A ^{67/64}Cu-mixture as a therapeutic alternative to pure ⁶⁷Cu

De Nardo L^{1,2}, Pupillo G³, Mou L³, Esposito J³, Rosato A^{4,5}, Meléndez-Alafort L⁴

¹DFA, University of Padua, Padua²INFN-Padua, Padua. ³INFN-LNL, Legnaro (Padua). ⁴ IOV-IRCCS, Padua. ⁵ DISCOG, University of Padua, Padua.

Aim

Two copper radioisotopes, ⁶⁴Cu and ⁶⁷Cu, are currently considered among the most promising radionuclides for both diagnosis and therapy of cancers. ⁶⁴Cu radionuclide is already commercially available, as it can be produced with high specific activity by using proton beams available at low energy (i.e. 18-24 MeV), so called medical, cyclotrons. On the other hand, high yield production of ⁶⁷Cu is difficult, due to the co-production of other Cu-isotopes, especially ⁶⁴Cu. To address this issue, currently preventing the spread use of ⁶⁷Cu in preclinical as well as clinical research programs, the possibility of using a mixture of ⁶⁴Cu and ⁶⁷Cu radioisotopes for therapeutic applications has been considered in this work.

Methods

Copper radioisotopes yields were calculated by considering proton beam irradiation of both ⁷⁰Zn and ⁶⁸Zn targets under different energy ranges and irradiation times. A simple spherical model, representing tumours of different sizes, was used to calculate the absorbed dose due to the self-irradiation for a uniformly distributed ^{67/64}Cu mixture. The biokinetic model for CuCl₂ published by ICRP 53 [1] was used to assess the human absorbed dose to healthy organs due to the ^{67/64}Cu mixture with the OLINDA software [2].

Results

By comparing the absorbed doses to a sphere model due to uniformly distributed ⁶⁴Cu and ⁶⁷Cu, it was found that ⁶⁴Cu administered activity must be about five times higher than that of ⁶⁷Cu to obtain the same absorbed dose for tumour mass 0.01-10 g and about ten times higher for smaller ones. By administration of a ^{67/64}Cu mixture, a supplemental activity is therefore required to get the same tumour absorbed dose produced by pure ⁶⁷Cu. This supplemental activity, triggering a dose increment in healthy organs, depends on the time of injection of the ^{67/64}CuCl₂ mixture, decreasing with increasing time post the end of the bombardment (EOB), due to the increasing ⁶⁷Cu radionuclide fraction in the mixture.

Conclusions

A mixture of ^{67/64}Cu radioisotopes could impart the same tumour absorbed dose as that due to pure ⁶⁷Cu, with a minimal (<10%) dose increment to healthy organs when injected afterwards a few tens of hours post the EOB. In this way, the exploitable amount of activity will be about 7.5 times larger compared to the hypothesis of injecting pure (RNP>99%) ⁶⁷Cu, obtained after waiting times after the EOB sufficiently long (120-145 h) to allow ⁶⁴Cu decay [3].

References

- (1) ICRP Publication 53 [1988] Ann. ICRP 18 (1-4)
- (2) Stabin M, Farmer A [2012] J Nucl Med. 53 (1): 585
- (3) De Nardo L et al. [2022] Med Phys. 49: 2709–2724