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Abstract: Numerous epidemiological studies have highlighted the positive effects on health of
wholegrain bakery products made from ‘old’ common wheat (Triticum aestivum L.) varieties. However,
‘old’ common wheat varieties display poor rheological properties, and there is limited information
on its free asparagine (ASN) content, the main precursor to acrylamide during the baking process.
This paper evaluates the effects of two seeding density levels (SD: 200 and 350 seed m−2), three
nitrogen levels (NL: 35, 80 and 135 kg N ha−1), and two sulfur levels (SL: 0 and 6.4 kg S ha−1)
towards improving the grain yield (GY), rheological characteristics, and ASN content of 14 ‘old’
common wheat varieties. SL and SD treatments significantly increased GY without decreasing the
protein content (PC), while NL significantly increased the PC without affecting GY. The dough
strength (W) increased significantly with increasing SL and NL but was significantly reduced with
increasing SD. ASN significantly increased by 111% as NL increased from 35 to 135 kg ha−1, while
ASN significantly decreased by 85.1% with the SL treatment. The findings show that 135 kg N ha−1

combined with 6.4 kg S ha−1 can improve the technical performance of ‘old’ wheat wholegrain flours
while maintaining the ASN as low as possible.

Keywords: old common wheat varieties; agronomic treatments; sulfur fertilization; free asparagine;
rheological properties

1. Introduction

Common wheat (Triticum aestivum L.) is one of the most important cereals worldwide
for both human and livestock consumption, contributing towards enhancing the global
economy [1,2]. Common wheat production amounted to 761 Mt in 2020 [3] and provides
protein for the nutrition of both humans and livestock, estimated at around 60 Mt y−1, as
reported in Shewry (2009) [4]. After the Green Revolution, common wheat production
increased, attributable to intensive fertilizer use and the breeding of cultivars, respectively,
characterized by increased tolerance to diseases and pests, higher nutrient use efficiency,
as well as a higher protein production per hectare, with a gluten composition suitable for
industrial processing [5–9]. Conventionally, common wheat cultivars registered before the
late 1960s are referred to as ‘old’, while those registered coinciding with the period of the
Green Revolution are referred to as ‘modern’ [7].

In the past decades, ‘old’ common wheats varieties have been reintroduced, and
many local micro-economies have been developed around ‘old’ cultivars [7,10]. In fact,
the increase in pollution and food security problems has led us to reconsider common
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wheat production in terms of not only productivity but also of environmental and hu-
man health impacts [11]. Interest in low impact and sustainable agricultural practices,
combined with functional (health-promoting) products, has permitted the rediscovery of
‘old’ common wheat varieties, considered to be more suited to unfavorable environmental
factors and with improved functional value in comparison to the ‘modern’ varieties [12].
Numerous epidemiological studies have highlighted the positive effects on health and
disease prevention of bread and other bakery products made from ‘old’ varieties [13,14]. In
particular, the production of wholegrain bakery products is recommended as most bioactive
compounds, associated with health benefits, are concentrated in the bran and aleurone
layers, respectively [15,16]. However, although the aleurone layer also contains good
quality free amino acids and proteins, it also stores free ASN, which is the predominant
precursor of acrylamide formation in wholegrain bakery products [16,17]. As acrylamide
is classified as a neurotoxin and “probably carcinogenic to humans” by the International
Agency for Research on Cancer [18], free ASN concentration in grain should be monitored
and maintained as low as possible. Corol et al. (2016) [19] found the free ASN contents
in 150 genotypes of common wheat, ranging from 0.32 to 1.56 mg g−1 of dry matter (cor-
responding to 2.4–11.8 micromoles g−1 of dry matter) in wholemeal wheat flours. The
‘old’ cultivars are characterized by poor efficiency in converting assimilated nitrogen (N) to
grain protein; this may contribute to an increased accumulation of ASN [20]. Furthermore,
the grain ASN content may increase in relation to stress conditions such as waterlogging,
drought, and plant diseases, as well as either nutrient excesses or deficiencies [21]. Of all
the essential nutrients applied in the field, N is the most important for vegetative crop
growth, productivity, and grain quality, thereby affecting plant development [22]. Sulfur
(S) is an essential element for wheat nutrition, and S deficiency significantly affects the
production and quality of wheat [23]. Interestingly, it was observed that ASN formation
was correlated positively with N availability [24] but was increased in the presence of S
deficiencies [20]. In this context, Wilson et al. (2020) detected free ASN concentrations
ranging from 21.0 to 41.4 micromoles g−1 in S-deficient conditions. Aside from the effects
on ASN, S affects not only N utilization and grain quality [25] but also plays an important
role in baking quality [7]. Thus, optimized S and N fertilization practices can be imple-
mented to reduce the ASN concentration in wholegrain common wheat and, consequently,
act towards reducing the health concern of acrylamide in the baked products [26].

Despite the increased interest in old varieties for functional benefits and low input
agricultural practices, these varieties are also usually characterized by a low dough strength
(W) and an unbalanced ratio between dough tenacity and dough extensibility (P/L) com-
pared to modern varieties. These rheological parameters render old varieties more difficult
to bake [7]. In order to improve the rheological properties of both old common and durum
varieties, research on fertilizer supplements is currently being investigated [7,27].

While ASN content in common wheat grain has been studied extensively on a global
scale [20,21,28,29], only limited information on ASN concentrations in ‘old’ cultivars is
available [30]. Given the increasing importance of ‘old’ cultivars and the success of crop
management strategies in reducing ASN content in ‘modern’ cultivars, to the best of our
knowledge, there is no work specifically focused on reducing the ASN concentration in the
grain of ‘old’ cultivars. To address this aspect, the present study is aimed at investigating
grain yield, dough rheology, and ASN concentration of 14 “old” Italian Triticum aestivum L.
varieties in response to varying seeding density (SD) as well as N and S fertilization rates.
The objective is to simultaneously evaluate the capacity of these agronomical practices in
improving the technical performance of the dough whilst maintaining the lowest levels
of ASN.
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2. Materials and Methods
2.1. Field Experiment

The experimental field trials were conducted at the demo-farm “Tenuta di Cesa” in
Marciano della Chiana, Tuscany (Lat. 43.3095; Lon. 11.8264; 246 m asl) from September
2017 to July 2019 under rainfed conditions on an alkaline clay-loam soil (Table 1).

Table 1. Soil properties.

Soil Parameters Value

Sand (%) 37
Clay (%) 34
Silt (%) 27

pH 8.13
Organic matter (%) 0.88

Total N (%) 0.03
Olsen available P (mg kg–1) 0.42

Available S (mg kg–1) 3.3

The soil was characterized by a low organic matter content and low nutrient avail-
ability. In particular, the soil was both phosphorous- and sulfur-deficient, with less than
10 mg kg−1 available P [31] and S [32], respectively. Fourteen old Italian varieties of com-
mon wheat (Triticum aestivum L.) were investigated. The varieties were: Acciaio (AC), An-
driolo (AN), Autonomia A (AU_A), Autonomia B (AU_B), Bianco Nostrale (BI), Frassineto
405 (FR), Gentil Bianco (GB), Gentil Rosso (GR), Gentil Rosso Aristato (GR_A), Gentil Rosso
Mutico (GR_M), Inallettabile (IN), Mentana (ME), Sieve (SI), and Verna (VE) (Table 2).

Table 2. Release year and origin for the wheat cultivars used in this study. Data were obtained from
the website of the seed bank in the Tuscany Region [33].

Variety Year of Release Origin

AC 1950 Selection of “Mara”, in turn, selection of “Frassineto 405”
AN 1933 Selection of the local landrace “Andriolo”

AU_A 1938 “Frassineto 405” × “Mentana”
AU_B 1930 “Frassineto 405” × “Mentana”

BI 1927 Selection of the local landrace “Bianco Nostrale”
FR 1932 Pureline selection of “Gentil Rosso”
GB 1900 Local landrace dating back to the late 19th century
GR 1900 Local landrace dating back to the late 19th century

GR_A 1900 Selection of the local landrace “Gentil Rosso”
GR_M 1900 Selection of the local landrace “Gentil Rosso”

IN 1920 Selection of “Hatif Inversable”
ME 1913 (“Wilhelmina” × “Rieti 21”) × “Akakomugi”
SI 1960 “Est Mottin 72” × “Bellevue II”
VE 1953 “Est Mottin 72” × “Mont Calme”

Five of the old varieties in the trial were derived from the older varieties that were
used as parental material. These included AU_A and AU_B, which were derived from
crossing ME × FR, and FR, GR_A and GR_M, derived from the selection of the GR landrace.
The genealogy and release dates of the varieties were obtained from the website of the seed
bank in the Tuscany Region [33].

The 14 wheat genotypes (Gen) were evaluated during two growing seasons (Y) with
12 agronomic treatments comprising two seeding densities (SD) (200 and 350 kg seed m−2,
namely, SD200 and SD350, respectively), three nitrogen fertilization rates (NL) (35, 80 and
135 kg N ha−1, namely, NL35, NL80, NL135, respectively), and two sulfur fertilization rates
(SL) (0 and 6.4 kg S ha−1, namely, SL0 and SL6.4, respectively) (Figure 1). The experiment
was established as a strip-plot design with three replicate blocks per year. Gen was arranged
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in vertical strips as the main plot, SD was assigned to the vertical sub-plots, SL was applied
horizontally in sub-sub-plots, and, lastly, NL was assigned to horizontal sub-sub-subplots,
respectively. Each sub-sub-subplot was 14.4 m2 (width of 1.44 m and length of 10 m).
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Figure 1. Experimental design and plot layout of trials (not in scale); On the left, the plot layout for
each variety: SD200 and SD350 represent seeding density of 200 and 350 kg seed m−2, respectively;
NL35, NL80 and NL135 represent the three nitrogen fertilization rates of 35, 80 and 135 kg N ha−1,
respectively; SL0 and SL6.4 represent the two sulfur fertilization rates of 0 and 6.4 kg S ha−1,
respectively. On the right is the disposition of plots within the blocks for different varieties.

Soil tillage was carried out to a depth of 0.4 m with a moldboard plow in both
September 2017 and 2018, followed by a tandem disk harrow (0.1 m depth) to break the
clods. Before seeding, 174 kg ha−1 of triple superphosphate (P2O5: 46%) was broadcasted
and immediately incorporated into the soil by means of a tandem disk harrow (0.05 m
depth). The seeding was performed on 20 November and 15 November in the first and
second year, respectively. Nitrogen application was implemented over three distinct
periods. Initially, 20% nitrogen was broadcasted at seeding as ammonium nitrate (N: 26%).
Thereafter, 40% was spread at tillering as ammonium nitrate (N: 26%), with a final 40%
at the beginning of the stem elongation as urea (N: 46%). As suggested in Guerrini et al.
(2020), in S6.4, a total of 6.4 kg S ha−1 was distributed at booting by spraying a solution
containing 20 g L−1 of wettable sulfur powder (80% a.i.; Thiovit Jet 80WG®, Syngenta, Basel,
Switzerland). At tillering, a broadleaf herbicide treatment was performed by distributing
Manta Gold (Syngenta, Basel, Switzerland) at a dose of 2.5 L ha−1 (60 g L−1 fluroxipir
acid, 23.3 Clopyralid, and 266.7 g L−1 MCPA acid). The monocot weeds were removed
from each plot by performing manual weeding at tillering and at stem elongation. In both
growing seasons, no crop damage by weeds, insects, or diseases was observed. Common
wheat was harvested at commercial maturity (grain moisture <13%) on 12 July 2018 and
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5 July 2019. For each sub-sub-subplot, the grain biomass was calculated to determine the
grain yield per hectare (GY, t ha−1).

2.2. Meteorological Conditions

The climatic conditions were typically Mediterranean, with average daily temperatures
around 13 ◦C and approximately 750 mm of rain per year, mostly concentrated in autumn
and spring, as well as the dry summer period (Figure 2).
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Figure 2. (A) Walter-Lieth climate diagram of the study site (data 2001–2020), with monthly daily av-
erage temperature (◦C, black continuous line) and monthly average rainfall amount (mm, histograms).
(B) Comparison of the monthly daily average temperature (mm) measured during 2001–2020 (contin-
uous line), 1st growing season (dashed line) and 2nd growing season (dotted line); (C) comparison of
the monthly rainfall amount (mm) measured during 2001–2020 (color-filled histograms), 1st growing
season (hollow histograms) and 2nd growing season (diagonal-filled histograms).
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The average temperature pattern during both growing seasons was consistent with
the long-term temperature pattern. However, the average temperature values across the
first and second growing seasons (13.7 and 13.9 ◦C, respectively) were higher than the
long-term average (13.0 ◦C). In both years, rainfall distribution data fluctuated significantly
with respect to the long-term rainfall pattern.

During the first growing season, excess rainfall was recorded from February to May,
corresponding to the tillering to flowering phenological stage of common wheat. Then, a
shortage of rainfall was experienced in June, the month coinciding with grain filling. The
average temperature values at flowering and grain filling in the spring season of 2018 were
slightly warmer than the long-term averages by about 1.2 and 0.5 ◦C, respectively.

During the second growing season, excess rainfall was recorded in April and May
(from the booting to flowering phenological stage of common wheat), while a rainfall
shortage was experienced in March, coinciding with stem elongation, as well as June.
During the summer months of 2019, the daily average temperature at flowering was
lower than the long-term average by 2.7 ◦C, while the average temperature at grain filling
exceeded the long-term average by 2.4 ◦C. Therefore, between May and June 2019, there
was a temperature increase of 8.7 ◦C, which could have resulted in stress for the plants
during both the initiation and grain-filling phases.

2.3. Analysis of Kernels and Dough

The 1000 kernel weight (TKW, g 1000−1 seeds) and hectoliter weight (HW, kg hL−1)
were determined according to ISO 7971-1 (2009) and ISO 520 (2010) [34,35]. For each treat-
ment, wholemeal flour samples were obtained by milling kernel samples in a grinder with
a 0.5 mm screen (Cytolec 1093 lab mill, FOSS Tecator, Hoganas, Sweden), as reported in
Guerrini et al. (2020) [7] and Žilić et al. (2011) [36]. The wholemeal flour samples (5 mg)
were analyzed with a CHNS analyzer (CHN-S Flash E1112, Thermo-Finnigan LLC, San
Jose, CA, USA) to determine total nitrogen percentage and then converted to total protein
percentage (PC, %) by multiplying by 5.7, according to ICC Standard 167 (2000) [37]. The
protein yield per hectare (PY, kg ha−1) was calculated as the product of GY by PC. The
ASN concentration in wholegrain flour (ASN, micromoles g−1) was determined using an
enzymatic method (K-ASNAM L-Asparagine/L-Glutamine/Ammonia kit; Megazyme, IL,
USA) followed by spectrophotometric quantification (340 nm) using a Lambda 20 spec-
trophotometer (PerkinElmer Waltham, MA, USA), as reported by Lecart et al. (2018) [38].

Dough rheology was performed according to ISO 27971 (2015) [39]. Briefly, wholegrain
flour (250 g) was mixed in the Chopin alveograph chamber with a NaCl solution (2.5%
w/w) for 8 min without adding yeast. The resulting dough was extruded and allowed to
rest for 20 min before performing the alveograph parameters: the ratio between dough
tenacity and dough extensibility (P/L) and the dough strength (W; 10−4 J). TKW, HW, and
PC were determined for each sub-sub-subplot, while ASN, W and P/L were determined
for each treatment on a bulk from the three replicates.

2.4. Statistical Analysis

Data were analyzed using a mixed model analysis of variance. Both years’ trial
data were analyzed together. Data analysis was carried out in R studio (software version
1.1.456). A 4-way ANOVA was applied to determine the main effect of the four agro-
nomical factors with their interactions. Significance was determined as: * = 0.05, ** = 0.01,
*** = 0.001, n.s. = not significant. Differences between averages were compared for signifi-
cance by means of the Tukey honest significant difference (Tukey HSD) test (p < 0.05).

3. Results
3.1. Agronomic Traits and Kernel Analyses

The Y was the dominant factor for GY, followed by SL, Gen and SD, while the NL did
not significantly affect GY (Table 3).
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Additionally, GY was significantly affected by the interaction Y × SD, whilst no
interactions between Y × SL and Y × NL, respectively, were found to be statistically
significant. Statistically significant differences were detected in the interaction genotype–
environment. The highest average GY was measured in AU_A, followed by AU_B and
SI, while the lowest average GY values were measured in AC, followed by FR and GB,
respectively (Table 4). SD significantly affected average GY, which increased by 5.4% from
SD200 to SD350 (Table 4). Results of the present study indicated that the SL6.4 treatment
increased GY by 8.2% compared to SL0.

Table 3. Results of the ANOVA for grain yield (GY), hectoliter weight (HW), thousand kernel weight
(TKW), protein concentration (PC) and protein yield (PY). The table columns report the Fisher F (F)
and the significance levels: * = 0.05, ** = 0.01, *** = 0.001, ns = not significant.

Variability
Sources

DF
GY

(t ha−1)
HW

(kg hL−1)
TKW

(g)
PC
(%)

PY
(kg ha−1)

F Sig F sig F sig F sig F sig

Year 1 80.00 *** 2.49 ns 40.60 *** 170.00 *** 32.40 ***

NL 2 0.40 ns 0.53 ns 7.91 *** 38.20 *** 4.00 ***

SL 1 34.20 *** 0.3 ns 3.00 ns 2.39 ns 39.40 ***

SD 1 15.50 *** 0.17 ns 0.00 ns 15.00 *** 23.10 ***

Gen 13 32.40 *** 6.54 *** 23.90 *** 10.70 *** 32.80 ***

SL × SD 1 0.23 ns 0.01 ns 0.02 ns 0.00 ns 0.30 ns

NL × SD 2 0.52 ns 0.02 ns 0.25 ns 0.37 ns 0.61 ns

NL × SL 2 2.76 ns 0.16 ns 0.80 ns 0.17 ns 3.02 *

Y × SD 1 9.48 * 0.47 ns 0.11 ns 5.30 * 13.40 **

Y × SL 1 0.24 ns 0.23 ns 5.79 * 1.07 ns 0.39 ns

Y × NL 2 1.97 ns 0.34 ns 0.48 ns 2.36 ns 2.29 ns

Residuals 980

In the present study, Gen was the sole factor affecting HW (Table 4). Furthermore, Gen
was the dominant factor for TKW, followed by Y, NL, the second-order interaction Y × SD
and SL, respectively (Table 3). Among the 14 varieties, the highest HW was measured in
AU_A, followed by AU_B, while the lowest HW was measured in GR_M, followed by VE
and IN, respectively (Table 4).

The highest TKW was measured in GR, followed by GR_A and GR_M, while the
lowest TKW was measured in AN and VE (Table 4). The TKW values were found to be
significantly decreased by 9.6%, with the increase from NL35 to NL135.

According to the ANOVA, the PC was significantly dominated by Y, followed by
NL, SD, and Gen, while SL did not have a significant effect (Table 3). On the contrary, SL
was the dominant factor for PY, followed by Gen, Y, SD and NL (Table 3). As regards the
second-order interaction, only Y × SD affected both PC and PY, while NL × SL significantly
affected only PY (Table 3). Results indicated that sulfur application (SL6.4) increased PY by
8.7% with respect to SL0 (Table 4). The highest SD treatment significantly increased the PC
and PY values with respect to the control by 1.4% and 6.6%, respectively. Furthermore, the
PC and PY significantly increased by 3.8% and 4.5%, respectively, from NL35 to NL135.
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Table 4. Grain quality parameter mean values (standard error in brackets) of 14 old common wheat
varieties as a function of genotype (Gen), nitrogen (NL) and sulfur fertilization (SL), and seeding
density (SD). First-order interactions are provided for SD, NL, SL and Y. Lowercase letters represent
the Tukey HSD post hoc test results. The table columns report the significance levels: *** = 0.001, ns =
not significant.

Variability
Sources

GY
(t ha−1)

HW
(kg hL−1)

TKW
(g)

PC
(%)

PY
(kg ha−1)

Average sig Average sig Average sig Average sig Average sig

Gen *** *** *** *** ***

AC 3.36
(0.15) e 80.1

(0.86) ab 43.57
(0.42) e 15.17

(0.11) a 502.67
(21.67) gh

AN 4.14
(0.09) bc 79.33

(0.85) ab 38.72
(0.34) f 14.74

(0.1) abcd 612.39
(15.88) def

AU_A 5.41
(0.14) a 81.89

(0.77) a 46.7
(0.52) abcd 14.64

(0.12) bcd 788.35
(20.06) a

AU_B 5.03
(0.12) a 81.75

(0.91) a 44.52
(0.54) de 14.7

(0.11) bcd 736.59
(16.73) ab

BI 4.2 (0.14) bc 79.07
(0.82) ab 47.06

(0.49) abcd 14.97
(0.07) ab 629.77

(21.6) de

FR 3.44
(0.13) de 72.75

(1.12) c 47.73
(0.79) ab 14.18

(0.15) e 483
(17.65) h

GB 3.78
(0.05) cde 79.05

(0.72) ab 47.26
(0.72) abc 14.92

(0.08) abc 563.99
(8.35) efg

GR 4.39
(0.06) b 78.13

(0.7) ab 48.76
(0.53) a 14.53

(0.07) bcde 638.1
(10.51) cd

GR_A 3.87
(0.07) cd 78.7

(0.59) ab 48.56
(0.51) a 14.31

(0.11) de 555.01
(11.78) fg

GR_M 3.85
(0.07) cde 77.05

(0.9) b 48.11
(0.44) a 14.63

(0.09) bcd 564.74
(11.53) efg

IN 3.93
(0.08) bcd 77.57

(0.99) b 47.03
(0.81) abcd 14.13

(0.11) e 554.14
(11.78) fgh

ME 4.24
(0.15) bc 79.87

(0.79) ab 45.15
(0.5) bcde 14.48

(0.13) cde 607.21
(19.84) def

SI 4.92
(0.11) a 78.58

(0.94) ab 44.72
(0.55) cde 14.31

(0.09) de 702.15
(15.3) bc

VE 3.84
(0.09) cde 77.33

(1.1) b 43.69
(0.54) e 14.84

(0.11) abc 567.13
(12.7) defg

SD *** ns ns *** ***

SD200 4.06
(0.05) b 78.75

(0.35)
45.83
(0.23)

14.51
(0.05) b 588.12

(6.65) b

SD350 4.28
(0.05) a 78.56

(0.33)
45.82
(0.25)

14.71
(0.04) a 626.92

(7.32) a

NL ns ns *** *** ***

NL35 4.14
(0.06)

78.97
(0.39)

46.56
(0.3) a 14.34

(0.05) c 591.88
(8.04) b

NL80 4.2 (0.06) 78.61
(0.45)

45.8
(0.31) ab 14.61

(0.05) b 611.89
(8.8) ab

NL135 4.17
(0.06)

78.38
(0.41)

45.12
(0.27) b 14.88

(0.05) a 618.78
(8.94) a

SL *** ns ns ns ***

SL0 4.01
(0.05) b 78.53

(0.31)
45.57
(0.25)

14.57
(0.04)

582.18
(6.7) b

SL6.4 4.34
(0.05) a 78.78

(0.37)
46.08
(0.24)

14.65
(0.04)

632.85
(7.19) a
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Table 4. Cont.

Variability
Sources

GY
(t ha−1)

HW
(kg hL−1)

TKW
(g)

PC
(%)

PY
(kg ha−1)

Average sig Average sig Average sig Average sig Average sig

Y *** ns *** *** ***

2018 3.92
(0.04) b 79.02

(0.34)
46.77
(0.26) a 14.94

(0.04) a 584.54
(6.48) b

2019 4.42
(0.05) a 78.29

(0.34)
44.89
(0.22) b 14.28

(0.04) b 630.5
(7.53) a

3.2. Alveograph Parameters and Free Asparagine Content in Whole Flour

As regards the main factor, NL was the dominant factor for W, followed by SL, SD,
Gen and finally Y in decreasing order, respectively (Table 5). Additionally, W was strongly
affected by the second-order interaction NL × SL, while no interactions between Y and the
agronomic treatments were detected.

Table 5. Results of the ANOVA for dough strength (W), the ratio between dough tenacity and dough
extensibility (P/L), and ASN concentration in whole flour. The table columns report the Fisher F (F)
and the significance levels: * = 0.05, ** = 0.01, *** = 0.001, ns = not significant.

Variability
Sources

DF
W

(10−4 J) P/L Asparagine
(Micromoles g−1)

F sig F sig F sig

Year 1 11.9 ** 0.298 ns 215.0 ***

NL 2 446.0 *** 47.9 *** 300.0 ***

SL 1 77.4 *** 5.66 * 3966.0 ***

SD 1 67.0 *** 35.5 *** 0.0 ns

Gen 13 28.2 *** 62.3 *** 15.9 ***

SL × SD 1 0.3 ns 11.6 *** 0.0 ns

NL × SD 2 3.4 * 0.69 ns 0.0 ns

NL × SL 2 52.9 *** 38.3 *** 177.0 ***

Y × SD 1 0.2 ns 0.11 ns 0.0 ns

Y × SL 1 0.3 ns 0.719 ns 53.7 ***

Y × NL 2 0.5 ns 0.169 ns 6.1 ***

Residuals 308

The highest W was measured in SI, followed by GB and FR, while the lowest values
were measured in AN, followed in increasing order by BI, VE, GR_M, and ME, respectively
(Table 6). The W decreased by about 19.3% as SD increased from SD200 to SD350 (Table 6).
In contrast, the W value increased by 84.4% and 15.9% with the NL treatment (from N35 to
N135) and the SL treatment, respectively. The S fertilization did not affect the W at N35,
while W increased when S was applied at the NL80 and NL135 treatments, respectively
(Figure 3).

Thus, at S0, W increased from 25% at NL80 to 55.5% at NL135, while at S6.4, the W in-
creased from 37.4% at NL80 to 112.7% at NL135 compared to the lowest N fertilization level.



Agronomy 2022, 12, 351 10 of 17

Table 6. Averages (standard error in brackets) of dough strength (W), the ratio between dough
tenacity and dough extensibility (P/L), and asparagine concentration in whole flour as a function
of genotype (Gen), nitrogen (NL) and sulfur fertilization (SL), seeding density (SD), and first-order
interaction. Lowercase letters represent the Tukey HSD post hoc test results. The table columns report
the significance levels: ** = 0.01, *** = 0.001, ns = not significant.

Variability
Sources

W
(10−4 J) P/L Asparagine

(Micromoles g−1)

Average sig Average sig Average sig

Gen *** *** ***
AC 62.74 (3.72) cd 0.61 (0.03) efg 19.74 (3.5) bcd
AN 52.41 (3.42) e 0.84 (0.06) cd 19.71 (3.45) bcd

AU_A 78.94 (5.08) b 0.6 (0.03) efg 16.99 (3.06) cde
AU_B 78.42 (5.77) b 0.71 (0.02) de 17.92 (2.97) cd

BI 55.22 (3.41) de 0.55 (0.02) fg 16.52 (3.03) de
FR 80.7 (6.83) ab 0.88 (0.06) bc 17.23 (3.22) cde
GB 81.35 (6.25) ab 0.71 (0.04) de 23.69 (4.39) ab
GR 67.96 (2.56) c 0.68 (0.03) ef 22.94 (3.83) ab

GR_A 63.5 (2.72) cd 0.69 (0.04) def 25.12 (4.72) a
GR_M 62.16 (3.29) cde 0.7 (0.03) def 24.52 (4.52) a

IN 63.33 (3.68) cd 0.52 (0.03) g 21.01 (3.76) abc
ME 61.97 (2.83) cde 0.71 (0.05) de 17.92 (3.11) cd
SI 89.67 (7.16) a 1.54 (0.07) a 13.64 (2.43) e
VE 58.18 (3.69) cde 1.03 (0.05) b 17.1 (3.06) cde

SD *** *** ns
SD200 73.17 (1.13) a 0.72 (0.02) b 19.59 (0.77)
SD350 63.67 (1.01) b 0.82 (0.01) a 19.58 (0.78)

NL *** *** ***
NL35 49.27 (0.48) c 0.82 (0.02) a 11.66 (0.56) c
NL80 65.16 (0.66) b 0.84 (0.02) a 22.48 (1.01) b

NL135 90.83 (1.44) a 0.65 (0.02) b 24.6 (1.04) a

SL *** ** ***
SL0 63.37 (0.82) b 0.79 (0.01) a 34.08 (0.59) b

SL6.4 73.46 (1.27) a 0.75 (0.02) b 5.08 (0.12) a

Y *** ns ***
2018 70.56 (0.79) a 0.77 (0.01) 16.23 (0.67) b
2019 66.28 (0.77) b 0.77 (0.01) 22.93 (0.79) a

Agronomy 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

Y × SD 1 0.2 ns 0.11 ns 0.0 ns 

Y × SL 1 0.3 ns 0.719 ns 53.7 *** 

Y × NL 2 0.5 ns 0.169 ns 6.1 *** 

Residuals 308             

The highest W was measured in SI, followed by GB and FR, while the lowest values 

were measured in AN, followed in increasing order by BI, VE, GR_M, and ME, respec-

tively (Table 6). The W decreased by about 19.3% as SD increased from SD200 to SD350 

(Table 6). In contrast, the W value increased by 84.4% and 15.9% with the NL treatment 

(from N35 to N135) and the SL treatment, respectively. The S fertilization did not affect 

the W at N35, while W increased when S was applied at the NL80 and NL135 treatments, 

respectively (Figure 3). 

 

Figure 3. Effect of nitrogen fertilization level (NL) and sulfur fertilization level (SL) on dough 

strength (W). Lowercase letters represent the Tukey HSD post hoc test results. 

Table 6. Averages (standard error in brackets) of dough strength (W), the ratio between dough te-

nacity and dough extensibility (P/L), and asparagine concentration in whole flour as a function of 

genotype (Gen), nitrogen (NL) and sulfur fertilization (SL), seeding density (SD), and first-order 

interaction. Lowercase letters represent the Tukey HSD post hoc test results. The table columns re-

port the significance levels: ** = 0.01, *** = 0.001, ns = not significant. 

Variability  

Sources 

W  

(10−4 J) 
P/L 

Asparagine  

(Micromoles g−1) 

Average sig Average sig Average sig 

Gen  ***  ***  *** 

AC 62.74 (3.72) cd 0.61 (0.03) efg 19.74 (3.5) bcd 

AN 52.41 (3.42) e 0.84 (0.06) cd 19.71 (3.45) bcd 

AU_A 78.94 (5.08) b 0.6 (0.03) efg 16.99 (3.06) cde 

AU_B 78.42 (5.77) b 0.71 (0.02) de 17.92 (2.97) cd 

BI 55.22 (3.41) de 0.55 (0.02) fg 16.52 (3.03) de 

FR 80.7 (6.83) ab 0.88 (0.06) bc 17.23 (3.22) cde 

GB 81.35 (6.25) ab 0.71 (0.04) de 23.69 (4.39) ab 

GR 67.96 (2.56) c 0.68 (0.03) ef 22.94 (3.83) ab 

GR_A 63.5 (2.72) cd 0.69 (0.04) def 25.12 (4.72) a 

GR_M 62.16 (3.29) cde 0.7 (0.03) def 24.52 (4.52) a 

IN 63.33 (3.68) cd 0.52 (0.03) g 21.01 (3.76) abc 

ME 61.97 (2.83) cde 0.71 (0.05) de 17.92 (3.11) cd 

SI 89.67 (7.16) a 1.54 (0.07) a 13.64 (2.43) e 

VE 58.18 (3.69) cde 1.03 (0.05) b 17.1 (3.06) cde 

SD  ***  ***  ns 

Figure 3. Effect of nitrogen fertilization level (NL) and sulfur fertilization level (SL) on dough strength
(W). Lowercase letters represent the Tukey HSD post hoc test results.
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In the present trial, P/L was significantly affected by genotype. Of the 14 varieties, 10
had optimal P/L ranges, while BI and IN showed lower values, with SI and VE showing
higher values, respectively (Table 6). Regardless of the variety, P/L was not affected by
Y, highlighting the strong genotype effect on this characteristic. Conversely, agronomical
practices affected P/L. The increase in SD significantly increased the P/L (Table 6). As the
main effect, SL significantly decreased P/L. However, the SL interactions with SD and NL
need to be considered. SL decreased the P/L only at the lower SD, while no significant effect
was found at the higher SD (Figure 4). P/L was also decreased at the higher NL, while no
significant difference was found between NL35 and NL80. Instead, there was a significant
decrease in P/L at NL135 in combination with the SL treatment (Figure 4). Moreover, the
P/L value was shown to be below the 0.6 threshold with SL and NL135 treatments.
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The SL treatment was by far the most important factor influencing the concentration of
free ASN in grains, followed by NL, Y, and Gen in decreasing order, respectively (Table 5).
SD was the only agronomic treatment not exerting a significant effect on free ASN concen-
tration. The free ASN concentration in grain was affected by the second-order interaction
NL × SL, followed by Y × SL and Y × NL (Table 5). Free ASN concentration in grain was
significantly higher in 2019 than in 2018. When combining both years, the ASN content
significantly increased from 92.8% at NL80 to 111% at NL135 compared to N35. Instead,
the ASN content was shown to decrease by 85.1% with the SL treatment. In the present
study, S fertilization was more effective in reducing the ASN concentration in 2018 than in
2019 (Figure 5). S treatment decreased the ASN concentration by 7.5 and 4.8 times in 2018
and 2019, respectively. At the same time, during the two growing seasons, N fertilization
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had a contrasting effect to that of S. In particular, the N fertilization increased the ASN
concentration by 197% and 72% in 2018 and 2019, respectively. A more effective reduction
in grain ASN concentration was observed at NL80 than at the remaining N fertilization
levels (Figure 5). Particularly, the decrease in ASN content measured at SL0 and SL6.4,
respectively, was not significantly different between NL35 and NL135 (6.09 and 6.01 times,
respectively), while the decrease in ASN was significantly different at NL80 (8.2 times).
The highest free asparagine concentration was measured in GR_A, followed by GR_M, GB,
and GR, while the lowest values were measured in SI, followed in increasing order by BI,
AU_A, VE, and FR, respectfully (Table 6).
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Figure 5. Interactions between years and agronomic treatments on asparagine content in grain; (A)
Effect of nitrogen fertilization level (NL) and sulfur fertilization level (SL); (B) effect of year (Y) and
sulfur fertilization level (SL); (C) effect of the year (Y) and nitrogen fertilization (NL). Lowercase
letters represent the Tukey HSD post hoc test results.

Interestingly, when the average ASN levels determined in the present study were
plotted against the date when the varieties were released, there was a significant decline
(R2 = 0.69, p < 0.01) in ASN content across the release year of the considered varieties
(Figure 6).
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4. Discussion

In general, the results suggest that the N concentration in the soil of the study site was
not a limiting factor for the growth and production of these ‘old’ common wheat genotypes.
Gooding et al. (2002) [40] and Zhang et al. (2016) [41] found a significant interaction
between N fertilization and seeding density in determining the kernel yield, whilst no
interactions between SD × NL, respectively, were found to be statistically significant in
this study. Our study corroborated previous results [42], indicating that genotypes having
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high tillering potential may benefit from SD up to 400 seeds m–2. In contrast, Zhang et al.
(2016) [41] found that SD increased from 120 to 180 plants m−2, significantly increasing
GY, with no further increases observed as SD increased from 180 to 240 plants m−2. The
present study suggests that the sulfur treatment can significantly increase GY. However,
variable effects in response to sulfur treatment have been reported in previous literature.
For example, Wilson et al. (2020) [20] found that foliar application of 20 kg S ha−1 increased
GY by up to 55% compared to the control. Instead, Guerrini et al. (2020) [7] reported that
sulfur treatment did not significantly affect GY of ‘old’ Italian common wheat landraces.
In general, the present results corroborated those of Kilmer and Nearpass (1960) [32],
indicating that crops respond to sulfur fertilization in sulfur-deficient soils. Salvagiotti and
Miralles (2008) [43] showed that S fertilization increased grain yield in wheat by increasing
nitrogen use efficiency (NUE). Further, Salvagiotti et al. (2009) [25] suggested that sulfur
fertilization can increase the NUE in sulfur-deficient soils. In the ‘old’ varieties used in this
study, the genotypic factor predominated on the HW and TKW, corroborating previous
results for Italian landraces [7]. In contrast, in modern varieties, HW values were shown
to increase, with increasing N up to 150 kg ha−1 [44]. Our study indicated a strong effect
of N and S fertilization on PC and PY production. These results were consistent with
previous findings in ‘modern’ common wheat varieties [45–49]. Likewise, Guerrini et al.
(2020) [7] reported that S and N fertilization substantially affected the PC in ‘old’ varieties.
Yu et al. (2021) [50] observed a reduced efficiency of sole N fertilization in increasing both
protein and grain yield in sulfur-deficient soils. Further, Yu et al. (2021) [50] suggested that
sulfur application can result in protein and grain yield increases by regulating glutamine
synthetase 1 and improving nitrogen-use efficiency.

Our results suggest that nitrogen fertilization may be used as a tool to modify the
dough deformation energy (i.e., alveograph W) in these ‘old’ varieties and highlight a
positive synergy between N and S. The W values were consistent with those measured
in previous studies [7,8]. As ‘old’ common wheat flours are usually characterized by a
low W, any increase in this value can be regarded with interest as it improves the flour’s
bread-making characteristics [7,51]. Therefore, the observed increases in W with the NL and
SL treatments, respectively, are of particular interest for ‘old’ common wheat varieties. The
effect of S and N fertilization on W was consistent with those measured previously [7,52].
Considering all the varieties, the agronomic treatments were unsuccessful in increasing the
W values above 90 × 10−4 J, which, according to the common classification, distinguishes
biscuit flours from flours suitable for bread-making. However, the 90 × 10−4 J threshold was
exceeded by five varieties at NL135 (132.3, 118.4, 117.8, 110.7, and 108.6 × 10−4 J in SI, GB,
FR, AU_B, and AU_A, respectively), thus attaining the status of weak flours, attributable to
this level of nitrogen fertilization. A P/L range of 0.6–0.8 is usually considered the optimal
ratio between dough tenacity and extensibility (i.e., P/L) in bread-making flours [53]. P/L
ratios exceeding 0.8 are known to be lacking in old varieties for bread-making as unrefined
flours [51]. SI and VE have been extensively studied in the literature and are popular
among bakers using flour from ‘old’ varieties, already known for high tenacity and low
extensibility doughs [51]. In the literature, there has been speculation on the advantages
of a blending strategy between the “poor” P/L wheats, such as BI and IN, and the most
commonly used higher P/L wheats (SI and VE) in order to improve the bread-making
performances, thereby promoting the valorization of local germplasm characteristics [7,51].
The dough parameters highlight the importance of agronomical practices in modulating
the technological performance of dough in old, weak varieties. Old varieties are widely
reported as having weaker dough, with unbalanced tenacity–extensibility ratios, rendering
baking difficult. Hence, the effect of agronomical practices on dough strength necessitates
investigation, with careful selection of SD, NL, and SL to optimize rheological parameters
for the baking industry. The ASN concentration determined in 2019 was higher than in
2018. This was attributable to the stress incurred by the higher temperatures combined
with lower precipitation over the entire growing season and, in particular, during the grain-
filling stage. Similar interactions between ASN content and environmental stress conditions
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were also reported previously [20]. Results indicated that the N fertilization increased
the ASN content, while sulfur fertilization was able to reduce the ASN content by up to
85.1%. This result was consistent with that observed by Wilson et al. (2020) [20], showing
an increase in ASN content in response to increasing N. Moreover, present results were
similarly consistent with various studies reporting higher ASN contents in wheat grains
cultivated in sulfur-deficient soils [4,54]. In contrast, in soil with satisfactory S availability,
S fertilization does not impact on the ASN content in grain [29,55]. Previously, it was
noted that in three ‘old’ common wheat varieties (namely, AN, SI and VE), the albumin,
globulin, and gliadin fractions were decreased significantly, whilst the glutenin fraction was
significantly increased in response to S fertilization [7]. Thus, it could be possible that these
‘old’ common wheat varieties were highly responsive to S deficiency and that changes in
the protein composition resulted in a significant increase in ASN content. The ASN content
was consistent with that measured previously for wheat [20,30]. Poudel et al. (2021) [30]
suggested that despite the absence of a legal limit for ASN concentrations in grain, this
should be as low as possible. This is the first time that a negative correlation between the
ASN content and the release year has been shown for old Italian common wheat varieties.
Furthermore, significant correlations between free ASN and grain protein content were
reported previously and shown to be higher in the old varieties [56]. Corol et al. (2016) [19]
reported a weak correlation between ASN concentration and the release year. However,
those authors also found that free ASN content was positively correlated to plant height [19],
which, interestingly, is generally higher in the old varieties. In contrast, more recent work,
analyzing the free ASN content in grain of 19 cultivars released between 1870 and 2013
across two growing seasons in the USA, showed that the free ASN concentration in grain
was significantly increased in the second growing season across the release years, whilst
no trend across release year was detected during the first growing season [30]. Given
the scarcity of information, the requisite for further investigating this aspect in future
research programs is evidenced. Consequently, further studies involving a larger number
of genotypes over a longer breeding period should be conducted to provide additional
insights into the effect of previous breeding programs on the compositional properties of
‘old’ common wheat varieties. Nonetheless, the preliminary results suggest that breeding
programs may have inadvertently selected against free ASN content. Overall, selection by
breeding programs has improved nutrient-use efficiency, increased resistance to lodging by
reducing the plant height, as well as resistance to stress conditions such as water stagnation,
drought, and plant diseases, which are notorious for affecting the ability of wheat to convert
assimilated nitrogen (N) into free amino acids and then proteins [20].

5. Conclusions

This paper was aimed at evaluating whether the grain yield and protein, rheological
characteristics, as well as the ASN content in kernels of ‘old’ common wheat varieties grown
on S-deficient soils could be improved with agronomical treatments, more specifically S
fertilization, N fertilization, and SD. The experiment was conducted on 14 ‘old’ common
wheat varieties released between 1900 to 1960 in Italy. A higher seeding density was shown
to increase the grain yield and protein concentration. S fertilization was found to increase
the grain yield without decreasing grain protein concentration, while N fertilization was
found to effectively increase the grain protein concentration and the protein yield by hectare.
Regarding the dough rheological parameters, SD was shown to negatively affect the dough
strength in all the varieties. Instead, dough strength was significantly increased in relation
to increasing S and N fertilization. Free ASN concentration in ‘old’ common wheat varieties
was found to be comparable to other studies investigating ‘old’ and ‘modern’ genotypes
with low nitrogen-use efficiency under S-deficient conditions. Interestingly, free ASN
concentration was negatively correlated with the year of release in the considered varieties.
This may suggest that past breeding programs may have contributed to reducing the ASN
content; however, more studies on old varieties need to be conducted to further investigate
this aspect. N fertilization was found to significantly increase the ASN content, whereas
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S application decreased the ASN content by 85.1%. In the present study, S fertilization
successfully improved the grain yield and the technical parameters of the ‘old’ common
wheat varieties while reducing the ASN concentration, thereby promoting food safety.
Hence, these present results can be considered of particular interest for ‘old’ common
wheat varieties characterized by poor technical performance when these varieties are
grown on S-deficient soils. However, additional trials, including additional years within
differing pedo-climatic conditions, are required in order to further evaluate the interaction
between cultivars and the agronomical treatments.
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