3 GHz is close to cut-off for
Nφ = 24 and εr = −1.

close to ametasurface [65]. As a result, additional verification
corroborates the theoretical model discussed in Section II-A
even when the surface impedance is anisotropic.

V. CONCLUSION
This work focuses on a metasurface-cladded waveguide
that supports EM propagation if loaded with positive and
negative-epsilonmaterials. First, a theoretical model has been
discussed to assess the wave modes propagating regimes in
the proposed structure. Theoretical results have been verified
against numerical predictions. The theoretical findings laid
the foundation for the numerical design, which consists
of a hollow dielectric substrate enclosed in a metal sheet.
The internal surface of the waveguide is coated with a
lattice of metallic patches. The filling dielectric and the
geometry of the metallic lattice have a major effect on the
waveguide propagation regime, particularly on the cut-off
frequency. Nonetheless, propagation is demonstrated with
both positive and negative-epsilon filling materials. This
promotes the proposed design as a microwave device for
plasma discharges [2]. Moreover, the possibility of using
a metasurface-cladded waveguide as a plasma diagnostic

FIGURE 13. (a) Dispersion relation for the mode HE11 and (b) normalized
EM fields vs. the normalized radial coordinate ρ/a. Comparison between
non-collisional (νc = 0 GHz) and collisional (νc = 1 GHz) plasma. The
plasma frequency is assumed such that aωp/c0 = 0.33.

system is worth further investigation, given the dependence
of the cut-off frequency from εr .

Future work envisions the implementation of a proof of
concept to validate the current results. Several strategies
can be employed to realize the proposed waveguide. One
option utilizes conventional printed circuit board techniques,
such as inkjet or screen printing [67]. For this approach,
a flexible substrate is required, allowing it to be printed flat
and then bent into a cylindrical shape, secured by an external
dielectric or metal sheet. The increasing demand for flexible
circuits, including sensors and wearables, has led to the use
of various organic dielectric materials as substrates [68].
Additionally, metal nanoparticle-based conductive inks are
commonly used to create the conductive pattern [69]. Another
approach involves technologies capable of producing con-
ductive patterns directly on curved surfaces. Using intense
pulsed light-induced mass transfer, patterned circuits have
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FIGURE 14. Surface impedance Zs and cut-off impedance Z c
t associated

to the mode HE11 in function of the signal frequency.

TABLE 2. Cut-off frequency estimated numerically and theoretically.
Operative conditions as in Fig. 14.

been fabricated on convex and concave surfaces [70]. In this
method, the waveguide is produced in two parts, consisting
of two hemicylinders, eliminating the need for a flexible
substrate. Instead, any suitable dielectric material can be
used, with an external metal sheet ensuring tightness and
geometrical precision in the final assembly. Given the
need to combine expertise in electromagnetics, material
science, and plasma technology, the realization of a proof of
concept for the proposed technology will be addressed in a
forthcoming paper.

APPENDIX A
PLASMA COLLISIONALITY
The rationale of assuming a non-collisional plasma for the
analyses accomplished in Sections III, IV is proven in the
following. The case examined via the theoretical model in
Section III-B is further investigated by comparing the results
obtained with non-collisional (νc = 0 GHz) and collisional
(νc = 1 GHz) plasma in Fig. 13. Notably, the configuration
analysed assumes a = 10 mm and ωp = 1010 rad/s,
namely it is consistent with the operative conditions of plasma
antennas [71]. Results are presented for the mode HE11 and
positive surface impedance, but they have general validity.
Specifically, assuming a collisional plasma mildly affects the
resultant axial wavenumber β and EM field profiles. This
is consistent with previous results handling EM propagation
within plasma if νc < ω ≈ ωp [47]. The major effect caused

by assuming νc ̸= 0 is that traveling waves are dumped, their
exponential decay is quantified via a dumping coefficient
whose value is α/k0 = 0.2 for k0a = 0.5 and νc = 1 GHz.
Specifically, the intensity of EM fields is halved at about
100 mm, perfectly consistent with exploiting the proposed
configuration in a plasma discharge [2].

APPENDIX B
METASURFACE DISPERSION MODEL
The methodology adopted to interpret the results pre-
sented in Section IV-A via the simplified analytical model
proposed in [37] is deepened in the following. The cladding
metasurface has a dispersive behavior; namely, its surface
impedance is not constant with frequency [39]. Simplified
analytical models have been proposed to handle plane meta-
surfaces [37], [59], [62], [63]. Specifically, the formulation
presented in [37] has been adopted in this work. Such a
model provides preliminary results given that the conformal
nature of the cladding metasurface is ignored [64]. For a
certain value of Nφ , and in turn of D and Dφ , the surface
impedance offered by the metasurface Zs is compared against
the frequency that triggers cut-off. In the case considered
in Fig. 14, namely εr = 1 and mode HE11, the cut-off
impedance is Z ct . The interception between the two curves
determines the cut-off frequency f c. In Table 2, the estimation
of fc via the proposed theoretical methodology is compared
against the numerical results presented in Section IV-A.
Notably, a maximum disagreement of 15% is found, which is
considered acceptable if this approach is adopted to interpret
the dynamics of the waveguide qualitatively.
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