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Abstract

The high energy physics experiments at the LHC are designed to address many
fundamental questions in modern physics. Extracting the relevant information from
the collected data that can answer these questions is a difficult challenge due to the
complexity and the high dimensionality. The emergence of deep learning algorithms
have advanced the state of the data analysis methods by enabling the extraction
of higher-level features and consequently reducing the dimensionality, which is a
crucial improvement considering the vast size of collision data that is necessary to
observe rare physics processes of interest. Within the scope of this thesis seveal ma-
chine learning techniques have been implemented to study the rare B; — 7T decay
into tau leptons with the two tau decay modes T — v;puv, and T — 7y, re-
spectively. To this purpose, B-Parking data containing a large number of B; mesons,
acquired by CMS during the Run 2 of the LHC and simulated Monte Carlo samples
that include the decay channel of interest, have been used. The reconstructed events
are filtered for the specific decay signature by a graph neural network that classifies
triplets of charged particles as candidates for the 3-prong tau decay T — v, for
events that are triggered by a muon, which is the candidate muon for the T — v v,
decay. Identifying this decay channel is complicated by the escape of at least three
neutrinos; two of which are produced in the 3-prong decay and the third in the
semi-hadronic decay. Neural networks and gradient boosted decision trees have
been explored as methodologies to recover the lost information from the measured
momenta of the visible particles. Two supervised learning methods have been im-
plemented; regressions to the four-momentum of the semi-hadronic and 3-prong
decaying tau with the goal of estimating the four-momentum of the originating B,
meson and a classification between the signal and background events. Furthermore,
a semi-supervised learning algorithm has been designed to complement the super-

vised classifier.
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Chapter 1

Introduction

1.1 Standard Model of Particle Physics

Particle physics aims to enhance our understanding of the laws of nature by pro-
viding a mathematical description to the constituents of the Universe, the elementary
particles and the fundamental forces that govern the interactions between them. Our
current understanding is embodied in the Standard Model (SM), which is a self-
consistent scientific theory able to describe most observed phenomena successfully.
The mathematical framework for SM is provided by the quantum field theory (QFT),
where the dynamics of the system is described by a Lagrangian and every particle
is manifested as a dynamical field which permeates the space-time. As with most
field theories, QFT bases its framework on the set of symmetries of the system and
formulates the Lagrangian from the particle (field) content in the system that follows
these symmetries.

SM can describe three of the four fundamental forces (electromagnetic, weak and
strong interactions) and all known elementary particles. Developed progressively
based on the successively acquired empirical data, discoveries of the top quark [1],
the tau neutrino [2] and the Higgs Boson [3] [4] have further strengthened the con-
fidence in the SM. However, the model leaves many observed phenomena unex-
plained, such as the lack unification of the three forces with gravity, the baryon

asymmetry or the neutrino oscillations and their non-zero masses.
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1.1.1 The Elementary Particles

The visible matter around us seems to be made up of just a few types of elementary
particles. Starting at the eV energy scale, atoms are bound states of electrons that are
orbiting around nuclei composed of protons and neutrons. The electrostatic attrac-
tion between the opposite charges that binds the electrons is a low energy manifes-
tation of Quantum Electrodynamics (QED), the fundamental theory of electromag-
netism. At the same time protons and neutrons are bound together by the strong
nuclear force, which is a manifestation of Quantum Chromodynamics (QCD), the
fundamental theory of strong interactions.

The third fundamental force described by the SM is the weak force, responsible
for the nuclear § decays of radioactive isotopes and the nuclear fusion processes.
Both the § decay and nuclear fusion processes produce electron neutrinos v.. To-
gether with electrons, protons, neutrons, they make up almost all observed phe-
nomena at low energy scale. At GeV energy scale, protons and neutrons are found
to be composite particles made up of quarks: protons consist of two up quarks and
a down quark, whereas neutrons consist of two down and an up-quark. The up and
down quarks, the electron and the electron neutrino make up the first generation of
the elementary particles as depicted in Figure 1.1. For each of the four particles there
are two sets of particles with higher masses that constitute the second and the third
generations. Muon has the mass of my, ~ 200 m, and tau has m; =~ 3500 m,.. Based
on the experimental evidence the Universe seems to be made up out of these twelve
spin-half particles in Figure 1.1. Neutrinos v, v, v, are quantum mechanical mix-
tures of three fundamental neutrino states with well-defined masses. The dynamics
of the twelve elementary particles (fermions) are described by the Dirac equation in
the relativistic quantum mechanics, which specifies the existence of antiparticles for

each fermion, particles with same mass but opposite charge.
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FIGURE 1.1: Standard model of elementary particles: the 12 funda-
mental fermions and 5 fundamental bosons [7].
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1.1.2 The Fundamental Forces

The particles interact with each other through the four fundamental forces, in par-
ticle interactions gravity is neglected. All fermions experience weak interactions,
while only charged fermions (neutrinos are electrically neutral) engage in the elec-
tromagnetic interaction of QED. The QCD equivalent of charge, referred as color
charge, is carried only by quarks and thus they are the only ones partaking in the
strong force interactions. Quarks are confined to bound states, called hadrons, such
as in the proton or neutron due to nature of the QCD interaction. Quantum field
theory describes each of the three interactions by the exchange of a spin-1 particle,
referred as a gauge boson. In QED, the interactions between the particles are medi-
ated by a virtual photon exchange (see Figure 1.1). In the case of the strong force,
the force carrying particle is the massless gluon, whereas the mediator of the weak
interaction are the charged W* and W~ bosons (for weak charged-current interac-
tion) and neutral Z boson (for the weak neutral-current interaction). The final piece
in SM elementary particles is the Higgs boson, discovered in 2012. It has a mass
mp ~ 126 GeV and unlike other gauge bosons, is a spin-0 scalar particle, the only
elementary scalar particle known. In QFT, the Higgs boson is described as excita-
tion of the Higgs field, which unlike the fields of fermions and other bosons, has a
non-zero vacuum expectation value and through the interaction with this field, the
initially massless particles gain their masses.

The coupling of the gauge bosons to fermions takes place at the so called inter-
action vertex, a three point vertex with the incoming and outgoing fermion and the
gauge boson as depicted in Figure 1.2. The strength of the force exerted in the in-
teraction is called the coupling constant g and is a measure of the probability that
the spin-half fermion emits or absorbs the boson. Commonly, a dimensionless con-
stant & o ¢? is used instead. In the case of electromagnetism this is the fine-structure
constant x = ﬁ =1/137. The QCD interaction with ag(Myz) = 0.1175 [6] is intrin-
sically stronger. The weak interaction with a ~ 1/30 is intrinsically stronger than

the QED, however at low energy scale (for example at particle decays), due to the

large masses of the W bosons, the weak interaction is weaker than QED.
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FIGURE 1.2: Standard Model interaction vertices [8].

1.1.3 Particle Decays and Interaction of Particles with Matter

Particle decays

Particle physics experiments can only detect long-lived particles since most par-
ticles decay with a short lifetime to a final state with a lower rest mass. The weak
charged current is responsible for the particle decays with change in flavour such
as the muon decay to electron and neutrinos. The only stable hadron is the proton,
whereas free neutrons have a lifetime of 877.75 & 0.28 s [5], after which they decay
into a proton, electron and an electron neutrino via the weak interaction. Nuclei-
bound neutrons act as stable particles due to the fact that the binding energy within
nuclei is a lot larger than the neutron - proton mass difference. All other hadrons
decay with very short lifetimes. The dominant decay mode for a specific particle
is determined by the corresponding coupling strengths of the interactions. If a par-
ticle can decay via the strong interaction, this decay mode will almost always be
the dominant one over the QED or the weak interactions. Additionally particles that
only decay via the weak interaction are relatively long lived, such as taus and muons
and thus can be detected at detectors.
Interaction of charged particles with matter

From all the elementary particles that are the building blocks of all matter, only
electrons, photons, protons (and neutrons) are stable. All the rest decay at a distance
of yoT (1 is the mean lifetime in the rest frame in this case) and v = 1/v/1 — v2/¢2
is the Lorentz factor, where v is the particle velocity. This means, all particles at
relativistic speeds with lifetimes longer than 10 1° s such as muons and charged

pions, will reach distances of several meters before decaying. Particles with shorter
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lifetimes decay earlier on, so that only the decay products can be detected at the
experiments.

For a charged particle traversing at relativistic speed v = Bc through a medium
with atomic number Z and number density n, the ionisation energy loss per unit

length is given by the Bethe-Bloch equation:

2
_d_E:4_7T.£. i N\n 2m€—czﬁ2 _’32, (1.1)
dx  mec? B? \4rme I-(1-p%)
where I is the mean excitation potential and n is given as n = Ii{fﬁf where p is

the density of the material, A its relative atomic mass, N4 the Avogadro number and
M, the molar mass constant.

As can be deduced from the equation 1.1, the rate of energy loss depends on the
material mainly via its density p, since approximately all nuclei have close numbers
of protons and neutrons Z/A ~ 1 in the number density n, the ionization loss rate
is proportional to the density of the material. Therefore highly dense materials are
used in the particle experiments in order to stop the particles (via the absorption
and the energy deposit, the energies of the particles can be estimated). Muons can
travel large distances in dense materials like iron because for muons with energies
below 100 GeV, ionisation is the dominant process of energy loss. For other charged
particles several interaction processes are present. Thus detectors placed at a larger
distance from the origin point of the particle, are likely to detect muons only.

Regardless of the dominant energy loss process, all charged particles leave a trail
of freed electrons and the ionized atoms on their path through a medium, which al-
low the determination of the trajectories of the particles. The most commonly used
detector technologies are gaseous detectors and semiconductor technology using sil-
icon pixels and strips, which are described in detail in section 2 for the case of CMS.
Commonly the tracking purposed detectors are placed in a large solenoid which
produces a uniform magnetic field B in the direction perpendicular to the plane of
particle interaction, in the z-axis. Due to the Lorentz force L = v x B, the charged
particles move on a helix trajectory with a curvature radius R and a pitch angle A.

For a single charged particle q = |e| the momentum of the particle is given as:
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_ 03BR
"~ cosA

(1.2)

Charged particles emit Cherenkov radiation when they traverse through a di-
electric medium and this feature is exploited for the purpose of detection at the par-
ticle physics experiments. As they traverse the medium with a refractive index n,
they polarise the molecules which return to their unpolarized state once the parti-
cles have passed through, by emitting photons. If the particle velocity is greater than
the speed of light in the medium v > ¢/n, Cherenkov radiation is emitted at an an-
gle 0 with respect to the particle track due to constructive interference of the emitted

photons. The angle 6 can be determined with:

cost = % (1.3)

. Interaction of electrons and photons with matter

The dominating process for the energy loss of electrons at low energies below a
critical energy E, is ionisation. Above the E. electrons lose their energy mainly via
Brehmsstrahlung!, where they emit photons as they get decelerated in the medium.
The critical energy E, is given as E, ~ % MeV, where Z denotes the nucleus charge
of the medium. Since the energy loss via Brehmsstrahlung is inversely proportional
to the square of the particle’s mass, it is dominant for the electrons rather than the
muons at below 100 GeV scale. For low energy photons the dominating process is
the photoelectric effect where the photon is absorbed by an electron that was ejected
from an atom. At higher energies above 10 MeV, pair production plays the largest
role in the energy loss of photons. An important parameter for the description of
electromagnetic interactions of photons and electrons with matter is the radiation

length Xy, which is the average distance the electron travels so that its energy is

lowered down by a factor of 1/e. It can be approximated with:

X~ 1
O™ 4anz2r,21n(287/Z172)

(1.4)

IProduction of electromagnetic radiation by the deceleration of a charged particle that gets deflected
by another charged particle or by the atomic nucleus. The lost kinetic energy of the particle is converted
into the radiation (photons) and the total energy is conserved.



8 Chapter 1. Introduction

where n is the number density in the material nuclei and r. is the classical radius

2

of electron, defined as v, = T
e

= 2.8x107 " m. This indicates that for high
Z materials the radiation length is short (for iron Xy (Fe) = 1.76 cm). Alternating
Brehmsstrahlung and pair production processes cause the production of a cascade
of electrons, positrons and photons when the electron interacts with the material
as it traverses it, referred as an electromagnetic (EM) shower. As the electromag-
netic shower grows through the material, the number of generated particles approx-
imately doubles at every Xy. Therefore the average energy of the particles at a dis-
tance of x radiation lengths can be estimated as Ey/2*, where Ej is the initial photon
energy. The shower growth is stunted at the point where the cascading particles’
energy drops to the critical energy E., below which they start losing the rest of their
energy primarily via ionisation. The maximum number of radiation lengths an EM
shower can grow, can therefore be determined:

. ln(Eo/Ec)
Xmax = T (1-5)

(I +

+

+

+ [

CDCIE;{CD'-{(‘D(D(D‘-{(D(D ©0D=<0D <

11X 28X 38X 4X%

FIGURE 1.3: Electromagnetic shower growth. At each radiation
length distance number of particles double (approximately) [9].

In high Z materials such as Pb, commonly used in particle detectors with E. ~
10 MeV, an EM shower with an initial 100 GeV energy cascades until x,,,x ~ 13 Xp

(less than 10 cm).
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Interaction of hadrons with matter

When charged hadrons such as charged pions traverse a material, they lose their
energy by ionisation as well as via the strong interaction with the nuclei, which pro-
duce other particles and consequently a cascade of particles, referred as a hadronic
shower. Similar to EM shower, they are characterized by the mean distance between
hadronic interactions within the shower, called nuclear interaction length A;. In com-
parison to the radiation length of EM shower, A; is much larger, for example for
iron A; ~ 17 cm, whereas the Xy is 1.8 cm. Hadronic showers grow in a less uniform
manner unlike the EM showers, since many different final states can be generated in-
cluding photons and electrons which give rise to further (EM) showers. On average

30% of the initial energy is lost due to nuclear excitations and cannot be detected.

! ABSORBER

Em
component

i hadron . 3 }
h A | A

FIGURE 1.4: Hadronic shower development [10].
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Neutrinos
Neutrinos do not leave any traces on the detector components in a collider en-
vironment, however evidence for their presence can be inferred from the missing

momentum, defined as

Pmiss = — sz (16)
i

where we sum over all measured momenta of the particles observed within an
event, a recorded individual interaction. A non-zero total momentum would indicate
the presence of undetected particles. Furthermore presence of neutrinos/missing
momentum can be used as a key when identifying particles from their decay prod-
ucts. For example all main tau decay modes (1~ — 7w~ (n71°)v,(48%),

T = e T (17.8%), 77 — W ,v.(174%), 77 — -t (nn®)v-(15%)) have

neutrinos produced in their final states, so the presence of missing momentum should
accompany the other traces left in the detector components when one of the decay

modes is observed.

In collider experiments the initial momentum of the colliding partons along the
beam is unknown and the total missing energy cannot be measured. However, the
initial momentum in the transverse direction is zero, therefore any net momentum
in the transverse direction, so called missing ET (MET), indicates missing energy.

Particle accelerators

Particle accelerators collide beams of particles (or a single beam is fired at a sta-
tionary target), force them to interact and observe the collision outcome by many
detector technologies with the goal to reconstruct the particles that were produced
in the collision. The mechanism and operation principle of one such detector, CMS
has been described in detail in section 2. One of the most important parameters that
characterizes the performance of such an experiment is its center-of-mass energy /s
given in natural units with ¢ = 1 for colliding beam accelerators with two initial-state

particles:

2 2
s= (3 E)?—(Lp) (17)
i=1 i=1
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Since energy required to produce massive particles has to be provided by the
center-of-mass energy available at the colliders, beam colliders have higher chance
of producing massive particles such as the W, Z and Higgs bosons than the fixed
target colliders.

One of the most important performance parameters for the detector alongside
energy is called luminosity L, which is a measure the event rate. The total number
of events N for a given process is the product of the process cross section ¢, a mea-
sure of the quantum mechanical probability for the interaction, and the integrated

luminosity over the period of time of the measurement:

N = U/L(t)dt. (1.8)

In the case of LHC the beam particles are bunched together with a separation of
25 ns (collision frequency of 40 MHz). Assuming the beams have a Gaussian profile
and collide head-on, the instantaneous luminosity at the LHC at a certain time at the
interaction point is given by:
_ f-Ni-N

where N; denote the number of protons per bunch per beam and o; the corre-
sponding cross sections and f the crossing frequency (40 MHz).

Cross section measurements are performed by counting the number of observed
events of the process of interest as well as of a process for which the cross section is

already known:

N
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1.2 Quantum Field Theory

As mentioned previously, SM is based on the QFT theoretical framework which uni-
fies classical field theory with special relativity and quantum mechanics. Particles
are treated as excited states (quanta) of the corresponding quantum fields. Particle
interactions are described by the interaction terms in the Lagrangian for the cor-
responding quantum fields. Lagrangian can be defined in a similar manner as in
classical dynamics, where the motion of a system is described with Newton’s sec-
ond law F= mx with the force F and the acceleration X. Lagrangian L(g;, 4;) for the
generalized coordinates g; and their (time) derivatives 4; is defined as the difference
between the kinetic and potential energies of the system: L(g;, 4;) = T - V. The equa-

tions of motion follows from the Euler-Lagrange equations:

%(3_;)_2_; _ (1.11)

For a particle moving in one dimension, plugging in T and V into the equation
1.11 recovers the second law of motion. The treatment for a continuous system of
particles is analogous, where the generalised coordinates g; are replaced by the fields
¢i(t, x,y,z), time derivatives are replaced by the derivatives of the fields with respect
to each of the four space-time coordinates d,,¢; = % and the Lagrangian L(g;, 4;) is

replaced with the Lagrangian density L(¢;,0,¢;). The Lagrangian L itself is given
by:

L— / Ldx. (1.12)

The equivalent Euler-Lagrange equations for a continuous system using the prin-

ciple of least action follows:

oL oL
"oy

where the field ¢;(x") is a continuous quantity with a value in each space-time

=0, (1.13)

point.
In QFT, spin-0, spin-half and spin-1 particles are described by their own La-

grangian densities. For spin-0 particles with scalar fields, the excitations satisfy the
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Klein-Gordon equation, given as:

L5 = 2 ((0u90)(8"91)) — 3 (114)

N —

for a free non-interacting scalar field. Plugging in the partial derivatives in the

Euler-Lagrange equation recovers the Klein-Gordon equation for a free scalar field:

0,0 + mp = 0. (1.15)

The Lagrangian density for spin-half particles (spinor field) i (x) which satisfy
the Dirac equation is given by:

Lp = iy auyp — mipy, (1.16)

where (x) is a four dimensional complex spinor that can be expressed in terms
of eight real fields ;(x) = ¥;(x) + i®; fori=1,...4, which in turn can be expressed as
a linear combination of i and the adjoint spinor . Substituted in the Euler-Lagrange

equation in 1.13 the Dirac equation for a spinor field follows:

iv"(9,¢) —myp = 0. (1.17)

For an electromagnetic field A* = (¢, A) expressed in the covariant form is given

as:

9 F =, (1.18)

where F*V is the field-strength tensor:

FM = gAY — QU AF = ) (1.19)

The Lagrangian for the photon field follows as :
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1 ,
EEM = —ZF}“’P}W —]VAV, (120)

where j = (p, J) is the four vector current with the charge density p and the current
density J.

For spin-1 particles with mass this would be modified to:

1 1
Lem = —ZPWFM — AL+ §m2AyAﬂ' (1.21)

121 QED

In electromagnetism, the electric E (with the scalar potential ¢) and the magnetic

tield B (with the vector potential A) do not change under the gauge transformation:

¢%¢:¢—%QMAfH¥:A+Vx (122)

With the following operations A, = (¢, -A) and 9d;, = (dy, V) the equation 1.22 can
be written more compactly: A, — A}, = Ay, — dux.

Similarly, in relativistic quantum mechanics, the gauge invariance can be related
to a local gauge invariance, where a fundamental symmetry requires the physics

laws to stay invariant under a local phase transformation defined by:

P(x) = ¢/ (x) = U(x)p(x) = ey (x), (1.23)

where the phase gx(x) can vary at all points in the space-time. If this is substi-

tuted in the free-particle Dirac equation of 1.17, we get:

iv" (9, +1qdux)p —myp =0, (1.24)

which differs from the free-particle Dirac equation. A local phase invariance is
not compatible with free-particle theory that does not include interactions between
particles. Hence the Dirac equation is modified under the local phase invariance
with a new term A, invariant under the local phase transformation A, — Aj =

A, — 9, x and becomes:
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iv" (0 +iqAy)p — myp =0, (1.25)

The new term g9" A, is the interaction term of QED. The fact that physics is
invariant under local U(1) phase transformations of the form U = ¢X(Y) indicates
that there exists a gauge field that couples to the particles in the same way as a

photon.

1.2.2 QCD

Analogous to the U(1) local gauge symmetry of QED, the underlying symmetry of

QCD is the invariance of SU(3) local phase transformations, given as:

P — p(x) = eliss* @ Ty (x), (1.26)

where T = [T*] are the eight generators of the SU(3) symmetry group and a*(x)
are eight functions of the space-time coordinate x. The generators of the SU(3) group
are 3x3 matrices, which means the function ¢ must have three additional degrees of
freedom. The new 3D vector degree of freedom is called color and the three states
are named red, blue and green respectively. Plugging the equation 1.26 in the Dirac

equation of 1.17 we get:

iv"[(0y +igs(ue) - T]p —map =0, (1.27)

Similar to the procedure for QED in the previous section, eight new fields which
transform as G';j — G']j’ = G;'j — Oyl — §s fl-]-kociGL are introduced, so that the new

Dirac equation becomes invariant under the SU(3) phase transformations:

iV [(0n +igsG, T | — my = 0. (1.28)
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The eight new fields G* are the gluons and the interaction term of QCD is
gsT*v'Gyyp. Additionally, since the SU(3) group generators do not commute, this
new interaction term gives rise to self-interactions of gluons.

Comparison of the two different interaction types can help us see the bigger pic-
ture better. The QCD interaction is mediated by eight massless gluons, which cor-
respond to the eight generators of the SU(3) local gauge symmetry, whereas QED is
mediated by the massless photon, the generator of the U(1) local gauge symmetry.
The single charge of QED corresponds to the three color charges r, b and g for QCD.
Particles with non-zero color charge are the only ones that can couple to gluons,
which is why leptons (all color neutral) do not experience the strong force. The color
charge is carried by the quarks, which exist in three orthogonal color states. QCD
interaction strength is thus independent of the color charge of the quark. Antiparti-
cles have the opposite electric charge in QED, whereas antiquarks have the opposite
color charges 7, b, §.

If free quarks existed, they would present themselves as fractionally charged par-
ticles. However, no such particles have been detected so far by any particle physics
experiment. The hypothesis of color confinement states that coloured objects are con-
fined to color singlet states and that objects with non-zero color charge cannot prop-
agate as free particles. The main idea behind color confinement is following: similar
to the QED interaction, a quark-quark interaction can be thought of as an exchange
of a virtual gluon. Unlike the electrically neutral photon, a gluon carries the color
charge. Therefore, the field lines surrounding the quark-quark system get squeezed
into a tube shape due to the attraction between the gluons, whereas the electric field
lines spread as the distance from an electron-positron system increases. The energy
stored in the field is proportional to the distance between the quarks and it would
take a very large amount of energy to separate the two quarks. Therefore quarks are

confined to colorless hadrons.

1.2.3 The weak interaction

As discussed previously, QED and QCD have several common features; both are

mediated by massless spin-1 bosons and the interaction terms both have the form
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Y*ia(p" )u(p). The charged-current weak interaction is quite different in many as-
pects, the first being the only interaction in SM where parity is not conserved. Parity

operation is the spatial inversion at the origin defined as:

Ylx ) = ¢'(x, 1) = Py(x, t) = p(—x,1) (1.29)

and is conserved for both QED and QCD interactions. The non-conservation in the
weak interaction was demonstrated by Wu and collaborators in 1957 by the study of
B decay of polarised cobalt-60: ©“Co —% Ni* + ¢~ + (v), [11]. In the study, the ®*Co
nuclei have a permanent nuclear magnetic moment u were aligned in a magnetic
field B were emitting electrons via 8 decay. Both B and u do not change under the
parity transformation. However, the sign of the momentum vector of the emitted
electrons does change under the parity transformation. Thus, if parity were con-
served, electrons emitted from the direction relative to the B field should be found
on the opposite hemisphere as well, which was not observed.
The weak charged-current interaction term is given as:

w5 130
ﬁzv( ), (1.30)

where gy is the weak coupling constant.

The chiral structure of the weak interaction is another important characterization
of the interaction. The left and right handed chiral projection operators are given as:
Pr =

(14+9°)and Pz = =(1—19°), (1.31)

N —
N —

where any spinor can be decomposed into the left- and right-handed chiral compo-

nents:

1
u=-(1+9)u+ 5(1 —9°)u = agu +agu, (1.32)

NI —

with coefficient ag and a;. The weak interaction term 1.30 already includes the

left handed chiral operator. The four vector weak-charged current given by:
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= S 31 =4 )u(p) (1.33)

would thus become 0 for two right-handed chiral states. Therefore only left-handed
chiral particle states (and right-handed antiparticle states) engage in the charged-
current weak interaction. For massless particles and in the limit m << E chirality
is equal to the helicity H = (p - s)/|p| which is the sign of the scalar product of
momenta and spin. This means in the ultra-relativistic limit, only specific helicity
combinations are allowed for weak interactions. This is the foundation of the phe-
nomenon called parity violation, where the parity operation transforms an allowed
weak interaction into one that is not allowed, violating the conservation of parity.
In the 1960s Glashow, Salam and Weinberg unified the theories of electromag-
netic and weak interactions [12] [13], which postulates the mediation of a weak
nuetral-current by the neutral Z boson. Similar to QED and QCD, the weak charged
current interaction is associated with an underlying local gauge symmetry, SU(2);,
which brings about the charged W bosons and a neutral gauge field W®). In the
unified electroweak theory, the neutral gauge field W(®) mixes with a photon like

field of U(1)y gauge symmetry to generate the photon and Z-boson fields:

Ay = +Bycosty + W sinfy (1.34)

Zy = —Bysinfy + W cosbyy (1.35)

where 0y is the weak mixing angle and B, is a new gauge field that couples to
a charge called weak hypercharge Y. The couplings of photon, W and Z bosons are

related with each other via: e = gy sinfy = gz sin Oy costy.
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1.3 Beyond The Standard Model

SM is a model based on many theoretical ideas that were put together in order to
reproduce the available experimental data. Despite its recent success of passing sev-
eral precision tests and the discovery of the predicted Higgs boson, it is not the
final theory of particle physics because of the many unanswered questions. A brief
overview of some these topics will be given in this section.

Dark Matter

There are several direct evidences for the existence of dark matter, the most
prominent being the velocity distributions of stars as they orbit the galactic center.
Assuming that most of the mass is located at the center of the galaxy, the tangential
star velocities should decrease as r~1/2, however this is not observed. They decrease
much slower which implies that the galaxy has a significant non-luminous mass
component [14]. Further evidence comes from cosmological and astrophysical mea-
surements, in particular from the precision measurements of the cosmic microwave
background (CMB) [15] and gravitational lensing [16] . Within ACDM cosmolog-
ical model only 5% of the energy-matter density of the Universe is in the form of
baryonic matter, 23% of the energy-matter density is cold dark matter whereas the
majority of the density is in the form of dark energy [17]. Many candidates have been
proposed for the dark matter such as cold non-baryonic matter, specifically weakly-
interacting massive particles (WIMPs)[18]. Neutrinos are the known WIMPS, how-
ever their masses are too small to account for the dark matter content of the universe.

Matter-antimatter symmetry

The Universe seems to be made out of mostly matter. However, SM predicts that
matter and antimatter should exist in equal parts if the initial universe conditions did
not have any disproportionate matter, but fails to explain the observed asymmetry.
Asymmetric interaction processes such as CP-violating electroweak processes [19]
can account for a fraction of the observed asymmetry, however this would indicate
the existence of other unknown CP-violating processes that are responsible for the

total asymmetry.
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Neutrino masses

SM predicts neutrinos as massless particles, however neutrino oscillation exper-
iments have shown that neutrinos do have small masses [20], and that they can mix
together [21], just like the different types of quarks (with the same quantum num-
bers) can mix together. Thus highly energetic neutrinos can oscillate, change type
from one flavor into another as they traverse matter. Furthermore, every observed
neutrino is left-handed, and anti-neutrinos are right-handed. However, if neutri-
nos have mass, this would indicate that neutrinos are their own antiparticle, like
a Majorana particle [22]. Experiments are therefore focusing on the possibility of
neutrinoless double beta decay, which can only happen if neutrinos are Majorana
particles.

Gravity

Gravity is not described by the SM due to the contradictory terms that arise when
combining general relativity, theory of gravity and quantum mechanics. There are
several theoretical studies on the unification of gravity with SM such as string theory
[23], loop quantum gravity [24]. However at the energy scales of high energy physics

(HEP) experiments, gravity is very weak and is therefore neglected.
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Chapter 2

The Experimental Apparatus

In this section an overview of the LHC accelerator mechanism will be given, the
experiments will be introduced and the Compact Muon Solenoid (CMS) experiment

will be described in detail.

2.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the highest energy particle accelerator and col-
lider in the world. It is located within a tunnel of 26.7 km circumference and 50-175
m deep below the border between France and Switzerland (Figure 2.1), and operated
by the European Organisation for Nuclear Research (CERN). Primarily collisions are
generated by two beams of protons, accelerated to high energy velocities and inter-
sected in the center of detection systems. Superconducting quadrupole magnets are
used to keep the beams directed to and focused at the intersection points and dipole
magnets make sure that the beams stay on the circular path. The proton beam is not
continuous, but split into bunches so that the collisions happen at discrete intervals
(25 ns) with a rate of 40 MHz.

Previously the same tunnel housed the Large Electron-Positron (LEP) Collider
where electrons and positrons were being collided in similar manner. However,
because electrons are less massive, the synchrotron radiation loss was very large and
this resulted in the particles not being accelerated to the high velocities in an efficient
manner. The maximum beam energy achieved by LEP was 209 GeV, whereas the
beam energies reached by the LHC is at 6.5 TeV, giving a total 13 TeV collision energy,

which is the current world record.
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lustration Philippe Mouche

FIGURE 2.1: LHC tunnel below the French-Swiss border with the four

experiments CMS, ATLAS, LHCl[azg?fl ALICE at the interaction points
In 2009 LHC started circulating low energy beams and was able to achieve beam
energies of TeV energy scale, beating the previous record held by Tevatron. By 2010
the total collision energy reached 7 TeV. This operation period called Run I, crowned
with the discovery of the Higgs Boson in 2012, was concluded early 2013. After a
shutdown of two years, which allowed many detector components to be upgraded,
LHC started collecting data again in 2015. During Run II which lasted until 2018,
the beam energy reached 6.5 TeV, resulting in a combined energy of 13 TeV. Data
analysed within the scope of this work has been delivered during the Run II period.
One of the most important performance parameters for the detector alongside
energy is luminosity, which is a measure of how many collisions take place in the
detector. The higher the luminosity, the better chance does the LHC have of produc-
ing rare events of interest. Additionally, operating at higher luminosity results in
data samples with large statistics that are necessary for more precise measurements.
Luminosity is defined as the ratio of the number of detected events (dN) in a certain

period of time (dt) to the cross-section (¢):
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L=
with the dimensions of number of events per area per time [cm =2 - s71].
Starting from equation 1.9 the instantaneous luminosity at the LHC at a certain
time at the interaction point can be estimated with the beam parameters € denoting
the transverse emittance and f* denoting the amplitude function at the interaction

point:

- % (22)

where N denote the number of protons per bunch per beam and ¢ the corre-
sponding cross section and f the crossing frequency (40 MHz). The emittance can
be defined as the smallest opening the beam can squeeze through and is a measure
of how parallel the beam is. The amplitude function 8 = 7 - ¢?/€ is proportional
to the width of the beam squared divided by emittance and is determined by the
quadrupole magnet configuration. Low amplitude function and a low emittance

give a narrow "squeezed" beam and per eq. 2.2 a higher luminosity.

The integrated luminosity is the integral of the luminosity with respect to time:

Ly = / Ldt, 2.3)

with the dimensions of inverse cross section [#b~!]. It is a measure of the size of
the data collected over a certain time period, and therefore an important parameter
for the performance of the accelerator (see Fig. 2.2 for the yearly integrated luminos-
ity of CMS experiment).

The design luminosity of LHC is 103 ¢m=2 s7!, which was first reached dur-
ing Run II and is 100 times higher than the maximum luminosity achieved by LEP.
During the shutdown between 2018 and 2022, the whole accelerator complex was
maintained and upgraded for the preparation of the High Luminosity Large Hadron
Collider (HL-LHC) phase, which will increase the luminosity by a factor of 10. As
of writing, LHC is operational again for the Run III period (expected to end in 2026)

with a beam energy of 6.8 TeV.



24 Chapter 2. The Experimental Apparatus

CMS Integrated Luminosity Delivered, pp

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

100 . ; : , ; : ; 100
- w2010, 7 TeV, 45.0 pb '
a m— 2011, 7 TeV, 6.1 b !
- m— 2012, 8 TeV, 23.3 '
> 8o m— 2015, 13 TeV, 4.3 b 180
= 2016, 13 TeV, 41.6 fb '
o w2017, 13 TeV, 49.8 fb !
£ m— 2018, 13 TeV, 67.9 fb !
£ 60} 160
-
J o -
9 /
# 40| f/y 140
1™ o
o r 4
9 y
o}
£ 20} 120
©
i
Q g
= 5 x50 o
N\ X ~ C
Q° 4 R\\ W WO e? C o e
APV AW AT AN BT 88T L 0T T 0

Date (UTC)

FIGURE 2.2: Integrated luminosity of CMS over yearly periods dur-
ing Runland Run II [26].

2.1.1 Injection and Acceleration of Protons

Protons in the LHC beam originate from a hydrogen tank and they go through a
series of accelerating components where they increase their energy successively. The
first step is the injection into a linear accelerator, called LINAC4 (see Fig. 2.3), which
accelerates negative hydrogen ions up to the energy of 160 MeV. The ions are then
injected into the Proton Synchrotron Booster (PSB), where they lose the electrons
leaving the nucleus in the beam, which are then accelerated to the energy of 2 GeV.
In this way by accelerating hydrogen ions instead of protons the beam loss during
the injection is reduced. The next step is the injection into the Proton Synchrotron
(PS) where they are accelerated to 26 GeV. The last accelerating component is the
Super Proton Synchrotron which accelerates the protons to 450 GeV before injecting
them into the main LHC ring in opposite directions. In order to minimize interaction
of the particles with the gas molecules in the air, the beam pipes are kept at ultra high

vacuum conditions (10719 — 10~ mbar).
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FIGURE 2.3: Overview of the CERN accelerator complex with the
1INAC4, PSB, PS, SPS, LHC ring and the experiments [27].

21.2 LHCRing

In order to keep the protons on the circular trajectory, strong magnetic fields are
needed, which are provided by the 1232 dipole magnets. 392 quadrupole magnets
force the beams further to close in at the intersection points so that the probability
of the interaction of opposing protons is maximized. Additional higher multipole
order magnets are used for minor field geometry corrections along the beam pipe.
About 96 tonnes of superfluid helium is needed to cool the magnets and keep their
temperature at 1.9 K (-271.25 °C).

Before the collisions can take place, the injected protons are accelerated from 450
GeV to 6.5 TeV via 16 radio-frequency (RF) cavities, metallic chambers containing
electromagnetic field, where protons receive an electric impulse and get accelerated.
Each RF cavity oscillates at a frequency of 400 MHz, so that a proton with the correct

energy that reaches the cavity at the expected time will not be accelerated further,
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while the slower protons arriving later will be accelerated (faster ones will be decel-
erated). In this way the proton beam is split into packs of protons called "bunches".
Each cavity can reach a maximum voltage of 2 MV and they operate at a tempera-
ture of 4.5 K. At 2 MV voltage and 8 cavities per beam, each beam proton gets an
16 MeV energy. The collision energy of 6.5 TeV is reached in about 20 minutes after
the bunches pass through the cavities more than 10 million times. During this ac-
celeration time, the protons are steered away from the interaction points by dipole
magnets.

After the proton bunches reach the desired energy levels, they circulate the ring
and collide at the four interaction points. After some time (defined later as an LHC
fill) the protons are dumped (they exit the ring and collide with graphite absorbers
that are tangent to the beam pipes). The period between the initial injection and the
dump is characterized as an LHC fill, and its duration depends on whether there is a
technical issue or the beam properties degrade beyond correction or beam intensity
drops too low due to losses in collisions and from beam-gas interactions.

In order to maximize the probability of observing rare particle interactions, LHC
was designed to collide proton bunches each consisting of thousands of protons ev-
ery 25 ns. However, this results in the collisions of interest being recorded together
with a large number of unwanted additional proton collisions, so-called pileup (PU)
interactions (see Figure 2.4). During Run II the number of PU interactions in the
years 2017 and and 2018 were 32, and in short periods of time surpassed 50 (the av-
erage value is proportional to the instantaneous luminosity and the cross section of
the process that takes place at the PU interaction, per equations 2.2 and 2.3). Most
of the PU interactions end up in a large number of low energy particles around the
interaction point (soft scattering interactions). While the probability of recording
multiple hard collisions is very low due to the small cross section of such processes,
selecting the interesting, high-energy hard interactions is a major challenge since the
interaction outcome is contaminated by the surrounding soft interactions which are
recorded at the same time. Many pileup mitigation techniques are employed to this
purpose where the primary vertex of the interesting interaction is identified and the

charged particles coming from pileup vertices are rejected.
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CMS: Experintent at the LHC; GERN
Data recorded; 2016-0ct-14 09:56:16,733952 GMT
Run/ Event /1.5; 283171,/ 142530805 /254
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FIGURE 2.4: CMS event display with proton-proton collisions at a

center-of-mass energy of 13 TeV, recorded during the high pile-up fill

of Run 2 (October 2016). The events are from isolated bunches with

average pileup roughly around 100. Yellow lines indicate the trajecto-

ries of the particles, while orange dots are the reconstructed primary
vertices [28].

2.1.3 Detectors

Eight detectors are installed at the LHC intersection points to record and study the

outcome of highly energetic particle collisions. The four largest are the following:

* ATLAS (A Toroidal LHC ApparatuS) [29]

ATLAS is a general purpose detector and the largest experiment at the LHC.
It was designed to primarily to study the highest-energy phenomena, which
may involve the production of new high-mass particles. It has a broad study
program ranging from Standard Model to search for evidence of beyond the

Standard Model theories.

¢ CMS (Compact Muon Solenoid) [30]

CMS is a general-purpose detector and has a similar research program to that
of ATLAS. CMS and ATLAS performed independent studies that led to the
discovery of the Higgs boson in 2012 [3] [4]. It has a different magnet system
design with a magnetic field twice as intense (3.8 T) and is overall more com-
pact than ATLAS. This detector recorded the data that was analysed in this

work, and is described in detail later in this section.
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¢ LHCb (Large Hadron Collider beauty) [31]

LHCb is a single arm forward spectrometer and was designed to study primar-
ily the CP violation in the interactions of b-hadrons, which are predominantly
produced in the forward region. Such studies can shed light on the causes of

the matter-antimatter asymmetry in the universe.

¢ ALICE (A Large Ion Collider Experiment) [32]

ALICE records heavy ion (Pb-Pb) collisions at a center of mass energy up
to 5 TeV, where the high energy density allows the existence of quark-gluon
plasma, a state of matter where quarks and gluons that make up the hadrons
are freed of their strong attraction for one another. Believed to be the primor-
dial matter form, which existed within a fraction of a second after Big Bang,
quark-gluon plasma will enhance our understanding of the nature of strong

interaction as well as the mechanism that confines quarks and gluons.

The last four, TOTEM [33], MoEDAL [34], LHCf [35] and FASER [36] are
smaller detectors and have specialized research goals. TOTEM is located at the same
interaction point with CMS and positioned tangent to the beam pipe, focuses on
measuring total cross section, elastic scattering and diffraction processes. MoEDAL
shares the interaction point with LHCb and works primarily on the search for the
magnetic monopoles and other highly ionizing stable massive particles. LHCf shares
the interaction point with ATLAS and was designed to measure the energy and the
number of neutral pions produced in the forward region of the collider with the
purpose of understanding the origin of ultra-high-energy cosmic rays. FASER is
installed at the interaction point used by ATLAS and will primarily search for new
light and weakly coupled elementary particles, such as dark photons, axions and

sterile neutrinos when it will be operational at Run III in 2022.

2.2 Compact Muon Solenoid

CMS is a general purpose detector that was installed at one of the four collision
points at the LHC ring with the purpose of exploration of physics at TeV energies.

This includes performing several studies on high energy physics phenomena such
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as further investigation of the properties of the Higgs boson, discovered by CMS
and ATLAS, search for evidence of physics beyond the Standard model such as su-
persymmetry, and scan the collision outcome for remnants of dark matter candidate
production.

Photons, muons, electrons and other products of the collisions can be detected
and identified by CMS via the signatures they leave on the sub-detectors that are
designed to measure the energy and momentum of particles with high accuracy
[38]. The innermost layer is a silicon tracker (as depicted on Figure 2.5), which
is surrounded by a scintillating lead tungstate crystal electromagnetic calorimeter
(ECAL). ECAL itself is encompassed by a scintillating brass hadronic calorimeter
(HCAL). The subsystem of calorimeters and the tracker is fit inside the solenoid
magnet with a diameter of 6 m capable of generating a homogeneous magnetic field
of 3.8 T. A steel flux-return yoke encloses the solenoid and confines the magnetic
field, wherein lie the large muon detectors, composed of cathode strip chambers,

resistive plate chambers and drift tubes.

CMS DETECTOR STEEL RETURN YOKE
Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diameter : 15.0m Phxel (100x150 um) —1m? ~66M channels
Overall length 1 28.7m Microstrips (801180 pm) ~200m? ~9.6M channels
Magnetic field 38T ‘
SUPERCONDUCTING SOLENOID
— Wiobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Dirift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
Silicon strips =16m* ~137,000 channels

| FORWARD CALORIMETER
| Bteel + Quarte fbres 2,000 Channels

CHYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~76,000 scintillating PEWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator 7,000 channels

FIGURE 2.5: A cutaway diagram of CMS detector, with the sub-
detector components indicated [37]
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2.2.1 Interaction Point

The interaction point is where the beams are focused at by the quadrupole mag-
nets and where the collision takes place. The CMS detector is accordingly centered
around this point. At the time of collision the opposing beams each have a radius
of 17 ym and an angle of 185 urad. At full luminosity each beam contains 1.15x10!!
protons per bunch at the start of an LHC fill and in total 2808 bunches per beam.

CMS uses a right-handed coordinate system with the origin at the interaction
point, the x-axis pointing to the LHC ring center and the y-axis pointing upwards,
perpendicular to the LHC plane, while the z-axis is tangent to the beam line and is
along the anticlockwise beam direction. In polar coordinates, the azimuthal angle
¢ is measured from the positive x-axis in the x-y plane, while the polar angle 6 is
measured from the positive z-axis with respect to the LHC plane. The radius r is the
distance from the z-axis.

Rapidity is a spatial coordinate defined as the angle between the particle momen-

tum p and the beam axis:

Etp:

Fo), 24

y= —%ln(tan(

In the limit where particles are travelling close to the speed of light (m « |p| ), it

can be approximated by the pseudorapidity given by:

n= —ln(tan(%)), (2.5)

which depends only on the polar angle 6. Particle trajectories with 7 = 0 (6 =
7t/2) are perpendicular to the beam, while particles with high 7 values generally
escape along with the beam and are lost to the detector.

The pseudorapidity is commonly preferred over the polar angle 6, because the
difference between the rapidities (or pseudorapidities) of two particles is invariant
with respect to Lorentz boosts along the z-axis, whereas the difference in polar angle
 between two particles depend on the initial parton state Lorentz boost in the z
direction, which is difficult to determine for different collisions in the laboratory

frame of reference. Angular separation is defined using the pseudorapidity 7 and
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the azimuthal angle ¢:

AR = 1/ (An)* + (Ag)?, (2.6)

where A¢ is invariant under Lorentz boosts along the z-axis since it is measured

on the x-y plane.

2.2.2 Tracker

Measurement of particle momentum is crucial for reconstructing the events taking
place at the collision center. Therefore the tracking system is the inner most layer of
the detector and the closest to the interaction point (Figure 2.5). The momentum is
estimated by recording the trajectories of charged particles at a number of key points
as they are passing through a magnetic field; the straighter the trajectory, the higher
momentum the charged particle had, whereas particles with less momentum leave
a curved path signature behind. Each key trajectory point measurement is accurate
to 10 um [39] for high momentum particles. The trajectories, called tracks, can be
detected within a pseudorapidity range of |1| < 2.5 [40].

In order to minimize the disturbance to the particle trajectory, the tracker mate-
rial has to be as lightweight as possible. Furthermore, since the tracker is the inner-
most layer, it receives the highest flux of charged particles from each bunch collision
at a rate of 40 MHz. Therefore, high radiation tolerance (radiation hardness) is an im-
portant requirement for the tracker materials. To this purpose, the tracker is made
completely out of silicon material and has two main parts: an inner silicon pixel
layer and an outer silicon micro-strip layer surrounding the former layer. When the
charged particles pass through the layers, the pixels and the micro-strips produce
electric signals, which get amplified and detected.

In total, the tracker contains 1440 pixel modules with 66 million pixel cells cov-
ering about 1 m? total area, while the strip detector surrounding it, has 15148 strip
modules with 10 million read-out channels covering a sensitive area over 200 .
The pixel detector is the innermost layer of the tracker in the barrel region set up
cylindrically around the interaction region of the LHC beams (as seen in Figure 2.6).

Each pixel cell has an are 100 x 150 m? and a depth of 285 m and gives a precise 2D
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location of the hits that coincide with the cell. Together with the information of the
cell position, the 3D coordinates of the hit are obtained. The strip detector consists
of four sub-detectors: 4 layers of tracker inner barrel (TIB), 6 layers of tracker outer
barrel (TOB), 3 tracker inner disks (TID) and 9 tracker endcap disks (TEC) covering
up to 110 cm in radii and 280 cm in z direction (see Figure 2.6). In the barrel region
the strips are set up parallel to the beam line, while in the endcap section they are
perpendicular in a back-to-back arrangement, where each one of the neighboring
module is rotated slightly. In this way, the location of the hit can be found in 2D

(together with the module position, in 3D).
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FIGURE 2.6: Schematic cross section through the CMS tracker in the
r-z plane. [41].

2.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) measures the energies of electrons, positrons
and photons by detecting the scintillation light, proportional to the particles’ energy;,
which gets produced when they enter the calorimeter and cause electromagnetic
showers. It is made of crystals of lead tungstate (PbWO,), a dense but optically
transparent material, which produces visible range light in the form of short, well-

defined bursts of photons and thus can be detected with high precision [42]. The

AR
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crystals are positioned in carbon fiber so that they are optically isolated and sur-
rounded by photo-detectors that detect the light and convert it into signal to be am-
plified and read out. The radiation length (see section 1.1.3) of the lead tungstate
crystals is Xo = 0.83 cm allowing the EM showers to stay in a compact region.

When high energy electrons or positrons enter the calorimeter, they get stopped
by the dense lead tungstate crystals and during the deceleration, they emit pho-
tons via Bremsstrahlung radiation. For photons with high energy (MeV scale and
higher; below this scale, photoelectric effect and Compton scattering are dominant),
pair production of electron-positron is the dominant mode of interaction with mat-
ter, both of which in turn emit more photons via Brehmsstrahlung radiation as they
decelerate. The two processes continue with decreasing energy, leading to a cascade
of particles, referred as an electromagnetic shower, until the photon energy falls be-
low the pair production energy threshold and other processes dominate the electron
energy loss other than Brehmsstrahlung. Low energy photons in the final layer of
the cascade produce light in the visible range in the crystals which gets detected and
converted into electric signal by the photo-detectors.

ECAL is composed of two main parts: the barrel and the two endcaps (see Figure
2.7), and is positioned between the tracker and the HCAL (as depicted in Figure
2.5). The cylindrical barrel with an inner radius of 129 cm consists of 61200 blocks
of crystals grouped together into 36 supermodules, each with 1700 crystals of 3 cm
width that are placed around the collision region in a radial direction. The barrel
has an inner radius of 129 cm and covers a pseudorapidity range of || < 1.479.
The flat endcaps close off the barrel on either side at a distance of 314 cm from the
collision point and carry 7324 further crystals each. It covers a pseudorapidity range
of 1.479 < |y| < 3.

Furthermore ECAL is equipped with preshower detectors (see Figure 2.7), which
are made of two layers of lead interleaved with two layers of silicon strip detectors
of 2 mm width, and thus have a higher granularity than the ECAL crystals. A single
high energy photon is usually a sign of a rare physics process, however this signature
can be missed by the ECAL when a neutral pion decays into two closely spaced
lower energy photons that are identified as one photon. The preshower detectors

are placed at the endcap sections, where the angle between the photons emitted
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from the pion decay is small enough to be misidentified by the ECAL.

Quasi-projective Barrel
crystals in a
supermodule

Dee

Modules

Supermodules

FIGURE 2.7: ECAL layout [43].
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2.2.4 Hadronic Calorimeter

The hadronic calorimeter (HCAL) measures the energy and direction of hadrons,
such as protons, neutrons, pions and kaons by detecting the scintillation light emit-
ted when primary and secondary hadrons traverse the active material in the device.
It consists of layers of dense material (brass and steel) acting as absorbers, where
the incoming particles interact with the material nuclei and form secondary parti-
cles, interleaved with layers of plastic scintillator tiles, which convert the energy
(deposited in the previous layer) into visible light to be collected and converted into
electric signal by photodetectors.

The HCAL is a nearly hermetic (full solid angle) calorimeter, where to the extent of
its capability, the presence of every particle that emerges from the interaction point
is detected. If there is an imbalance in the measured momentum and energy (in the
transverse direction with respect to the beam line), this would mean that there were
"invisible" particles produced in the collision. However, this can only be deduced if
the calorimeter does not let any particles through without detection. To this purpose
HCAL is built with many alternating layers of absorbing material, as a so called
sampling calorimeter. One quarter of HCAL layout is depicted in Figure 2.8 with its
main components: the hadron barrel (HB), the two endcap sections (HE) at either
side, the hadron forward (HF) located at a distance of 11.15 m from the interaction
point at either side, and the hadron outer (HO) calorimeter as the outermost layer.

The barrel section HB sits between the radii 177.5 cm and 287.7 cm, covers a pseu-
dorapidity range of |1| < 1.39, and is made of brass absorber plates with sampling
layers of about 40000 plastic scintillators that are grouped into 16 parts according
to the location in || coordinate. The endcaps are made of the same material as HB
and cover the pseudorapidity range of 1.30 < || < 3.00. The endcap on each side
is divided into 14 parts in |77| as depicted in Figure 2.8. The outer barrel (HO) con-
sists of scintilator layers, and is positioned outside the magnet coil to make sure no
energy goes undetected outside the barrel region. The central ring (ring 0) has two
layers of scintilators, each 10 mm thick (at radial distances 385 cm and 409.7 cm) and
a stainless steel block in between, whereas all other rings have a single layer of scin-

tillator. The HO calorimeter follows the HB 17 — ¢ phase-space segmentation closely
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and covers the pseudorapidity range of 7 < 1.26.

Lastly, two hadronic forward calorimeters (HF) sit at either end of CMS to detect
the particles coming from the interaction point at a low angle with respect to the
beam line. Since they receive a high influx of particles, the calorimeter material has
to be more resistant to radiation compared to the other components of HCAL. The
two HF calorimeters cover the pseudorapidity range of 2.85 < || < 5.19 and consist
of 18 wedges made of steel with quartz fibers embedded along them. Secondary
charged particles going through the quartz fibers emit Cherenkov light which get
collected and converted to charge by the photomultiplier tubes. Long (164.9 cm)
and short (142.6 cm) quartz fibers are placed alternately in a way that the long fibers
reaches the calorimeter front and the short fibers start at 12.5 radiation lengths within
the calorimeter. In this way the energy deposit difference between the fibers aids
the differentiation between electromagnetic and hadronic showers, which are much

longer than the former.
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FIGURE 2.8: A schematic view of one quarter of the CMS HCAL

with its four major components: the hadron barrel (HB), the hadron

endcap (HE), the hadron outer (HO), and the hadron forward (HF)
calorimeters [44].
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2.2.5 Magnet

CMS has a large superconducting solenoid magnet, about 13 m long and 6 m in
diameter, and provides an almost homogeneous magnetic field up to 3.8 T (at its
center) in z direction. As mentioned before, its purpose is to bend the trajectories
of charged particles, emitted from the interaction point, so that their charge can be
determined and their transverse momenta pr can be estimated (equation 1.2). It
is the central component of the CMS experiment (as seen in Figure 2.5) and gives
structural support to the whole detector. The inductance of the magnet is 15 H and
for 3.8 T the nominal current is 18160 A. Its superconducting niobium-titanium coils

are refrigerated at 4.5 K using a liquid helium cooling system.

2.2.6 Muon System

Muon detection is an important task for CMS, as the detection of those particles
may indicate their origin in the decay of short-lived particles of interest, for exam-
ple one of the decay channels that was studied extensively is the Higgs Boson de-
cay into four muons. As muons pass through the tracker, their curved trajectories
are detected just like other charged particles, however, they are not stopped by ei-
ther of the calorimeter materials. Given that muons are much more massive than
electrons, they do not suffer as much energy loss due to Bremsstrahlung radiation
(electrons lose energy due to Bremsstrahlung at a rate (m,,/m.)* ~ 10° times higher
than muons). Since they do not deposit a significant amount of energy at ECAL or
HCAL and are not detectable from the interaction point up until the magnet, the
muon detection systems are set up as the outermost layer of the experiment, where
the probability of detecting muons only, is high. The muon tracks once determined
in the muon detector, are matched to the ones in the tracker.

To identify muons and estimate their momenta, three types of gaseous detectors
are used: drift tubes (DT), cathode strip chambers (CSC) and resistive plate cham-
bers (RPC). The drift tube chambers are placed at the barrel part of the detector (as
depicted in Figure 2.9), where each DT chamber consists 12 aluminium layers, each
with 60 tubes. Each tube holds a wire that is stretched in a volume of gas. When

a charged particle passes through the gas volume, it knocks electrons off the gas
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atoms, which move towards the positively charged wire due to the high electric
field presence. Considering the positions where the electrons end up on the wire
and the distance of the particle from the wire, DT is able to provide two coordinate
points for the charged particle. DTs in the middle six layers measure the coordinate
parallel to the beam and the outside six layers measure the coordinate in the perpen-
dicular direction. Cathode strip chambers are placed in the endcap disks where the
particle flux is high and the magnetic field is not uniform. They consist of arrays of
positive charged wires (anode) that are crossed with negative charged copper strips
(cathode) in a volume of gas. Similar to DT, when a charged particle passes through
a CSC, it knocks off an electron from the gas atom, which moves to the anode, hit-
ting other atoms and causing an avalanche of further electrons. On the other hand,
positive ions move to the cathode and create an electric pulse in the strips. Since the
wires are set up perpendicular and cover the whole 2D area, they provide precise
time and location of the particle and thus are used for triggering purposes. Resis-
tive plate chambers (RPC) are gaseous detectors with a similar mechanism as CSC
and are placed at the endcap region (as depicted in Figure 2.9) of the detector. They
consist of two parallel plates (anode and cathode) made of highly resistant plastic
material which are placed in a gas volume.

Gas electron multiplier (GEM) detectors, once in operation, will complement the
other detector components in the endcap section by offering additional coverage
in the forward region. They consist of three layers of copper-cladded polyimide foil
with mocroscopic holes placed in argon carbon dioxide gas mixture that gets ionised
by the incident particles. The electron avalanche created by the ionization gets read

out by strip detectors.

2.3 Trigger and Data Acquisition

In order to increase the probability of detecting interesting physics processes such
as the production of a rare particle or a rare decay like the three prong decay of
Bs, a large number of collisions take place, each of which generate approximately
1 MB of raw data. At the collision rate of 40 MHz the total rate of generated raw

data becomes 40 TB per second, which totals an impractical size of data to store and
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FIGURE 2.9: Layout of one quadrant of CMS [45].

analyze. For an efficient data acquisition a filtering technique is employed, where
only the "interesting events" are stored. The condition that characterizes an event as
interesting and to be stored or not is called a trigger.

CMS uses a two level trigger system. In the first stage Level 1 (L1-Trigger) a
small part of collision data is used to compute discriminatory features about the
event, such as existence of muons, their properties or information about the miss-
ing transverse energy, using fast hardware devices called field-programmable gate
arrays (FPGA) that can carry out logical operations. This key information is used
to filter out events that fail the trigger condition. The computation takes about 1 us
and the event rate is reduced down to 50 kHz. In the second stage called High Level
Trigger (HLT) all data that had passed the L1 trigger are sent to computer servers
where software programs perform a more detailed test on the event content than
that of the L1-trigger. HLT trigger lowers the event rate further down to 1000 events

per second, which then get stored on tape.
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2.4 Event Reconstruction

In a simplified view, the principle of the CMS experiment is as follows: particles
coming from the collision point enter the tracker, where the charged particle tracks
and vertices are reconstructed from the hits and the momenta and the electric charges
are estimated from the curvature of the trajectories bent by the magnetic field. Elec-
trons and photons that reach the ECAL get absorbed (see Figure 2.10), and their
energy and direction can be determined by their electromagnetic showers which
are detected and reconstructed as clusters of energy in the ECAL cells. Charged
and neutral hadrons get fully absorbed in the HCAL, where they produce hadronic
showers and the corresponding energy clusters are used for energy and direction
estimation. Neutrinos escape the detector components undetected, while muons
traverse the calorimeters with little interaction and get detected at the muon system
placed outside the other detector components. Reconstruction of physics objects
thus relies mainly on the specific detector component that is tasked with the ob-
ject’s detection; reconstruction of isolated photons and electrons is done primarily
with ECAL data, jet reconstruction is done mainly with the calorimeter data (with-
out separation of jet constituents), muon identification is primarily done with the
information from the muon detectors, while the tagging of jets of hadronic decays

and from b quark hadronization is performed with the tracker information.
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The event reconstruction at CMS is heavily based on the Particle Flow (PF) al-
gorithm [47], which uses the information coming from each sub-detector compo-
nent to identify and reconstruct the final-state particles. Previously, traditional ap-
proaches were employed, where for each sub-detector a local reconstruction based
on the tracks and hits would be carried out. Hadrons, muons, electrons and photons
can be identified in a more efficient manner by combining all information on the ini-
tial position, energy and direction of the particles. A charged hadron is identified by
a geometrical link in the 77 — ¢ space between an associated trajectory reconstructed
in the tracker and one or more clusters in the calorimeter (and by the lack of signal in
the muon system). The photons and neutral hadrons are identified by the clusters in
the ECAL and HCAL without any geometrical link to tracks in the tracker. An elec-
tron is identified by a track linked to an ECAL cluster (no HCAL cluster), whereas
muons are identified by a track in the inner tracker that can be connected to a track
in the muon system. Furthermore, this approach allows an improved reconstruction

of higher level objects such as jets, tau leptons and missing transverse energy.

2.4.1 Reconstruction of Charged Particle Tracks and Vertices

The information coming from the tracker is the most important input for the particle
flow (PF) algorithm, given that on average a large portion of the particle jet energy is
carried by charged particles. Most stable particles generated at the interaction point
have a rather low transverse momentum pr. Typically jets with a total pr below 100
GeV are composed of particles with pr of the order of a few GeV; on the other hand
more energetic jets such as those belonging to heavy exotic particle decays, have
constituents with pr of the order of 10 GeV. Up to the energies of hundreds of GeV,
the tracker is able to measure the momenta of the charged particles with a higher
resolution than the calorimeters. Additionally, the tracker is able to provide a precise
measurement of the direction of these particles at the production vertex, which is
difficult to capture by the calorimeters due to the deviation of the trajectories (by the
magnetic field) that takes place by the time they arrive at the calorimeters.

There are two constraints to take into consideration for the reconstruction of

charged particle tracks. Firstly, as many tracks as possible have to be reconstructed
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(high efficiency), since any track that was missed will be reconstructed using calorime-
ter data only with lower resolution. Secondly, the number of mis-reconstructed
(fake) tracks need to be kept to a minimum (low fake rate). To this purpose, an
iterative algorithm is adopted. In the first iteration the tracks are seeded (compati-
ble pairs of hits in the detector layers have been detected) and reconstructed with a
tight criteria, which results in a lower than desired tracking efficiency (as depicted
in Figure 2.11) but a small fake track rate. Most of these tracks are easier to recon-
struct because of their higher transverse momentum, smaller impact parameter or
having a high number of hits in the tracker that belong to them. In the next itera-
tions track seeding criteria is loosened systematically, while the hits that belong to
the previously reconstructed tracks are removed, which reduces the combinatorial
complexity at each step and allows to keep the fake rate at an acceptable level.
Primary vertex position is measured as the intersection of tracks by clustering
tracks according to their origin vertex and fitting each vertex position correspond-
ing to a cluster. The resolution of the vertex position is estimated as the difference
between the positions of two vertices, which are found when all the associated tracks
are split into two groups and a vertex position is estimated for each group. With it-
erative tracking a charged particle with at least three hits on the tracker, transverse
momentum pr higher than 150 MeV and primary vertices within a 50 cm distance
from the beam axis can be reconstructed with a fake rate of the order of a percent

[47].

2.4.2 Calorimeter Clustering

Calorimeters detect stable particles that deposit their energy in the calorimeter ma-
terial as they traverse through them. An algorithm that has the calorimeter hits as
input should differentiate the energy and direction of charged hadrons from the en-
ergy deposits of photons and neutral hadrons. Additionally, the charged hadrons
(usually with high pr) that were missed by the tracker need to be identified. To ac-
complish these tasks a clustering algorithm is employed for each sub-detector part:
the ECAL barrel, the ECAL endcap, the HCAL barrel and the HCAL endcap, sepa-
rately. In the HCAL HF no clustering is performed, each cell with a hit is registered

as a potential cluster. The algorithm follows three steps: initially the energy values
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FIGURE 2.11: track reconstruction efficiency per tracking iteration as
a function of simulated track transverse momentum pr for the Phase
I tracker (in operation during Run II) [48].

in the calorimeter cells are read out and the local maxima above a certain threshold
are recorded as the cluster seeds, which then get aggregated with the adjacent cells
that have deposits above a given energy and form topological clusters that in the final
step are used as seeds for the resulting particle flow clusters. Each cluster center is

determined in an iterative manner as the calorimeter’s cells are read-out.
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2.4.3 Reconstruction of physics objects

Reconstruction of muons

In the PF algorithm, the hits in the muon detector systems are put together to
form tracks using the Kalman filter technique similar to the inner tracker. For the
cases where more stringent criteria are needed, tracks in the muon system are linked
to the ones in the inner tracker. The discrimination between the prompt muons,
which are the products of hadron decays produced in the primary interaction from
those that come from secondary decays, is a primary goal. For the so called isolated
muons tighter criteria on the energy deposits in the calorimeter are applied such
as a small distance of the deposit from the muon direction. Additionally, in order
to reject the punch-through hadrons, very energetic hadrons that manage to reach the
muon system, misidentified as muons, several filtering criteria are applied on the
muon track quality and the associated energy deposit.

Since the muon system is the farthest away from the interaction region, where
muons are the only particles expected to be observed, the density of particle traces
are much lower than the other components. However, muon system has the chal-
lenge of discrimination of muons associated with the collisions from the muons pro-
duced by the cosmic rays that enter the atmosphere and go through the detector.

Reconstruction of electrons and isolated photons

Reconstruction of electrons is based on the combined information from the tracker
and the ECAL. In the tracker electrons lose their energy via Brehmsstrahlung and
produce photons, while photons convert to electron-positron pairs which in turn
radiate Brehmsstrahlung, therefore the applied criteria for electrons and photons
are similar. Low energy electrons are reconstructed more accurately in the tracker,
whereas ECAL is more reliable for high energy electrons. Several tight criteria on
the track quality and energy deposit variables are applied to distinguish between
the electrons produced in the primary interaction and those from converted photons
or secondary decays. High energy photons are reconstructed using the calorimeter
energy deposit information by the detection of an electromagnetic shower compati-

ble with a photon shower, characterized by energy isolation requirements.
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Reconstruction of hadrons and non-isolated photons

Once electrons, isolated photons and muons are identified and removed from
the PF blocks, the remaining particles to be identified are hadrons. The candidates
are charged and neural hadrons and nonisolated photons, e.g. from 7y decays. The
energy deposits in the ECAL and HCAL without any tracks in the tracker indicate
presence of photons and neutral hadrons. Within the tracker acceptance (|| < 2.5),
all these ECAL clusters are turned into photons and all these HCAL clusters are
turned into neutral hadrons. The precedence given in the ECAL to photons over
neutral hadrons is justified by the observation that, in hadronic jets, 25% of the jet
energy is carried by photons, while neutral hadrons leave only 3% of the jet energy
in the ECAL [47]. Outside the tracker acceptance ECAL clusters linked to an HCAL
cluster are identified as belonging to the same hadron shower, as they leave 25 % of
the jet energy in the ECAL.

Reconstruction of jets

Jets can be visualized as cones coming from the interaction region, with an an-
gular area of AR. The constituents are hadrons and radiated photons that have the
same direction as the initial parton. Jets are reconstructed with the anti-kT algorithm
[49], where firstly the distances d;; between entities i and j and distance d;3 between

entity i and beam B are computed:

. Ajj
di; = min(k3, kfj)R—zf, (2.7)
dip = k3, (2.8)
G = (ri=m)* + (9 = )7, (29)

where ky;, 7; and ¢; are the transverse momentum, rapidity and azimuth of par-

ticle i, respectively. Clustering starts by finding the smallest distance and combining
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the entities if the distance is between 2 entities d;; or identifying the the entity i as a
jet if the smallest distance is d;p, in which case the entity i is removed from the list of
entities. Subsequently, the distances are recalculated and the procedure is repeated
until the list is empty.

The particle content of jets is described by the fragmentation functions and de-
pends on the flavour of the parton that initiated the jet, which can only be inferred
by the detected decay products of its constituents. For example, characteristically B
and D hadrons decay into a large number of charged particles and produce a lep-
ton in their decay chain. Furthermore, the lifetimes of most heavy flavor hadrons
are long (1.638 + 0.004 ps for B [50]) which allow them to move several milimeters
away from the primary vertex before decaying and can be identified via displaced
tracks and the presence of secondary vertices. They can therefore be exploited when
distinguishing between heavy flavor jets from other jets produced by light quarks
and gluon hadronization.

Reconstruction of missing transverse momentum

The presence of "invisible" particles that do not interact with the detector mate-
rial, e.g. neutrinos, can be inferred by the missing transverse momentum, which is

defined as:

. Nparticles NPFjets
Pror=— ), Pri— ) (B¥] —Pr)). (2.10)
i=1 j=1

which includes the jet correction term, it replaces the raw momentum pr,; of each

PF jet with pr; > 10 GeV with its corrected value.
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2.5 Detector Simulation

The detector response modelling requires many complicated aspects to be taken into
account such as the interaction between the beam particles, the produced particles
and their decay products, the detector geometry and material, etc. This is achieved
by a simulation, where the affect of the detector layout with the electric and mag-
netic fields on the particle trajectory is simulated, possible interactions and decay
processes are considered during the passage of the particle through the material and
the electrical response from detector components is determined. For CMS such a
simulation is performed using the GEANT4 toolkit [51]. Additional packages are
used for the simulation of the affect of the pile up interactions both for the simula-
tion of the events as well as for the affect on the detector readouts. Such simulations
are however, very time consuming. It can take several minutes of CPU time to gen-
erate one event and for a realistic modelling of the detector response, a large number
of events is required. Alternative simulation packages exist, however the standard

simulation package for CMS remains the GEANT4 toolkit due to its high accuracy.
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Chapter 3

Machine Learning Techniques

Machine learning (ML) is a branch of Computer Science where computer programs
are tasked with identifying patterns in sample data and making decisions or predic-
tions based on what they "learn" without any human intervention during the predic-
tion phase. The term itself was formulated by the IBM researcher Arthur Samuel. In
his 1962 essay "Artificial Intelligence: A Frontier of Automation" [52] he described
the idea behind the concept as following: "Suppose we arrange for some automatic
means of testing the effectiveness of any current weight assignment in terms of ac-
tual performance and provide a mechanism for altering the weight assignment so
as to maximize the performance. We need not go into details of such a procedure to
see it could be made entirely automatic and to see that a machine so programmed
would "learn" from its experience". The automatic nature of "assigning a weight",
where each assignment has an "actual performance”, which is tested by "automatic
means" and the test resulting in a change in the weight assignment "to maximize the
performance”, is the main idea behind most ML algorithms. In this section the main
ideas behind the ML techniques that were used within the scope of this work will be
described.

3.0.1 Terminology

The modern terminology for an ML algorithm is a model, the weights are the model’s
parameters and the measure of performance is called loss with a suitable loss function,
which is used for penalizing errors. Each model has an architecture, i.e. a blueprint

of a mathematical function to which we pass the input data (features) and the model
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parameters. The output of the model, the predictions are computed based on the in-
dependent variables, i.e. features that power the model to predict changes in the
dependent variable (the labels). Training/fitting is the automation process where we
update the model parameters at every pass through the input data (an epoch). Hy-
perparameters are high-level parameters of the model that are set before any training
occurs, control the overall performance and need to be fine-tuned. One of the most
important hyperparameter for tuning of such an algorithm is the learning rate. If the
learning rate is too low, the model will train too slowly, if instead it is too high the
learning might not converge to a minimum loss. For decision trees, it is a measure
of modification per tree, which determines how fast the model learns. For neural
networks, the learning rate is the step size at each iteration while moving toward a
minimum of a loss function as described in Section 3.2. Another such hyperparam-
eter for decision trees is the number of trees. If the number of trees is too high, the
decision tree will start to overfit, where the prediction errors on the training data get
minimized but the predictions on new data that the model has not seen, differ from
the labels substantially.

The nature of the predictions depend on the learning task and can be qualita-
tive, where there is no ordering in the output values and in most cases describe the
data itself such as signal vs background, or quantitative, where some of the output
values are higher than others such as the estimations of a particle mass. The nam-
ing convention for predicting qualitative outputs is classification, whereas predicting
quantitative outputs is called regression.

Depending on the existence of the labels the learning tasks are divided in two
groups. In supervised learning the model "learns by example" by minimizing the
losses making use of the available labels, whereas unsupervised learning focuses on

clustering the data into groups.
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3.1 Supervised Learning

Supervised learning can be approximated as "function-fitting" at a first glance to be
later expanded into the framework for creating ML models [53].
Regression

For the case of regression we have real valued random variables as features, their
probability spaces and a quantitative output. Let X € IR be an input vector and let
Y € R be an output variable with a joint probability distribution Pr(X,Y). The goal
then is to find the function f(X) that predicts the Y values given X. We can choose
a convenient loss function for this task such as the squared error loss : L(Y, f(X)) =

(Y — f(X))?). Then the expected prediction error becomes:

E[L] = E[(Y - f(X))*] = / ly — f(x)[2Pr(dx, dy). G.1)

Since we condition on X, we can factor the joint probability density Pr(X,Y) =

Pr(Y|X)Pr(X) and split the integral in 3.1:

E[(Y - f(X))?] = ExEyx[(Y — f(X))*X]. (3.2)

We minimize the expected squared prediction error point wise by finding the

values ¢ that minimize the error given X:

f(x) = argmincEy x[(Y — ¢)?|X = x]. (3.3)

The solution for f follows as
f(x) =E(Y|X =x), (3.4)

and is called the regression function. Put another way, when the performance is
measured by the squared error loss, the best prediction of Y is the conditional mean

of Y given the knowledge of X.
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If we want to to expand the idea of function-fitting to the framework of a model,
we take the model parameters 0 into account. For a linear model f(x) = x'p that

would be § = B. Linear basis expansions can be used to approximate the function:

fo(x) = Y Ie(x)0k, (3.5)

where I (x) are transformations of the input data vector x such as polynomial or
trigonometric functions. Transformations such as sigmoid are applied to introduce

turther non-linearity:

1
1+exp(=xTBy))’

hie(x) = op(x) = ( (3.6)

Similar to 3.1 we can compute the squared error (sum of squares in this case) to

estimate the model parameters 0:

N

Y (i — fo(xi)), 3.7)

i

however this would allow us to assume an additive model which can be ex-
pressed as f(X) = Y, f;(X;), and is not the general case. Maximum likelihood es-
timation is the most commonly used estimation method, where we start with the
assumption that each data point is generated independently from each other and
thus the probability of observing the data is the product of the marginal probabili-
ties. The log-probability for a sample y;,i = 1, ..., N from a probability distribution

Pry(y) is then:

N
L(0) = Zlog(Prg(yi)), (3.8)

The most probable model parameters are those that maximize the probability 3.8

of the observed sample.
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Classification

For the case of classification we have a qualitative output (categorical variable). Let
G denote the labels and G(X) an estimate of the output classes. The loss func-
tion L(G, (G(X))) can then be constructed as a matrix with zeroes on the diag-
onal and non-negative values on the non-diagonal, where L;; is the penalization
of misclassifying a data point of class i to be of class j. Commonly 0-1 loss func-
tion is selected where every misprediction penalizes for a loss of 1 and 0 other-

wise. Similar to 3.1 we condition on X and factor the the joint probability density

Pr(G,X) = Pr(X)Pr(G|X). The expected prediction error is then:

E(L(G, (G(X)))) = Ex Y_L(Gy, G(X))Pr(Gk|X), (3.9)

Following the same procedure as for 3.3 we minimize the error point wise and

find the estimate:

A

G(X) = argming ) L(Gy, §)Pr(Gi|X = x), (3.10)

For 0-1 loss this becomes:

G(X) = Giif Pr(Gy|X = x) = maxPr(g|X = x)), (3.11)

This solution is called the Bayes optimal classifier and lets us classify the most prob-
able class for new instances based on the conditional discrete probability distribution
Pr(G | X).

If we consider a model for the classification task, we need to consider the condi-
tional probability for each class (indexed by the model parameter vector 0) : py(x) =

Pr(G = Gi|X = x). The log-probability (or cross entropy) follows just as with 3.8:

N
L(0) = ) _logpg,o(x:)- (3.12)

The parameters for the model which best suit the observed data, are estimated

by maximizing the cross-entropy function in 3.12.



54 Chapter 3. Machine Learning Techniques

3.1.1 Decision Trees

A decision tree algorithm is one that asks iterative questions and partitions the avail-
able feature subspace into sets of rectangles based on the answers [54]. There are two

kinds corresponding to the two supervised learning algorithms.

Regression Trees

Let x; = (xj1, Xi2, ..., Xip) denote the input data vector of size p,i = 1,..., N and Y the
continuous output variable for N observations. Suppose we have M partitions of
the feature subspace with Ry, .., Ry the corresponding regions. We can estimate the

function that maps x; into y; as a constant value ¢, in each region:

flx) = ﬁ cml(x € Ry,). (3.13)
m=1

As before, we can use squared error loss (sum of squares) as the loss function:

Y (y; — f(x;))?. It follows that best ¢, that minimizes the loss is the average of y;
in region R,,. However estimating the best ¢,, in each region is computationally
expensive, so we turn to a recursive method, where the split that costs least is chosen.
Because sub-spaces can be further split in the same recursive manner, the algorithm
is referred as the greedy algorithm. The idea is the following: first we look at the half-

planes constructed using the feature / for which we split the data and the point z

where where subspace is split into two regions:

S1(l,z) = {X|X; <s}and S»(1,z) = {X|X; > s}. (3.14)

The goal is to find the splitting variable 1 and the point z that gives us the smallest

loss:

miny ,[mine, (Y (yi —c1)?) +ming,( Y (yi — c2)?)] (3.15)

X;€51 X;€S5)

For any splitting variable | and point z, the solution to the equation I of 3.15 is:

¢1 = average(y;|x; € S1) and & = average(y;|x; € Sz) (3.16)
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By computing the minimum loss for each pair (1,z), the best pair is found and the
data is partitioned accordingly. The procedure is then repeated recursively.

One of the main concerns for the overall performance of a learning algorithm
is its generalisation power, which can be tested by running unseen data through
the data and checking the performance. The failure of predicting correctly on the
unseen data due to memorization of the features of input data, is called overfitting.
This is especially relevant for non-parametric learning algorithms such as decision
trees. A large tree with many branches would be prone to this issue and would start
memorizing the data. A small tree on the other hand might not be able to capture
the underlying relationship between the input data and the output (underfitting).
Therefore the size of the tree is one of the important hyperparameters of the model
that needs to be tuned. One of the methods for tuning we employ is called cost-
complexity pruning, where we prune a large tree Tj to a smaller tree T by closing off
some of its internal (non-final) nodes. Let n be the internal node index, R, be the

region of partition m, then with the following terms:

N, = number of {x; € R, }, (3.17)
. 1
Cm = N_ Z yi/ (318)
M x;€Ry
a 1 A N2
Qm = N Z (yi - Cm) ’ (3.19)
m x.inR,,

we define the cost complexity criterion:

|T|
Ca<T) = Z NQO(T) +“|T" (3.20)
m=1

The idea is then to find for each a the subtree T, C Tj so that the C,(T) is mini-
mized.
Classification Trees

For the classification task the procedure is analogous, however the impurity mea-

sure Q,,(T) has to be modified to allow discrete target values. For a tree node m,
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representing the region R,, with N,, observations we define the proportion of class
cas Pme = Nim Yrer, [(yi = c). One of the following node impurity measure can be

then used for the classification trees:

C
Cross-entropy: — Z PmclogPme (3.21)
c=1
C
Gini-index: — Y Puc(1 — Pme) (3.22)
c=1

Gradient Descent

Gradient descent is an iterative optimization algorithm which finds a local minimum
of a differentiable function, in this case, the loss function L(f) = Y1~ L(y;, f(x;)).
Numerical optimization optimization procedures solve the minimization problem

f = argmin £L(f) as a sum of component vectors

m
fn="Y hp,hy € RY, (3.23)

m=0

where fj is an initial value and each successive value is computed based on the
previous value and h,, is referred as step. For gradient descent algorithm the step

hyw = —pm&mis proportional to the gradient of the loss function at f,,,_1 :

fn = fn-1— Om&m, (3.24)

where p, is a scalar and the gradient is defined as:

OL(yi, f(xi))

af<xl fx))=fn-1(x;)
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3.2 Neural Networks

A neural network is a learning algorithm [53], a model with parameters 6 that needs
to be optimized for the available training data. For a K-class classification (or re-
gression) there are K targets with a k-th unit of the neural network modeling the
probability of class k. Newly derived features Z,, (hidden units) are generated from
linear combinations of the inputs and then the targets Y} is modeled as a function of

linear combinations of Z,,:

Zm = o(aom + va,EX),
Ty = Box + BL Z, (3.26)
fi(X) = g(T),

where (x) = 1/(1+ e ¥) is the activation function. We can define the error

function as a function of the parameters of the model 6 consisting of agm, a,, and

Bok, B

for regression: R(0) = ZZ(ylk fr(xi)) ZRU (3.27)
k i

where R(6) is minimized typically by the gradient descent, where the gradient

can be defined using the chain rule:

with z,,; = o(agm + alx;) -

d i /
i = 20— le)gk(Bz)zm (3.28)

OR;
atxml

S ;Z(yik — fi(x:) 8% (B zi) Brm0” (g xi) it

Then the gradient descent update at the (r+1)-th iteration follows:

r+1 ,Bkm ’)’VZ aﬁ

7—0—1
ml —DC 7728“7’ ’

(3.29)
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where 7, is the learning rate. With the error terms of the current model at the output

unit J;; and at hidden units s,,; we can rewrite the derivatives of the error function:

dR;
W = OkiZmi
" 3.30
OR, (3.30)
Wl =mi Xil
m
From their definitions we can relate the two error terms:
Smi = a’(tx,Tnxi) Z,Bkméki' (331)

k
The equations 3.31 are called the back-propagation equations. The gradient descent
works as a two-pass algorithm, where in the forward pass the model weights are fixed
and the predictions f;(x;) are calculated with the equation 3.31. In the backward pass,
the errors dy; are computed and then back-propagated with the equation 3.31 to give
the errors at the hidden units s,,;. These errors are then used to compute the updates

in 3.29.



3.3. Anomaly Detection in Copula Space 59

3.3 Anomaly Detection in Copula Space

3.3.1 Problem Statement

We consider a set of N data examples x € & C RP sampled from an unknown
multivariate density function p(x). In general, p(x) can be written as the sum of a

background component p;(x) and a possible signal contamination ps(x),

p(x) = (1= fs)pp(x) + fsps(x) (3.32)

where f; is the signal fraction. An anomaly detection problem may be defined as one
of finding a localized region of the feature space S that contains a density of data
examples significantly higher than that of its surroundings, as defined by some suit-
able metric. This problem may be cast as a semi-supervised or a unsupervised one,
depending on whether the (by definition) non-anomalous density of the background
component is assumed known or not, or even if we instead assume the signal com-
ponent known, as is of interest for the B; — 7T search. In the case when the signal is
unknown, a central issue is how to retain sensitivity to a wide variety of anomalous
contaminations, which may produce distortions of the density in a subset of the D
features; in the case when it is the background which is unknown, the method to

extrapolate its density to a region of interest becomes the focus of attention.

3.3.2 The idea of RanBox

The unsupervised version of the problem [55] offers the benefit of avoidance of any
model-related uncertainties and hence is relevant for new physics signals that char-
acteristically produce localized, compact variations in the overall density of the fea-
ture space.

The algorithm searches the feature space S by considering a “box”, i.e., a mul-
tidimensional interval constructed in a subspace of S. The random nature of the

min - ,max

box lays not only in the endpoints x/"", x/"** of its intervals in each marginal, x; €

[xmin, xMax] but also in the involved subspace S’ C R”' of S described by a subset of

the x;. Alternatively, one may think of the box as having restricted intervals in only

a subset D — D’ of the dimensions of S. If we consider for the time being the case
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fs = 0 and N data points in S sampled from a multi-dimensional uniform density
py(x) = U(x), such a box will contain a predictable fraction of the total data: given
the box volume V;,, and the total volume V of the feature space S, the expectation
value of the number of events in the box is Nexy = NVj,,/V. Conversely, if f; > 0,
the observed number of events captured within the box boundaries N,,; may yield
an estimate of the density of the total sampling distribution in the corresponding

region of S, contributed by both p,(x) and ps(x):

~ Nops Nops
x) = = .
p( ) VNexp NVipox

(3.33)

The above estimate may be used to construct a test statistic sensitive to an anomalous
local overdensity of the data; e.g. one may simply define the test statistic to equal
the estimated excess of events in the box, Ny,s — N,yp, or a significance measure of
its non-null value. The maximization of such a test statistic will be appropriate for
searches of anomalies that preferentially populate well-confined regions of the fea-
ture space, such as those of interest in collider searches for new physics, but also
relevant to other branches of science as, e.g. astrophysical observations, or industrial
applications such as process control, fraud detection, or spam filtering. Conversely,
we expect little sensitivity to multi-modal signals, and (by construction) no sensitiv-
ity to broad deformations of a nearly-uniform background distribution p;(x). The
locality of the signal to be detected, however, is the only assumption we allow our-
selves to take in the construction of our anomaly detection procedure. The assump-
tion of uniformity on which the estimate in Eq. 3.33 is based, can be loosened, if we

work in the copula space' , as discussed more in detail in Sec. 3.4.

TLet (X1, X5, ..., X4) be arandom vector with continuous marginals, i.e. the cumulative distribution
functions F;(x) = Pr[X; < x] are continuous. By applying the probability integral transform to each
component, the random vector (U, Uy, ..., Uy) = (Fi(X1), B(X2),...,F1(X;)) has marginals that are
uniformly distributed on the interval [0,1]. The copula space is then defined as the joint cumulative
distribution of C(u1, uy, ..., ug) = Pr{Uy < uy, Uy < up,..., Uy < uyl.
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3.4 Algorithm Description

3.4.1 Starting considerations

The multitude of subnuclear particles resulting from proton-proton collisions recorded
by LHC experiments, which we take as our target application in the construction
of the algorithm, yield tens of millions of electronic signals in the detectors. This
large body of information is summarized by a process called “event reconstruction”
through the extraction of several tens of high-level features that describe the mea-
surement of energy and direction of all observed particles (e.g. energetic electrons or
muons) or sets of particles (hadronic jets) 2. Even if we focus on specific interesting
subsets of the available data, any energy-related feature of the observed particles
will show a highly dis-uniform distribution, with a peak at low values and long tails
extending to higher energy (see, e.g. Fig. 3.1). The variation in density between those
peaks and tails may amount to orders of magnitude, and is due to the corresponding
large variation in the probability that the collision is originated by quarks or gluons
carrying a low or a high fraction of their parent’s total momentum.

Because of the above, it seems natural to proceed by first pre-processing the data
with an integral transform of all the features, such that each marginal becomes uni-
form by construction. The algorithm will then work in the copula space, examining
the data structure with a metric unaffected, at least to first order, by the original

strong density variations in the feature space.

3.4.2 Data preprocessing

The probability integral transform of a function f(x) is defined by setting

F(x) = L xoo F(t)dt, (3.34)

which is such that y = F(x) is uniform in [0, 1]:

2In HEP it is thus customary to call events the observed data examples, and we will stick to that
convention in this work.
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FIGURE 3.1: Distribution of the invariant mass of candidate electron-

positron pairs observed by the CMS experiment in 36 fb~! of Run 2

LHC collisions [56]. The data show a variation in density by several

orders of magnitude as a function of mass. The cited reference reports

on searches for a new physics contribution involving contact interac-

tions, which could contribute to the distribution at its high-end tail
(green curve).

Fy(y) =P(Y <y)
= P(Fx(X) <)
=P(X <F '(y))

=Fx(Fy'(y)) =v. (3.35)

Once each of the variables of the feature space x; is transformed as above into the
corresponding one in the set y;, information once contained in the interdependence
of the x; is retained in the copula, which is the joint distribution function of variables
with uniform marginals (Sklar’s theorem) [57]. The advantage of the transformation

is evident: a search for overdensities in the space spanned by y; will not be spoiled by



3.4. Algorithm Description 63

uneven marginals, and will correctly concentrate on the regions of space which are
dense because of interdependence of the features. An additional bonus of working
with the y; variable basis is that the feature space is now a unit hypercube, with

volume V = 1.

3.4.3 Dimensionality reduction

The dreaded “curse of dimensionality” [58] affects any search in high-dimensional
spaces populated by sparse data. In the typical applications considered in this work,
the total data size N lays in the few thousands to few hundreds of thousands range;
consequently, an investigation of subspaces S’ of the feature space S quickly be-
comes meaningless as their dimensionality grows larger than about D’ = 12 — 15,
when Poisson fluctuations prevent any reasonable multi-dimensional density esti-
mate.

An additional optional preprocessing step, which may prove useful to reduce the
dimensionality in cases when D is larger than a few tens, is the application of Prin-
cipal Component Analysis (PCA) [59] to the feature space. PCA essentially consists
in fitting a hyper-ellipsoid to the data, and remapping the feature space in a space
spanned by the principal axes of the ellipsoid. One may then use the principal com-
ponents, which are those on which the data exhibit the largest variance, and ignore
the last few in the ordered list of components, which are likely to contain the least
information. PCA can be useful for RanBox in cases when the search for subspaces
of limited dimensionality D’ of the feature space proves impractical because of the
large binomial coefficient (g,), which makes the exploration of a meaningful frac-
tion of the possible D’-dimensional subspaces too CPU-intensive. However, in our
investigations we have found that PCA is generally liable to reduce the power of the
search for overdense regions of the feature space when the data are composed of a
large background component and a small signal contamination to which we wish to
be sensitive. The typical reason of this effect is connected with the fact that a variable
which exhibits little variance on the majority of the data, and is thus discarded by
PCA, may still be very distinctive for a small signal.

A viable alternative to reduce the dimensionality of the problem, which may

facilitate the identification of small signals, is to exploit the correlation matrix of
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the features, by removing features which add little information. This is an attrac-
tive option when searching for small anomalous components in a background-rich
dataset: by identifying and removing variables that are highly correlated with others
on the majority component of the data, we reduce the possibility that such correla-
tions affect negatively the chance of the algorithm to identify localized overdensi-
ties genuinely due to a clustering of multiple distinguishing features of a minority
component. As a telling example, if in a D = 30-dimensional feature space one of
the variables were identically repeated 10 times, and RanBox performed a search in
D' = 10-dimensional subspaces, the algorithm would be very likely to end up fo-
cusing on the same narrow interval (any one would do) of each of those features:
e.g. a 10-dimensional box of width 0.1 in each of the correlated features would have
a volume of 10~10; if there were N = 10,000 events in the space, such a box would
be predicted to contain Ny, = 10~ events, while it would in fact contain exactly
1000 events!

Our correlated variable removal (CVR) procedure, which performs the identifica-
tion of variables to be discarded, works as follows. We first compute the correlation
coefficients p;; among all pairs of variables ij, and order them in a list by decreasing
absolute value |pij]. Then we choose the number of variables to be removed N, ;
in order to identify these we consider that if the k-th variable is removed, all cor-
relation coefficients that include k as one of the two indices will become irrelevant.
We thus find the combination of N,,,;; variables which, when removed, minimizes
the value of the highest surviving correlation coefficient. A graphical example of the

technique is shown in Fig. 3.2.

3.4.4 Choices of a test statistic for the unsupervised learning task

We consider two estimates of the expected number of events contained in a multi-
dimensional region of the unit hypercube resulting from the standardization proce-

dure, both corresponding to a binomial ratio. The first one is simply

Nexp,y = NVpox. (3.36)

As the total copula space volume is V' = 1, the above estimate is only driven by
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FIGURE 3.2: Graphical description of the CVR procedure available
in the preprocessing stage of RanBox. The ordered list of absolute
values of correlation coefficients among the variables defining the
D—dimensional feature space is scanned by searching for all possible
combinations of N,,,;; variables which, once removed, minimize the
largest surviving correlation coefficient. In the figure, for N,y = 3
the removal of variables 3, 1, 2 (shown in succession for clarity) re-
duces the highest surviving correlation most effectively.

the extension of the box volume V;,,. The expectation results from assuming that
the data distribute in the feature space with a constant density, and is useful in cases
when p; (x) contains little structure in its copula, as departures from that assumption
can then easily be associated with anomalous contaminations. This measure is the
default one for the studies of algorithmic performance presented in Sec. 3.5, which
are performed on synthetic datasets where the assumption above is identically true
in the limit f; = 0.

A second estimate, affected by higher statistical uncertainty than the former but con-
versely much less affected by a non-uniform density p;(x) in the copula space, may
be obtained by defining a sidebands (SB) region that surrounds the search box (see
Fig. 3.3). In this case, no reliance is made on overall constancy of the density for non-
anomalous events, and the estimate leverages the density of data in the immediate
neighborhood of the search box. If [x! . xi, .],i = 1...D’ are the boundaries of the

m

search box, the SB region is defined by the following relations:

8i = 0.5(xh 0 — xbyp, ) (2P = 1), (3.37)
xfm'n,SB = max(0, %}, — 4i), (3.38)
xinax,SB = min(l, xinax + 51’)/ (339)
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FIGURE 3.3: Representation of the sideband method for box density

estimation. Two possible search boxes in a 2-dimensional space are

shown in green; the relative sidebands, constructed according to the

recipe of Eq. 3.39, are the regions between the red and the green rect-

angles. The sideband region on the lower right can only extend hori-

zontally to the left, and the area it defines is thus smaller than that of
the related search box.

with x? ¢ [x! ., xi..] for at least one i, i.e. the SB volume does not include the search
box volume. The SB then has a volume at most as big as the search box volume; it
is in general smaller than that, as some of the intervals cannot extend on each side
of the search box by the required length J;, due to the hard boundaries at 0 and 1
(see again Fig. 3.3). If one observes a number of events N,,; in the sideband region,
the expectation value of the number of events in the search box in the assumption of

uniformity may be written as

Nexp,r = TNout, (3.40)

where

T=—- (3.41)
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is defined by the volumes of sideband region Vsp and search box Vj,,. A slight
modification of the recipe for the expectation value above, which we have found to
be effective, is operated when the number of observed sideband events N,,; is zero.
In that case, which is frequent for large dimensionality searches and small statistics
of the data sample, it is useful to reset Ny, to the full-volume prediction, Eq. 3.36.
We stick to this recipe in our applications of the sideband method in the studies
described in this work.

To formulate the problem in its generality through the above definition of the
extrapolation variable T, we observe that the full-volume estimate in Eq. 3.36 corre-

sponds to setting

= Vhox

= — 3.42
1- Vbox ( )

and N,,; = N — Nj,. In either case a likelihood-ratio-based test statistic may now be

defined as follows:

N 1+71 Nout 02
Zpr = V2{N;, In | (1 —_— I =
PL \/_{Nm n |:< +T) <Nin +N0ut>:| + Nout 1‘1|: T <Nin+Nout>:| }

(3.43)
The above defined function has been shown [60] to be a good approximation of the
Z-score corresponding to the binomial probability of observing an excess of events
Njy — Nexp,r in the box. It is to be noted, however, that Zp; cannot be considered
a genuine signal significance, because in real applications “non-anomalous” data
contain structure in the copula due to interdependence of their features; as a result,
the Zp test statistic for the null hypothesis has fatter tails at positive values than a
Normal distribution. In addition, as discussed infra in more detail, RanBox effectively
operates multiple testing on the dataset, hence Zp; cannot be used as a significance
measure in the absence of a Bonferroni or similar correction [61]. Despite the above
caveats, the fact that Zp; is a principled proxy to the significance of an excess in a
Binomial counting experiment makes it a sound choice for a test statistic when the
focus is the search for significant, anomalous signals.

We have observed that the Zp|, test statistic is especially useful when anomalies
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are sought which may interest wide volumes of the feature space, with N,y corre-
spondingly being not very small —typically in the range of several tens to a hundred
of events. Conversely, when the expectation N,,, in the overdense region amounts to
only a few events or less, an attractive alternative is to use the function Ryeq defined

as

N;

~ 3.44
Nexp + Nreg ( )

Rreg -

with, e.g., the regularization term set to Ny, = 1. The maximization 3 of Ryeq may
identify more effectively small anomalies well confined in the search volume, in
cases when the copula space of non-anomalous events has a rich structure, capable
of producing high values of Zp;, in regions of large volume and thus diverting the

algorithm’s attention from small, well-confined anomalies.

3.4.5 Boxseeding

The search for the most overdense multi-dimensional interval in a feature space pop-
ulated by sparse data points is complicated by the presence of a large number of
local extrema; hence, a careful initialization of the box location and dimensions may
significantly improve the performance of the algorithm. Although we tried several
recipes for this task, here we only describe three of them, which we found the most
suitable for our applications.

The baseline method, “Algorithm 07, consists in a fixed initialization of the box
to a multi-dimensional interval of total volume V., set to equal a given fraction of

the unit volume of the full feature space hypercube. The box, which lives in a D’-

i i

dimensional subspace of the copula, is constructed by defining intervals x! . , x},,,
(withi =1, ..., D’) as follows:
1— Vl/'D/
A= box (3.45)
2
xo=A (3.46)
xioo=1—A (3.47)

31n this work we stick to the setting Nyreg = 1, and consequently address the test statistic as R;.



3.4. Algorithm Description 69

An optimization of the initial value of V},, is of course impossible in a unsupervised
search, where neither non-anomalous or anomalous data have a specified density.
However, our tests suggest that setting V},, = 0.1 is a reasonable choice when, as
is the case in several of our considered applications, D’ lays in the 6-10 dimensions
range. E.g., with D’ = 6 one obtains starting intervals equal to [0.16,0.84], and with
D' = 10 intervals equal to [0.10, 0.90]. Note that this corresponds to a relatively large
box, in terms of its extension along each marginal. When combined with a search
algorithm that considers initial expansions or shrinkages in each of the box dimen-
sions by amounts sufficient to extend all the way to the unit hypercube boundaries,
the above initialization ensures that no overdensity laying close to the boundary of
a coordinate will be overlooked by the search algorithm taking a step in the wrong
direction at the start of the search.

The second method, “Algorithm 17, is instead based on clustering the data based
on a specialized Nearest-Neighbour (NN) search. First, the nearest neighbour j is
found for every event i in the data, by using as a distance the following function:

d.—=TTD/2

' j
i = 1 Led o) — xok(ij)| (3.48)

where o0y (ij) are the D’/2 indices identifying the spatial coordinates for which the
intervals |x' — x/| are the smallest. In other words, the map d;j determines the min-
imum volume of a D’/2-dimensional box that includes events i and j. Once d;; is
defined for all i and j, one may compute for every event i the number of neighbour-
ing events j = ji...jn, that have i as their closest event according to that metric. The
event i,,,,nyn With the maximum number N ;,.nn Of such neighbours now allows

to identify all Nyu events which have any of the N, ,,,xnn events as their own

order
nearest neighbours. The box can finally be initialized as the smallest D’-dimensional
interval that includes all the N,u 4., neighbours. A graphical description of the al-
gorithm is provided in Fig. 3.4.

A third initialization method, “Algorithm 2”, uses instead a kernel estimation of the
density for the identification of starting box boundaries. The density is evaluated

at the position of each of the N events as the sum of N D-dimensional Gaussian

distributions centered at the location of every event in the sample, and with equal
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FIGURE 3.4: Graphical description of the clustering algorithm used
for box initialization with Algorithm 1. Blue points indicate the posi-
tion of events in the two shown variables of the feature space. Arrows
pointing from an event to another indicate the location of the closest
neighbour of the event originating the arrow (according to a metric
described in the text). The green point is the closest to four others,
and it provides the seed of the box: the collection of all events which
point to those four events define the boundaries of the box.

diagonal covariance matrices C = k*Ip, with Ip the D-dimensional identity matrix
and k a tunable parameter which must be chosen according to the total dataset size
and the dimensionality of the D’ subspaces scanned by RanBox; its default value,
used in the applications described in this work, is k = 0.2. Once the point of highest
density xyp is identified, the box is initialized as the multi-dimensional interval

whose extension in each coordinate x is

[max(xpgp — 62,0.), min(xpp + &2,1.)], (3.49)

with the provision that if xpp is at less than é, distance from the boundary at 0 (1),
the interval defaults to [0.,25;] or [1. — 24,, 1.], respectively. The default value of J,
is 0.2; e.g. this corresponds, for a 10-dimensional subspace search, to initial boxes
of volume equal to or smaller than 0.0001: the expected number of events within
a 10,000-event sample contained in a random box of that volume is 1.0, which is a
suitable starting point for the background expectation in the test statistic maximiza-
tion. Given that the initialization provided by Algorithm 2 offers a good candidate
for an overdense region, the focusing on a small initial region of feature space has
been observed to be effective in the tested applications of our interest: those are in

fact cases when a small, overdense region exists in the first place.
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3.4.6 Maximization of the test statistic

A search for the multi-dimensional interval providing the highest value of the cho-
sen test statistic (either Zp or Ryeq as defined in Sec. 3.4.4 above) in a D’-dimensional

subspace of the feature space can be performed as follows.

Step 1: The initialization of the box is performed with the algorithm of choice.
A set of step parameters are set to the starting value A; = 0.5 (i = 1..D’). A loop
counter Ngp is set to zero.

Step 2: Seven possible modifications are considered for each of the D’ intervals

defining the box:
(%)’ (¥hiax)’
max(x, Xopin — Mis 0) Xinax
mMin (X}, + Ai, Xyay =€) Xy
X MaX(Xygy = A, Xy + €)
X Min (X}, + Ay, 1)
max(x;,;, = Ai, 0) max(Xj,e; — Ai, €)
min(x),;, +A;,1—¢) min(xf,,, + A, 1)
Ty = Min(r1,72) Finax = max(ry, 72)

where € is a parameter determining the coarseness of the algorithmic scan in the
feature space, fixed in applications described in this work to € = 0.01. In the last
line the values r, 1, determining a “random jump” in the i-th interval are random
numbers sampled from a uniform distribution in [0,1]. The values of (x! )’ and
(xi,q¢)" defined above are rounded off to two decimal places in all cases. For each
of these 7D’ variations, an associated SB region is defined by the recipe described
supra; this determines the numbers N;, and N, and consequently the 7D’ values of
the test statistic of choice.

Step 3: If the highest among the 7D’ values of the test statistic corresponding to
the tentative box modifications is higher than the current maximum value, the box
is modified to the corresponding new multi-dimensional interval, and all A; values

for the coordinates not affected by the change are reduced as follows:

Ai — max (fAj, €) (3.50)
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where the factor f is set to 0.9. In addition, if the box modification is chosen based on

11 Tmax), @ counter j; is incremented by one; once

one of the D’ random intervals |
a j; reaches a maximum value (10 by default), no more random jumps are allowed
for the intervals in variable i. This recipe allows to control the convergence of the
algorithm as well as the trade-off between its CPU consumption and its freedom in
exploring new box configurations in the considered feature space dimensions.

If, instead, the current value of the test statistic is higher than all of the 7D’ new
values, no modifications to the box boundaries are applied, and A; values are re-
duced as in Eq. 3.50.

Step 4: The loop counter Ngp is incremented by one. If Ngp reaches a limiting

value (set to 100 by default) the algorithm stops; the algorithm also stops if all values

A; have reached the value €. Otherwise, steps 2, 3, and 4 above are repeated.

Despite its simplicity, the procedure described above typically converges in 30 to 50
iterations for D' = 6 — 10, which are typical values for the considered applications

of fixed-subspace searches.

3.5 Performance studies with synthetic data

3.5.1 Event generation

A synthetic dataset sampled from a multi-dimensional Uniform distribution p;,(x) =
U (x), with x € [0,1]P, may be generated by repeated calls to the TRandom3— Uniform()
routine * of the ROOT package [62], which we employ in our C++ implementa-
tions of RanBox. Such a dataset may be considered the ideal background for an
anomaly search: by lacking any internal structure in the copula, it constitutes a
best-case scenario for performance evaluations of the algorithm in a controlled set-
ting. The unknown signal may instead be generated by drawing samples from
a multi-dimensional Gaussian distribution in a subset x¢,¢ = 1,..., N, of the fea-
tures, xo € RMs, and the remaining ones x,,u = Ng +1,..., D from a uniform den-
sity. While Gaussians have support on the real axis, the generation ensures that the

drawn features are also contained in the [0, 1] interval, as detailed below.

4The random generation is based on the Mersenne primes, and has a periodicity of about 106000,
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We define the following default set of parameters:

(for background) x; = U(0,1);

(for signal) x, = U(0,1);
* sigma g, = 1/(0.01,0.1);

ren = U(=1,1) (with g, h € {1,...,Ng}, g # h).

A random choice of oge and 1, values as defined above will not in general gener-

ate a positive-definite covariance matrix C with variances ¢?2

2 _ .
% and Ton = Tgh0ggThh;

hence the procedure of generating C is repeated until a Cholesky-Banachiewicz (CB)
decomposition LLT = C into a lower-triangular matrix L [63] is found, which guar-
antees the positive-definite nature of C. Once successful, the CB decomposition al-
lows to easily draw samples from the multi-dimensional Gaussian distribution by

posing, for every g,

* (forsignal) xg = pg + 3 —1.n, Lgnttn

with n;, sampled from a Normal distribution. During event generation, if a coordi-
nate sampled from the multivariate Gaussian exceeds the range [0, 1], it is simply
resampled. This truncation has the effect that Gaussians with p, values close to the
boundaries have an up to twice higher local density than Gaussians closer the cen-
ter of the [0, 1] interval. For this reason, in most tests we limit Mg values to the range
stated above, except when we explicitly study the performance at the edges (see in-
fra). Although the background is already generated with flat marginals, after the
inclusion of signal we of course re-standardize the dataset by using Eq. 3.35.

When performing power tests of the algorithm, we avoid the random effect of
varying ¢ parameters, and use reference samples with a more narrowly defined sig-
nal component, by fixing all Gaussian sigmas to oz, = 0.05. In this case correlation
coefficients ¢, are chosen at random within the discrete set { —max(rg;,), 0., max(rg,) }
by posing max(ry;) = 0.2, and we allow means i, to vary at random in their default
range, [0.15,0.85]. The different signals that correspond to varied means and corre-

lations have equal chance of being identified by the algorithm. For example, Fig. 3.5
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shows average Zp; values from runs of the algorithm with the following choice of

parameters:

¢ N, = 4950 background events

* N; = 50 signal events

* D = 20 active dimensions of feature space

* Ng = 6 Gaussian features in signal component
e D’ = 6 dimensions for box definition

® Nyias = 1 subspace sampled per dataset, of features coincident with the Ng in

which signal component has a Gaussian distribution.
* Ny = 50 datasets generated and searched
¢ Algorithm 0 (random box initialization) and 2 (kernel density) used

* No dimensionality reduction (PCA or correlated features removal) performed

By only considering, through the above choices, the subspace which yields the high-
est probability of locating a signal-rich box, we reduce the effect of randomness and
allow for a more precise study of the impact of the tested parameters. In Fig. 3.5
the values of the test statistic Zp; appear stable as a function of the sampled ranges
max(rg,) and Apg = pg™* — y?i”, indicating that the search algorithm is capable of
locating overdensities regardless of their position in the space °, and that the correla-
tion between Gaussian-distributed variables does not affect the chance of identifying
overdense multi-dimensional intervals. Similar results are obtained by initializing

the box dimension with Algorithm 1 (kNN-seeded clustering), and/or by using Ry

as a test statistic.

5The observed slightly lower performance of searches initialized by Algorithm 0 for Apg values
close to 1 is an effect of the higher chance of central signals to be initially contained in randomly-
initialized boxes. Instead, Algorithm 2 allows to exploit the slightly higher maximum density reached
by signals with one or more features close to the boundaries of the space, due to the already mentioned
truncation we operate outside the [0, 1] range.
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FIGURE 3.5: Mean values of the test statistic Zp;, as a function of
the characteristics (Apg for ro, = 0.2 (left), and rgy, for Ape = 0.7
(right)) of the signal component, from 50 repetitions of searches in
synthetic datasets each composed of 50 signal events and 4950 back-
ground events. Black points correspond to searches initialized with
Algorithm 2, empty points correspond to searches initialized with Al-
gorithm 0. For reference, the critical region (for « = 0.05) corresponds
to Zpy = 7.1(7.2) for Algorithm 0 (2, respectively). See the text for
other detail.

3.5.2 Power tests of the unsupervised RanBox

While in a unsupervised search one cannot in general define a hypothesis test, given
the absence of hypotheses for the sampling distributions, we are still interested in
verifying the ability of RanBox to locate overdense regions of the feature space as a
function of its free parameters for a set of different benchmark datasets. This will
provide a scale of the algorithm sensitivity. Hence we construct a “flat” dataset
containing events uniformly distributed in the feature space, and “signal” datasets
where a fraction of the events are sampled from a PDF which includes, for some
of the features, a multivariate Gaussian component (see supra). Once a type-I er-
ror rate « is defined, the tail integral of the test statistic distribution f(TS|H;), out-
put by RanBox searches on alternative hypotheses H; corresponding to datasets con-
taminated with events having multivariate Gaussian features, allows to construct a

power function 1 — B(«) as

o]

1=pl@) = [ flxlH)dx, (3.51)

Xer (0

where x.,(«) is defined by the relation
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o= x:o(“)f(x]Ho)dx. (3.52)
To check the performance of the algorithm in a controlled setting, we define sig-
nal parameters by fixing the Gaussian sigma values in signal events to oz = 0.05,
and allow means and correlations to vary in the range g € [0.15,0.85] and ry;, €
{-0.2,0.,0.2}, respectively. We consider again samples of 5000 events, and study the
power 1 — f for the three choices & = 0.05,0.01,0.001, using D = 20 space dimen-

sions. We also set the following algorithm hyperparameters:

Algorithm =0

Ntrigris = 1000 subspaces scanned for each dataset

test statistic used: Zp;,

expectation value of events in the box: Ny, v.

In a first test we fix the number of features where the signal component exhibits
a Gaussian distribution to N; = 15, and vary the number of signal events in the
generated samples. The critical region is directly obtained for « = 0.05 from the dis-
tribution f(TS|Hy) obtained by repeating 500 times the procedure of generation and
1000-subspace-search of datasets including no signal. For the two smaller values of
« (0.01, 0.001), we instead rely on the modeling of the distribution of f(TS|Hy) with
a Gamma function (see Fig. 3.6) to determine the corresponding x., values. For each
studied value of the signal component we obtain 50 values of f(TS|H;), from which
we extract the power as the fraction of values in the critical regions corresponding to
the three chosen values of a. The results of this test are shown in Fig. 3.7 (top row).
We observe that RanBox is fully capable of spotting localized accumulations due to
a multivariate Gaussian signal, down to few-per-mille contaminations of the data

sample.
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FIGURE 3.6: Distribution of the Zp;, test statistic for 500 repetitions

of RanBox tests of the null hypothesis in 5000-event background-only

samples; a fit to a Gamma function is overlaid. 1000 subspaces are

scanned with Algorithm 0 for the box initialization. See the text for
other details.
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FIGURE 3.7: RanBox power curves for Zpy, as a function of the fraction

of signal in 5000-event samples. The black points (left) correspond to

« = 0.05, the blue points (center) to « = 0.01, and the red points

(right) to @ = 0.001; the critical region for the latter two tests are ob-

tained from extrapolated values of Zp; for the null hypothesis. 68.3%

intervals are computed with the Clopper-Pearson method for the Bi-
nomial ratio. See the text for other details.

In a second study we determine, with the same procedure described supra, the power
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FIGURE 3.8: RanBox power curves for Zpy as a function of the num-
ber of Gaussian features in signal events, in samples containing 50
signal events and 4950 flat-distributed events. The black points cor-
respond to &« = 0.05, the green points to « = 0.01, and the red points
to @ = 0.001; the latter two are obtained from extrapolated values of
the critical region. 68.3% intervals are computed with the Clopper-
Pearson method for the Binomial ratio. See the text for other details.

of RanBox as a function of the number of Gaussian dimensions N, of the signal com-
ponent, by fixing the signal fraction to f; = 1% (i.e., 50 signal events and 4950 back-
ground events). We observe in Fig. 3.8 (top row) that there is sensitivity to multivari-
ate Gaussian signals that involve even only few (4 and above) of the 20 dimensions
of the feature space.

In Fig. 3.9 and Fig. 3.10 we provide a visualization of sample results of a RanBox
run. The first figure shows marginal distributions of the six features where RanBox
identifies an anomalous signal, in the copula space (where the total dataset has by
definition uniform marginals before the selection). The subspace where the best box
is found is one where the signal exhibits Gaussian distributions in all the features,
and all the events in the box are in fact due to the signal component. The scatterplots
of Fig. 3.10 show two-dimensional distributions of the full data sample and the data
selected as the best box. This further demonstrates the correct working of the al-
gorithm, which can effectively extract the overdense region from an apparently flat
distribution. The conclusions we draw are that the algorithm performs as expected

when run on a synthetic data sample and in controlled conditions.

Gaussian dimensions
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FIGURE 3.9: Distribution of the six features defining the subspace
where RanBox finds the highest-Zp; box in a run on 5000 synthetic
events, 4950 of them generated from a D = 20-dimensional uniform
distribution and the remaining 50 “signal” events generated with 11
features drawn from a multidimensional Gaussian distribution. The
blue histograms show the totality of the data; the filled green his-
tograms show the distribution of events contained in the highest-Zp;
box; the filled red histograms show the distribution of events that fail
to be contained in the box only because of their value on the displayed
variable. See the text for other details.

3.6 Experiments

The power tests described in Sec. 3.5 are about as far as one can go to characterize
the performance of the unsupervised version of RanBox, since on any real-life dataset
the specificities of the data structure and the lack of generalization power of the al-
gorithm will make it pointless to investigate in a systematic way its optimal settings
and resulting sensitivity. For this reason, in this Section we free ourselves of the need
to assess confidence intervals on all the reported statistics, which would also entail a
quite significant computing burden ©, and prefer to offer sets of results of single runs
of the algorithm on samples of data taken from a dataset offered by particle physics

research.

®The tests we report in this work overall cost several thousand hours of single-machine CPU by
themselves.
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FIGURE 3.10: Scatterplots of the six features defining the subspace
where RanBox finds the highest-Zp; box in a run on 5000 synthetic
events, 4950 of them generated from a D = 20-dimensional uniform
distribution and the remaining 50 “signal” events generated with 11
features drawn from a multidimensional Gaussian distribution. The
distribution of the totality of the data is shown in blue on the left
of each pair of graphs, while the distribution of selected events (in
green) is shown in green on the corresponding right graph; in red
are events that fail to be included in the highest-Zp; box only be-
cause of their value of the shown features. From top to bottom and
left to right each pair of graph describes the spaces (vq,v2), (v1,v3),
(v1,v4) (first row), (v1,vs), (v1,06), (v2,v3) (second row), (v, vy),
(v2,0s), (v2,v6) (third row), (v3,v4), (v3,05), (v3,06) (fourth row),
and (v4,vs), (v4,06), (vs,v6) (fifth row). See the text for other de-
tails.

3.6.1 Exotic signals in LHC data

The search of new phenomena in LHC proton-proton collisions data is the very ap-
plication that the unsupervised version of RanBox was designed to address. A signal
of new physics may manifest itself as a localized increase in density in some of the
features derived from particle interactions in the detector. A model-independent
search should consider a complete set of kinematical features describing the ob-

served particles in the final state of the collision events, and perform an unbiased
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scan of their combined multi-dimensional distribution.

For a test of RanBox on the above use case we rely on the large dataset of simu-
lated proton-proton collisions available in the University of Irvine’s repository [64],
a dataset known by its nickname “HEPMASS”. This dataset was generated explicitly
to test multivariate algorithms for classification and search of small signals in large
background datasets. The generated signal is that of an exotic resonant particle X,
with a mass of 1000 GeV, which decays to a pair of top quarks, X — tf, when the top
quarks successively produce in their decay a single-lepton final state characterized
by a high-energy electron or muon, a neutrino, and four hadronic jets. Background
samples describe all Standard Model processes that produce a similar final-state sig-
nature. The ATLAS experiment is considered as the detector that performs the re-

construction of the produced particle signals; more detail on the generated dataset

and the simulation are available in [65].

Number | Feature Description
1-3 P%,} Ne, ¢ | 3-momentum of primary lepton
4 | Py Missing transverse momentum
5 Ppmiss Missing transverse momentum azimuthal angle
6 | Niets Number of additional jets
7-9 P]T.l’ iy, $j, | 3-momentum of first jet
10 | P! ¢ First jet b-tag information
11-13 P]TZ, i, ¢j, | 3-momentum of second jet
14 | P2 g Second jet b-tag information
15-17 P]T?’ /Mjss ¢j5 | 3-momentum of third jet
18 | P2 e Third jet b-tag information
19-21 P]T4, iy ®j, | 3-momentum of fourth jet
22 | P! " Fourth jet b-tag information
23 | my, Mass of reconstructed lepton-neutrino system
24 | mj; Mass of jets from W — qq’ decay products
25 | mjj; Mass of reconstructed t — Wb — bgq’ decay system
26 | mjy Mass of reconstructed t — Wb — Ivb decay system
27 | mwwep Mass of hypothetical X resonance

TABLE 3.1: List of the 27 features of signal and background events in
the HEPMASS dataset. The first 22 are low-level features, the last 5
are higher-level ones produced by combining the low-level features

into physics-motivated observables. See the text for more detail.

The data are characterized by reconstruction-level variables from a fast simula-

tion. An idealized reconstruction of a proton-proton collisions yielding top quark
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pairs is performed, identifying the observed jets, leptons, and b-jets . From the
reconstruction of the event, the low-level kinematic features obtained are particle
momenta: the momentum of the leading lepton, the momentum of the four leading
jets (in decreasing order of transverse momentum) and related b-tagging informa-
tion, and magnitude and azimuthal angle of the so-called “missing transverse mo-
mentum” vector. The latter is defined as the opposite of the sum of the momentum

vectors of all observed particles, calculated in the transverse plane of the particle
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FIGURE 3.11: Normalized and standardized distributions of the 27
features of HEPMASS data for signal (black) and background (blue).

7We call “b-jet” a hadronic jet which has been originated from a b-quark. When classified as such
by a software algorithm, the jet is said to be “b-tagged”.

8Missing transverse momentum carries information on the momenta of neutrinos, particles typi-
cally produced in weak boson decays that do not leave a traceable signal in the detector but can still
be inferred from the imbalance of the momenta of observed particles.
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The high-level features of the set are the values of the invariant masses of the
intermediate objects calculated using the low-level kinematic features, in the hy-
pothesis that a correct identification of decay objects and assignment to final state
particles has been obtained. These are: my, from the decay process W — (v, m;j;
from the W — qq' process, m;jj; from the t — Wb — bqq' process, mj;,, from the
t — Wb — fvb process, and the combined myyy;, mass of the decay products as-

sumed for X. Table 3.1 lists identity and information of the 27 features.

1.0

0.8

o
o

2
s

Signal efficiency

— Parameterized NN
— Parameterized NN (no data at 1000

0.2} |
----- Network trained on all masses
- - Network trained at mass=1000 only
O'Go.o o'.z o|.4 o‘.e o'.s 1.0

Background efficiency

FIGURE 3.12: Comparison of signal and background efficiency curves

for four classes of neural networks on the HEPMASS dataset. Of

relevance here is the dashed red curve, which correspond to a non-

parametrized network trained and tested on the sample of refer-

ence, with a resonance mass of 1000 GeV. Reprinted with permission
from [66].

In [66] several ROC curves are presented to compare the performance of parametrized

and non-parametrized neural networks on the HEPMASS signal discrimination prob-
lem. Those are the result of supervised classification, which duly exploits a pri-
ori knowledge of the signal density. As can be seen in Fig. 3.12, the non-mass-
parametrized neural network achieves a background efficiency of about 3% for a
signal efficiency of 80%. We will use these approximate values for a qualitative
comparison to the performance of RanBox, bearing in mind all the caveats of any
comparison of supervised and unsupervised classification methods.

In this section we use a mixture of signal and background events from the HEP-
MASS dataset to test under what conditions RanBox is capable of evidencing feature

space regions with a dominant signal contamination. Since the feature space is rich
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FIGURE 3.13: Comparison of the distribution of pure background

(blue) and a mixture of 5% signal and background (black) in the most

discriminating features in the HEPMASS dataset. Left to right, top to
bottom: features 0, 3, 6, 10, 14, 18, 25, and 26.

with interdependencies among the features, the task of a unsupervised algorithm
is considerably harder than in the case of the synthetic dataset studied in Sec. 3.5,
as significant overdensities are expected to arise from the structure of background
processes alone. Furthermore, in a real-life application of RanBox, the user would be
unable to extract the distribution of the test statistic under the null hypothesis, as
even slight differences between simulation and real data would distort the output.
We consider therefore that in that case RanBox would be used by running it on real
data as they come, without any pretense of assessing a significance level of the re-
turned overdense regions or of studying the power of a selection criterion, but rather
with the aim of focusing the attention of researchers on the combinations of features
that exhibit interesting localized overdensities.

We proceed with exploratory runs of the RanBox algorithm on the HEPMASS

dataset as we would perform them on real data. We construct a dataset comprised
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Algorithm | Init. T.S. Extrap. D’ Dred. Ni,, Npest
RanBox A2 Ry SB D' =12 no 10,000 N/A

TABLE 3.2: Run parameters of the RanBox algorithm for a test on the
HEPMASS dataset with a 5% signal contamination. “Init.” indicates
the method defining the initial dimension of the search box; “Extrap.”
identifies the way by which a prediction of events in the box is com-
puted; D’ is the dimensionality of the subspaces scanned by RanBox;
“Dim. red.” indicates whether the dimensionality of the feature space
was reduced with PCA or by discarding the most correlated variables;
Nijter is the number of searched subspaces by RanBox.

of 250 signal and 4750 background events: the 5% signal fraction is small enough
to make the signal indistinguishable in the marginal distributions of even the most
discriminating variables, as shown in Fig. 3.13. We run RanBox with the parameters
listed in Table 3.2. They constitute a reasonable choice for a run on HEPMASS. In
particular, since we wish to be sensitive to a small signal contamination rather than
having the algorithm get distracted by broader-scale background correlations, we
initially consider that the R; test statistic might be more sensitive to a signal com-
ponent. Also, we use the sidebands method to extrapolate the density in the search
box, as this better factors out the local disuniformities in the data. The choice of di-
mensionality of the scanned subspaces is instead driven by preconceptions on the
fact that a signal of new physics will most likely exhibit distinctive features only in
a subset of the considered kinematical variables ?; 12 is anyway close to the maxi-
mum meaningful choice for that parameter, as is clear if we consider that in a 12-
dimensional space a box of sides equal to half the range of each feature will on av-
erage contain only 5000 x 27!2 = 1.2 events out of 5000. Finally, we do not apply
any dimensionality reduction to the input data, as we observe that the maximum
two-variable correlation coefficient (0.757) in the mixture dataset is not particularly
high.

From the results listed in Table 3.3 we may draw a few interesting conclusions. First
of all, the search of 10,000 subspaces performed by RanBox returns a good number

of signal-rich regions, as five of the ten most significant boxes are dominated by

9Indeed, in the considered search for X — tf, apart from the resonant structure of the total invariant
mass of the decay products, one expects only minor differences of the signal with respect to the non-
resonant ¢f production predicted by the SM.



86 Chapter 3. Machine Learning Techniques

Ry Niy Nexp Ns €s Gain Active features
5278 54 0.02 46 0.184 17.04 101011100111010000000110001
4535 48 0.06 38 0.152 15.83 000111100011001011000100011
4160 46 0.11 33 0.132 14.35 100010010110111011000100001
40.72 46 013 18 0.072 7.83 101000110110101000100010011
4038 44 0.09 41 0.164 18.64 100100100100010001110111001
40.17 47 017 0 0.000 0.00 011001000100010111001100011
3982 44 010 0 0.000 0.00 100001010100011001010101011
3854 44 014 0 0.000 0.00 001001101101110001101100000
3836 44 015 30 0.120 1391 000110101110010000001101011
3805 43 013 14 0.056 6.51 110000100110001110100011001

TABLE 3.3: Results of an exploratory RanBox search on the HEPMASS

dataset with a 5% signal contamination; data for the 10 most signifi-

cant boxes are reported. N; indicates the number of signal events in

the search box; € is the efficiency of the box selection for the signal

component; gain is computed as the increase in the signal fraction of
the box over the initial dataset. For other detail see the text.

the signal component, and two more are also considerably signal-enriched, by fac-
tors above six . Such an output, and in particular the most significant box alone,
would certainly allow experimentalists to focus on the small signal now evident in
the identified regions, hence we consider this output a success of the anomaly detec-
tion task. We also note that the scan of 10,000 12-dimensional subspaces costs nearly
10 hours of running on a single CPU; the scan of all 12-dimensional subspaces of
the 27-dimensional feature space is instead not an easily viable option, as this would
require 27!/ (12!15!) = 1.738 x 107 iterations, or about two years of CPU on a single
machine. Regardless, on the HEPMASS dataset a limited number of combinations
of 12 features still allow to evidence a small signal.

If we now compute the signal and background efficiency of the regions returned
by the algorithm in its exploration of the f; = 5% dataset, we notice that the best
box identified by RanBox contains 46 signal events out of 54, which corresponds to
an 85% efficiency; the background efficiency is instead 8/4950 = 0.16%. These num-
bers compare quite favourably to those of the neural network results graphically
displayed in Fig. 3.12. We stress again the modest value of this observation, given
the improper nature of a comparison of this kind. In particular, the RanBox results

have unknown generalization properties —they are obtained from a single dataset,

10Tn the following we take that factor as a threshold to count the number of signal-rich (SR) boxes
among the first ten boxes, a number we report as SRy.1g.



3.6. Experiments 87

on which multiple testing is performed: the performance would be less good on a
different testing sample. On the other hand, the search algorithm was only shown
a total data sample of 5000 events, a number over two orders of magnitude smaller

than the training sample of the neural networks.

Test Ns/ Ny T.S. max Niy/Nexp N;  Gain SRyqg  €l10
1 250/4750 Zp;, = 28.06 39/0.00 35 17.95 8 0.097
2 200/4800 Zp;r =27.46 1003/133.00 0 0.00 6 0.079
3 150/4850 Zp; =24.45 24/0.00 21 29.17 7 0.140
4 100/4900 Zp; = 26.95 45/0.01 0 0.00 1 0.014
5 80/4920 Zp; =24.65 43/0.05 14 20.35 3 0.044
6 70/4930 Zpr = 23.56 41/0.01 0 0.00 1 0.010
7 250/4750 Ry =52.78 54/0.02 46 17.04 7 0.092
8 200/4800 Ry =50.78 60/0.18 33 13.75 6 0.097
9 150/4850 R; = 43.58 53/0.21 15 9.44 6 0.071

10 100/4900 Ry = 45.29 49/0.08 0 0.00 3 0.038
11 80/4920 Ry =51.22 52/0.02 0 0.00 0 0.000
12 70/4930 Ry =43.44 48/0.10 0 0.00 0 0.000

TABLE 3.4: Sample results of RanBox runs on 5000 events from the
HEPMASS dataset, with varying signal fraction and the two choices
of test statistic. See the text for more details.

We perform a test using RanBox, as detailed in Table 3.4, using 10,000 trials for the
subspace sampling and a subspace dimensionality of D’ = 12. This time we start
(see test 1) by searching for a 5% signal in a set of 5000 events using the Zp; test
statistic. The algorithm returns as the most significant box one which is rich in signal
component, and we observe that the three next-best-significance boxes (not reported
in Table 3.4) are similarly enriched in signal events. We gradually reduce the signal
fraction in tests 2-6 and observe that results are not uniform: RanBox in some cases
identifies as the most significant box one devoid of signal. In general we observe
that the number of boxes that are signal-enriched among the first 10 (SRy.10) usu-
ally decreases as initial signal fraction is reduced; the average signal efficiency also
becomes smaller. Yet the algorithm finds significantly signal-enriched boxes among
the first 10 even for an initial signal fraction of 1.4% and 1.6%. We also observe that
in test 2 the Zp;, maximization focuses on a very wide box, an indication of the ex-
istence of broad-scale multivariate density variations of the background component
of this dataset.

Based on the above observation, in tests 7-12 we turn our attention to the R; test
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statistic, which should give more importance to smaller feature-space regions. This
indeed allows RanBox to converge on signal-rich regions when the signal fraction
of the data sample is 3% or larger; for smaller signal fractions, however, RanBox
becomes unable to evidence the signal component in the reported overdense regions.

The results also allow us to draw some conclusions on the most performing set-
tings of RanBox to be used in the HEPMASS use case. Here, however, we stress one
important point: by telling the tale of how these choices may be defined based on
sample test results, we are implicitly declaring how the algorithm —but in general,
we believe, any unsupervised search— requires an ad hoc tuning to perform its task
most effectively. This is not to be taken as a demonstration that this kind of search
is useless: quite on the contrary, the tool can be a very useful one in examining the
properties of multi-dimensional data. It cannot, on the other hand, be employed as a
catch-all machine ready to identify an anomaly in an arbitrary dataset: this is noth-
ing else than a by-product of the well-known absence of a universal high-power test

statistic, when the alternative hypothesis is not specified.
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Chapter 4

Search for Bs meson decays

The search for rare decays of the B; meson has been identified as a very promis-
ing avenue to detect small hints of deviations from the predictions of the Standard
Model of particle physics. The CMS experiment at the CERN LHC has accumulated
a large statistics data sample where a search for the B; — t7~ decay may be car-
ried out. As the signal is exceedingly rare, and buried in very large backgrounds, it
is important to exploit as much as possible the observable features of the recorded
final state. In this section we summarize the studies performed to reconstruct the B
meson decay topology, using the observable particles generated by tau lepton pairs
produced in the B; — t" 7~ decay. The developed multi-stage, machine-learning-
powered regression of the mass of the B; meson as well as the classification algo-
rithm for the 3-prong decay channel promises to enhance the sensitivity of the search

we conduct with the parked data collected by CMS during LHC Run 2.

4.1 Introduction

With the 2012 discovery of the Higgs boson [4, 3], the Standard Model of particle
physics (SM) [67] has consacrated itself as an extremely successful and predictive
theory. The SM allows physicists to compute with high accuracy predictions for
the probability of reactions among fundamental particles; hundreds of quantitative
predictions have been verified by experimental tests performed at particle colliders
in the past 50 years, and only a very small number of discrepancies exist at the time
of writing.

Despite the general success of particle theory to explain subnuclear phenomena

with the SM, the model cannot be the final theory of fundamental forces and matter
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particles. There are a number of reasons for this; the most convincing are the fact
that the SM does not include gravity, and the naturalness problem, arising from the
observation that the Higgs boson has a physical mass which is abnormally small as
the result of the addition and subtraction of quantum corrections each of orders of
magnitude larger size than the mass itself. Because of these and other issues, physi-
cists are searching for new phenomena that may provide clues on how to extend and
make more coherent the SM.

The Large Hadron Collider (LHC) [68] is the facility producing the most ener-
getic particle collisions. In operation since 2008, the LHC provides high-intensity
beams of protons accelerated to energy of up to 7 TeV, and rotating in opposite
verse inside superconducting magnets lining up a 27 km-long underground tun-
nel at the border between Switzerland and France. Collisions are generated between
the proton beams in four experimental halls. One of them is home to the CMS ex-
periment [30], a large multi-purpose detector that is capable of recording the signal
deposited in hundred million electronic channels from all produced particles in the
energetic collisions, which take place every 25 nanoseconds in its interior, and stor-
ing the most interesting of them to permanent media.

The collection and analysis of LHC collisions has been going on for over a decade,
and will continue for at least as much time in the future, because new physics that ex-
tend beyond the SM may become observable only by accumulating data from large
amounts of collisions. It is, in fact, a deeply-ingrained prejudice in particle theorists
and experimentalists alike that amidst the rarest phenomena, which the SM allows
to occur at the smallest rates, a signal of new physics might first pop up and become
detectable. New massive particles which mediate as-of-yet-undiscovered forces of
nature may in fact become evident in their contribution to variations in the rate of
production in Figure 4.1 of those processes which the SM predicts to be the rarest.

The above line of research has brought the CMS collaboration to intensively
search, and then observe with LHCb [31], the rare decay of the B; meson (a particle
made up by a bottom quark and an anti-strange quark) into pairs of muons: the rate
of that process, which according to the SM takes place only three times in a billion
Bs decays, is presently only slightly discrepant with theory predictions; more data

will make this test more stringent in the near future. However, if new physics were
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contributing to the decays of the B; meson, a reasonable prediction is that it would
also do so in the similar decay of the same particle into tau lepton pairs, and pos-
sibly to a higher effect. This might in fact be the result of the new physics particles
contributing to the process preferentially through coupling with third-generation
matter fields, such as the tau lepton. In the past, a search for the By decay to tau
lepton pairs was performed by the LHCb experiment, with null results [69]. The
sensitivity of that search was however insufficient to test the SM prediction for the

involved branching fraction of the B; meson.

FIGURE 4.1: Feynman diagram showing the production of a B; meson
and its subsequent decay of interest to this work.

Detecting tau leptons is hard: unlike their lighter versions from the first and sec-
ond generation (electrons and muons), tau leptons decay very quickly (in 2.9 x 10~13
s) both to leptons plus neutrinos, and to hadrons and neutrinos (which is thus called
"semi-hadronic decay"). In the latter case the produced hadrons are mostly pions,
which are among the most common particles produced in proton-proton collisions.
For that reason the semi-hadronic decay is extremely hard to identify in the large
background. Furthermore, the neutrino emitted in the decay escapes undetected,
preventing a full kinematical reconstruction of the decay process. These difficulties
have so far prevented the extraction of significant information from rare decays of

hadrons involving tau leptons in the final state. On the other hand, precisely because
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of those challenges, there are wide opportunities to progress in our understanding
of nature by studying these processes. While it is foreseen that the data so far ac-
cumulated by the CMS experiment will not nearly be sufficient to put in evidence a
decay of the B; meson into tau leptons, it is necessary to fill the void by construct-
ing a search strategy for that process, such that its future refinement and the larger
datasets that the LHC will deliver in the course of the next few years will eventually
allow the extraction of a measurement, and the comparison with SM predictions.

In this work we describe our studies to solve the difficult problem of recon-
structing the decay of the B; meson using the information available in the form of
four-momenta of the four visible decay products from the combined leptonic and
semi-hadronic decay of the pair: a muon and three charged pions. The chosen final
state is advantageous because the muon provides an ideal triggering signature, with
which data collection is significantly eased; on the other hand, the three-prong semi-
hadronic decay also offers some advantages due to the possibility of reconstructing
the originating tau lepton momentum. The mixed final state further benefits from
a factor of two probability of occurrence due to the combinatorial factor, as we al-
low for positive and negative muons from the leptonic decay (and correspondingly;,
three pions of total charge —1 or +1, respectively). The use of machine learning
tools may allow to extract more informative statistical summaries from the available
information. The inferred kinematics of the hypothetical Bs particle producing the
observed final state may then become the input to a performant classifier, capable of
increasing as much as possible the signal to noise ratio in the analyzable data.

The structure of this document is as follows. In Section 4.2 we describe the data
samples we have used for this work and how high-level information on the observ-
able final state particles is reconstructed. In Section 4.3 we discuss the preliminary
data selection, which employs a deep neural network for the identification of the
most likely pions emitted by tau leptons decaying semi-hadronically. In Section 4.4
we describe the studies performed to assemble a regressor capable of producing an

estimate of the B; mass and momentum.
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4.2 Datasets and Event Preprocessing

The decay channel of interest is the B; meson decay into two tau leptons, where one
tau decays into a muon and a neutrino and the other tau decays into three pions
and two neutrinos. For this task we employ two learning algorithms: a regression
to the most probable value of the invariant mass of the two tau leptons, using the
four-momenta of observed particles in the events where two tau candidates may be
the result of the Bs decay; and a classification algorithm of such events based on
four-momenta of observed particles as well as higher level kinematic features.

In this section we discuss the data samples we worked with for these studies:
"real" data, data collected in the Run 2 LHC collisions which are utilized to check
the behaviour of background events passing a preliminary event selection targeting
the B; meson decay signature, and a Monte Carlo simulation of B; meson decays
including the final state of interest, with which the algorithms can learn to infer the
B decay kinematics. We generated a Monte Carlo sample with a pile up profile!
that corresponds better to the real data pile up conditions and simulate the Bs de-
cay topology and the resulting reconstruction of observable features from detector

readouts.

421 B-Parking Data

LHC collides proton bunches every 25 ns, hence with rates of 40 MHz. In order to
reduce the resulting huge flow of information from its millions of detector channels,
CMS uses a two level trigger system: Level 1 (L1) and the High Level Trigger (HLT).
L1 is hardware-based and it relies on a fast read-out of the detector, without the
tracker information. HLT is based on speed-optimized software which exploits a
full read-out of the detector with the tracks which we use to reconstruct the physics
objects. Events that are not selected by the triggers are not stored (for more details,
see section 2.3).

For our studies of background processes, we used the so-called B-Parked Data

acquired by CMS during the Run 2 of the LHC. This is a large sample collected at

IPile-up (defined in section 2.1.2) is the collective signal of proton-proton collisions taking place in
the same bunch crossing as the event of interest. Due to the high intensity of LHC beams, the typical
number of simultaneous collisions in Run 2 data is O(30). Simulations need to account for these satellite
collisions in order to improve the model of real data.
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a center-of-mass energy /s = 13 TeV of proton-proton collisions, acquired in 2017-
2018 through a loose selection enforcing the presence of a low-transverse-momentum
muon candidate at trigger level. The large cross-section corresponding to the loose
trigger requirement implies that the selection cuts were dynamically varied as a
function of the instantaneous luminosity of the data-taking conditions, in order to
not exceed the maximum bandwidth of accept rates. The large number of acquired
events prevented CMS to directly process and reconstruct the data, which were thus
"parked" to be processed later. The interest of this dataset is that the loose trigger
requirements (see infra, Table 4.1) provide as unbiased a B-hadron-enriched dataset
as they come. The large sample is very valuable for searches of rare phenomena in
B-hadron decays, such as the one at the center of our research goals.

The triggering muon is required to pass the following criteria:

¢ A candidate muon identified at trigger level 2 with momentum above pr >
7 — 9 GeV; the actual threshold varied during Run 2 data taking, owing to the

variable instantaneous luminosity conditions

* An impact parameter significance above 4-6, depending on instantaneous lu-

minosity conditions.

The data sample comprises a total of about 12 billion events, of which roughly
80% are estimated to include processes involving b-quark production. In particular,

it is estimated that the sample contains a total of 1.2 x 10° decays of Bs mesons [70].

Settings  Peak Lum. Ll upr HLT upr HLT uIPSIG Purity Peak rate

(103 em=2s71)  (GeV) (GeV) (%) (kHz)
1 1.7 > 12 > 12 > 6 92 1.5
2 1.5 > 10 >9 > 6 87 2.8
3 1.3 >9 >9 >5 86 3.0
4 1.1 > 8 > 8 >5 83 3.7
5 0.9 >7 >7 >4 59 54

TABLE 4.1: Settings®of the B-parking triggers employed by CMS in
2017-2018 [70]. See the text for details.

2HLT u IP SIG: high level trigger muon impact parameter significance defined as the ratio between
the transverse impact dy parameter and the measured uncertainty o (dp).
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4.2.2 Monte Carlo Samples

The Monte Carlo (MC) sample we employ in our signal studies is a simulation of
proton-proton collisions yielding b-quarks in the final state. The MC is generated
using PYTHIAS [71] for proton-proton collisions, parton shower and hadronization.
Pythia is a general purpose event generator, containing theory and models for a
number of physics aspects, including hard and soft interactions, parton distribu-
tions, initial and final state parton showers, multiple interactions, and decays. It has
been extensively used by the CMS collaboration for event generation, as well as for
hadronization of the parton-level events. The B-meson decay is modeled with the
EVTGEN [72] package. Events are then passed through the CMS detector simulation
using the GEANT4 [51] package.

The MC generation includes a modeling of the trigger which selected the B-
Parking dataset for Run 2, and the correct amount of pile-up proton-proton colli-
sions in the same bunch crossing of the triggering collision expected for the Run 2
data-taking conditions. These are meant to model the details of the instantaneous
luminosity of the machine during the acquiring of the real data, such that the correct
number of simultaneous proton-proton collisions is generated along with the event
of interest. The pile up profile of the overall MC sample was adjusted by additional
samples we generated with comparable pile up profile to that of the parked dataset
(see Fig. 4.2).

The data are simulated at generation level such that the hadronization of the b
quarks includes at least one B; meson; the latter is forced to decay into a pair of tau
leptons. The simulation further filters events at generation level where at least one
of the tau leptons decays into a muon, T° — pu* v (- — p~ v,v; ). When the
event includes such a muon with a transverse momentum pr above the triggering
threshold (see infra, Table 4.1), it has all the features we try to select in real data in
our search. With the reconstructed characteristics of the measured four-momenta of
the muon and the other particles involved in the decay of the B;, we may attempt
a reconstruction of the B; decay. This also means that events without the selected
signature are not stored and can be neglected in our studies.

The simulated data are meant to reproduce the behaviour of events selected by
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the B-parking muon trigger, which operated in CMS during Run 2. Table 4.1 includes
detailed information on the applied thresholds of the muon triggers used to collect

the B-parked dataset used in this study and for the B; search.

Primary vertices in MC and data
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FIGURE 4.2: Number of reconstructed primary vertices in MC and
data.

4.2.3 Trigger Strategy

In order to record as many B-hadrons as possible, many single muon triggers were
turned on, distinguishable by the thresholds applied to the trigger muon transverse
momentum pr and to the impact parameter (IP) significance (Table 4.1) . The HLT
trigger paths were turned off artificially and independently by portions of the LHC
fill. During a store of protons and the colliding phase, the decay of the instantaneous
luminosity allows to soften thresholds for data collection. Hence as rates allowed it,
an active trigger path was turned off and a looser (with a looser cut on the pr or
IP significance) trigger path was turned on (see Fig. 4.3). This data collection mode
leads to different integrated luminosities for each present trigger path.

Moreover the trigger efficiency in the MC samples and B-parked data are signif-

icantly different due to the fact that the artificial turning on/off of trigger paths is
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FIGURE 4.3: Number of vertices vs Event Number for different trig-
gers.

not present in the MC simulations, as shown in Fig. 4.4 and 4.5. The list of available

triggers in the menu are not the same as well as the proportions of the triggers.
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FIGURE 4.4: Triggers present in parked data.

Due to small statistics of some of the subsamples, as well as differences in the

kinematics of each, it is too complicated to perform a measurement on individual
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Number of Triggered Events in data
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FIGURE 4.5: Triggers present in MC.

dataset sections that belong to a trigger path and then take an average of their results.
Instead, we select the trigger paths that are present in both MC and B-parked data
and that cover most of the events in the samples.

The general recipe is as follows: we start with the trigger path T1 that makes up
for the largest fraction of events collected in the B-parked dataset; the corresponding
MC simulated events passing trigger requirements of T1 are taken as a model of that
portion of the dataset. We then turn to the remainder of B-parked data (which were
not collected by the most common trigger T1 either because that trigger was not ac-
tive, or because while active it did not fire), and identify the trigger which collected
the largest part of those remaining events, T2. Now we need to distinguish among
those events ones collected by T2 while T1 was also actively selecting data and ones
collected by T2 while T1 was inactive. We turn to the MC events and identify the cor-
responding classes of events, assigning each to the modeling of the corresponding
subclasses of data passing T2 and failing or not tested by T1. This procedure contin-
ues until all the main exclusive subsets of real data have been modeled. Since the MC
events assigned to the modeling of each subclass have different relative numerosity,
they are assigned a weight inversely proportional to the integrated luminosity that
each subclass corresponds to. This procedure may not be the most effective in terms
of the resulting global uncertainty due to MC statistics that we may end up assigning
to derived quantities, but it correctly takes care of the combined effect of different

pass/fail conditions on multiple trigger paths.
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Monte Carlo Truth Matching

For signal MC events we can make use of the generator-level information and match
the generated objects to the reconstructed ones, to study the properties of the recon-
struction and to select specific topologies of the decay products without the worry
of including events where the signature is mimicked by backgrounds or misrecon-
structed events. We have verified that for transverse momenta of the objects (muon,
tau leptons, and charged pions from the hadronic decay of a tau lepton) higher than
about 5 GeV this can be simply accomplished by constraining the azimuthal an-
gle ¢ and pseudorapidity 7 ° of the candidate object by requiring the condition AR =

(An)? + (Ap)? < 0.1 where Ay and A¢ are angular and pseudorapidity differences
between generated and reconstructed level variables. At lower transverse momenta

we instead rely specifically on our reconstruction algorithm, which is described infra.

4.3 Preliminary Selection

In order to extract an estimate of the mass of a particle decayed into two candidate
tau leptons, it is necessary to filter the input data sample such that all selected events
contain the minimum information required for the learning algorithms: the visible
final-state objects produced in B; decays. The preliminary selection also has the
purpose of removing events that are most likely due to non-signal processes. In this
section we describe the preliminary selection that was operated with those aims.

One important preliminary observation that can be made from the simulated signal
dataset is that the energies of tau leptons from B meson decays in our data sample
are typically within the range [1,15] GeV, with a long tail to higher energies; this is
due to the combined effect of the production mechanisms of b-quarks and the trigger
selection. Because of this, the decay products of the searched Bs meson —in particu-
lar, the charged pions— will be produced with low transverse momentum. This on
one side means that it will be difficult to reconstruct them efficiently in some topolo-

gies, and on the other that they will spread within a wide solid angle, as opposed

3Pseudorapidity (defined in section 2.2.1) is a monotonous function of the polar angle 6 of a par-
ticle (assumed massless) with respect to the beams direction, y = —logtan(0/2). Since 7 transforms
linearly upon boosts along the beam axis, it is an advantageous quantity for event interpretation in
hadron collisions.
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to what would happen in the decay of a much more boosted hadron. Hence, rather
than searching for these particles within a jet of a given radius, we need to consider
all charged particles we observe in a wide area around the triggering muon. More-
over, in the CMS high pile up scenario (see supra) we have too many reconstructed
charged pions to consider as candidates when we are trying to identify the three
ones emitted in the semi-hadronic tau decay. In order to overcome these challenges,
following the work documented in [73] we proceed in the topology reconstruction
of our event candidates with the following steps:

Vertexing: The first step is to determine the best candidate primary vertex (PV)
where the b hadron is produced (where the B; — 7T decay takes place); we may then
exclude from consideration the charged hadrons that clearly belong from different
proton-proton collision vertices. For this aim we make use of the muon that triggers
the event, by extrapolating it back to the beam line and selecting the reconstructed
primary vertex that is closest to the extrapolated point along the z coordinate. This
way we focus on the true event vertex, which allows us to get rid of all particles pro-
duced by pile-up vertices, thereby significantly reducing the number of considered
charged hadrons.

Pre-filtering deep neural network: We use a deep neural network (DNN) to
decide if a charged hadron is coming from a tau decay or not, such that we may
identify triplets of charged pions with the correct charge combination to suit the
hypothesis of being due to the decay of a tau lepton, when its partner produced
the triggering muon (which must thus have the opposite charge to the sum of the
three pions charges). We choose an operating point for the DNN selection which
corresponds to a true positive rate of 80% for each pion; this way, about 50% of the
chosen three-pion combinations from signal decays will be correctly identified. The
architecture of the DNN that operates this selection is described in detail (see Sec. ??),
and the selection is further discussed there.

Post-filtering: Taking the following facts into account, we further reduce the
number of charged hadron candidates after the DNN selection by the following
means:

(i) Since the B; meson has a comparatively long lifetime (5, = 1.515 x 1012

s [50]), we expect a displacement between the extrapolated primary vertex and
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the secondary vertex, where the three charged pions are produced from the semi-
hadronically decaying tau lepton. We reconstruct the three pions to a common ver-
tex and we enforce the condition that the distance between primary and fitted sec-
ondary vertex is different from zero at three-sigma level, i.e. d/0; > 3, where d £ 0
is the measured distance.

(ii) We also apply a constraint on the quality of the secondary vertex constructed
with the three pion candidates, by estimating the compatibility of the three tracks
with a single vertex. This is measured by the reduced x? of the vertex fit, converted
into the corresponding tail probability. We select pion triplets for which this proba-
bility is equal to at least 5%.

(iii) A third optional selection requirement which can be applied to further in-
crease the purity of the selected three-pion combinations is to enforce the condition
that the invariant mass of the three charged pions selected by the DNN is smaller
than the nominal 1.77 GeV tau lepton mass, taking into account the loss of energy
in the decay due to the escaping tau lepton neutrino. We may further exploit the
fact that the three-pion final state often includes a p-meson resonance. As there are
two possible opposite-charge combinations of two pions in a three-pion set of unit
charge, we may require that at least one of the two two-pion combinations is consis-
tent within resolutions with the mass of the p meson. In Fig. 4.6 we show how indeed
one combination of pion pairs of null charge is in most cases within the range of the
p particle mass (770 MeV), such that the correct pion combinations (yellow points)
populates a cross in the two-dimensional graph.

After the filtering steps, if multiple candidate triplets are found, the one of com-

bined highest transverse momentum is chosen.

4.3.1 DNN selection of candidate tau leptons

Identifying a hadronically-decaying tau lepton is a very complex task in the busy
environment of LHC collisions. The investigated signature (three charged pions) is
ridden by large backgrounds, which can be reduced by a detailed exploitation of a
few distinctive characterics, due to the lifetime of the tau lepton and its mass. We
use the classification power of a Graph Neural Network (GNN) in order to select tau

candidates with three-prong decay.
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FIGURE 4.6: Scatterplot of the invariant mass [GeV] of oppositely
charged two-pion combinations from pion triplets produced in the
decay of tau leptons.

Generalities of the pion-selection DNN

The DNN is an implementation of an Attention Based Cloud Network (ABCNet) [74],
a graph-based neural network (GNN). GNNs have the advantage of being permutation-
invariant over sequential models; they allow us to work with a variable number of
tracks. Attention layers added to the architecture further improve the feature extrac-
tion and the overall performance. Table 4.2 below lists the features exploited by the
network to classify pions originating from semi-hadronic 3-prong tau lepton decays.
The elements of the GNN are graphs which are defined by nodes and edges. We
can think of the nodes as the charged hadrons and the edges as the distances between
them (connectors). The y — ¢ distance between reconstructed charged hadrons is
used to construct a GAP layer [75], where each hadron is connected to 10 neighbors.

The output of this layer is fed into fully-connected hidden layers, which are tasked
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Variable Description

n Particle pseudorapidity

¢ Particle azimuthal angle

log pr Logarithm of particle transverse momentum

Q Particle charge in electron charge units

log E Logarithm of particle energy

d, Distance along z axis from particle vertex to event PV

dyy Distance in xy plane between particle vertex and event PV

isMuon Boolean descriptor of whether the particle is flagged as a GlobalMuon

NMUONS Number of global muons in the event
NPART Total number of charged hadrons divided by 100

TABLE 4.2: Features used by the ABCNet classifier

with learning the features extracted by the first GAP layer and expand the dimen-
sionality of the feature space. The newly created features are fed into another GAP
layer, which accounts for the distance between hadrons in the full space. Other fea-
tures that describe the event but are not specific of the hadrons, such as the number
of muons in the event, are introduced in another fully-connected layer. Pooling and
dropout are then operated to minimize over-fitting to the data. The final step of the
architecture is constituted by a softmax operator [76], which provides an estimate of
the probability that the charged hadron is a pion from tau lepton decay (see Fig. 4.7).

The model is trained with a small 20,000-event Monte Carlo sample, which fea-
tures semi-hadronic tau decays into three charged pions, where all reconstructed
pions are matched to generator-level ones.

For the evaluation of the model we make use of the efficiency of the DNN to
correctly select pions from tau decays, and the rate of selected pions that do not
originate from the decay. An optimization study suggests the working point of 80%
efficiency of retaining the true pion and 10% fake rate, which is the result of a cut
at the DNN output value of 0.1443 (see Table 4.3). The Receiver Operating Charac-
teristic (ROC) curve, which describes the false positive rate (or more practically its
inverse, for better clarity) as a function of the true positive rate, indeed displays that
to an 80% efficiency for the signal corresponds a 10% fake rate in Table 4.3.

The regression task needs training and validation data consisting of true 3-prong
decaying taus, which we get from the MC sample, where the pions reconstructed by

the GNN are gen-matched and belong to a 3-prong decay of an existing tau particle.
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FIGURE 4.7: Scheme of the ABCNet architecture [74]. See the text for

details of the blocks functionalities.
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Fully connected {256}
)
Dropout {0.6)

!

Fully connected {256}

!

Dropout {0.6}

DNN cut value efficiency of retaining true pion fake rate
0.7113 0.60 0.029
0.6000 0.65 0.042
0.4617 0.70 0.058
0.2968 0.75 0.082
0.1443 0.80 0.116
0.0526 0.85 0.164
0.0131 0.90 0.237
0.0012 0.95 0.393

TABLE 4.3: GNN cut working points

|

Fully connected {256}

|

Fully connected {NxZ2}

Since the combined branching ratio of the muonic and 3-prong hadronic decay of

tau leptons amounts to 1.62%, the expected number of such reconstructed taus is

relatively small.

}

Softmax {NX2)
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4.4 Regression to B; Mass

The decay topology we are interested in includes a muon from a leptonic tau de-
cay T — v¢uv,, whose presence among the reconstructed particles most of the
times allows for the triggering of the event, and three charged pions from the semi-
hadronic decay of the other tau, T — 7r7r7rv,. In our attempt to reconstruct the decay
B; — 1 into this mixed final state, we are challenged by the escape of at least
three neutrinos, two of which are produced in the T — v uv, decay, and the third
comes fom the semi-hadronic decay. A machine-learning algorithm may partially re-
cover that lost information from the measured four-momenta of the visible particles.
In this section we describe the construction of a regressor that addresses the recon-
struction of the four-momentum of the semi-hadronic decaying tau, and the subse-
quent combination of the obtained information with the muon four-momentum in

the higher-level task of estimating the four-momentum of the originating B; meson.

3-prong decaying tau pr 3-prong decaying tau n 3-prong decaying tau ¢

200

150

oen ¢

gen pr [GeV]
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- — -T

0 50 100 150 200 -2 -1 0 1 2 -2 0
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o

FIGURE 4.8: 2D scatterplots of generation level transverse momen-

tum pr, 7 and ¢ values vs the reconstructed quantities. The orange

line in the left graph is meant to guide the eye and compare the two
plotted quantities.

As depicted in Fig. 4.8, while for three-pion combinations matched to correct gen-
erator level particles we can reconstruct quite well the rapidity # and azimuth ¢ of
the tau lepton, the same cannot be said of the tau transverse momentum pr, which
is affected by a negative bias due to the missing neutrino. A regression may recover

the lost information in part, and nullify the bias.
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4.4.1 Initial considerations

The reconstruction of the event triggered by a muon yields several variables belong-
ing to the physics objects, as seen in Table 4.4. These are the features we use in the
regression task. The targets are the 3-prong decaying tau momentum and the 7 — ¢

coordinates (see Table 4.5).

Variable Description

Ty .,;  pion pseudorapidity

ury pion azimuthal angle

Tpr, pion transverse momentum

g, pion charge in electron charge units

T tau charge in electron charge units

T tau pseudorapidity (visible)

Tp tau azimuthal angle (visible)

Tpr tau transverse momentum (visible)

Ta cosine of the opening angle between primary (PV) and secondary vertex (SV)
line and the B; momentum

Tar, AR distance of tau from each pion

Tpoip primary vertex impact parameter

Tf13d 3d flight length distance

Typrob vertex probability

Trhomass1  invariant mass of 2 opposite charged pion combination
Trhomass2  invariant mass of 2 opposite charged pion combination

TABLE 4.4: Reconstructed variables used for the regression task

Variable Description

T tau pseudorapidity

Teos(¢) cosine of tau azimuthal angle
Tsin(g) sine of tau azimuthal angle
Tpr tau transverse momentum

TABLE 4.5: Target variables for the regression task

The regression models need to be accurate as well as interpretable, so the first step is
to understand which of the variables are important for the prediction. Once we see
which features are significant, we can identify as redundant and remove the ones
with least importance, in order to achieve a shorter training time without affecting
the overall performance; this step needs to be re-done every time for new data sam-

ples to check the effect on the model performance. For this initial study the gradient
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boosted decision tree algorithm (GBDT) [77] is employed, which is described in de-
tail in section 3.1.1.

A decision tree algorithm is one that asks iterative questions to partition the data.
On its own a decision tree is very prone to overfitting, so we combine the individual
trees to get a better performance. One way of combining the trees is by the pro-
cedure called boosting, where we build a strong learner by stacking the individual
trees (weak learners) sequentially. Each tree focuses on the minimization of the pre-
vious tree’s error. For a gradient boosted decision tree algorithm this is done by
fitting to the residual of the previous tree, where the residual is calculated via a loss
function, mean squared error (MSE) or square root of mean squared error (RMSE)
for the regression task. The most important hyperparameters for the tuning of such
an algorithm are the learning rate (a measure of modification per tree, which deter-
mines how fast the model learns) and the number of trees. If the learning rate is too
low, the model will train too slowly; if instead it is too high, the learning might not
converge to a minimum loss. If the number of trees are too high, the GBDT model
will instead start to overfit. Overfitting is not per se undesirable, but it may reduce
the generalization properties of the learned model.

Following this study we can drop variables such as individial pion charges and
pion-selection DNN scores since the information they contribute is redundant. Fur-
thermore, we studied the effect of a coordinate change from (pr, 77, ¢) space to carte-
sian coordinates (py, py, p. for each particle) and we concluded that the performance

of the two approaches is comparable.

4.4.2 Neural Network regressors

After the initial studies with the GBDT, which allowed us to identify the important
features in the data, we use Neural Networks (NN) to perform the two separate re-
gression tasks. We found that the overall performance of NN regressors is similar
to the previously discussed GBDT. However, in a GBDT algorithm the weights are
updated sequentially, whereas in an NN algorithm, each feature is fed to the model
in parallel and each feature weight has a unique path in the back-propagation pro-

cess. We study the effect of this implementation when combining the two regression
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models. The baseline NN is a fully connected dense NN, with dropout and pooling
operations to minimize overfitting.

We split the (shuffled) data in two ways for a training /validation/test cycle, with
ratios of 50:40:10 and 80:10:10, where we have 50% (80%) of data for training, 40%
(10%) of the data for validation, and the remaining 10% for testing our model in
order to minimize the overfitting behaviour of the model.

The cyclic nature of the azimuthal angle is preserved by regressing to the cosine
and sine of the variables (see Table 4.5). In this way the model is kept aware of
the cyclicity even after rescaling the variable. Finally, the stability of the model is
studied with a standard 5-fold cross-validation scheme, where we split the training
data into five parts, train the model on the n-fold and check the performance on the

validation dataset.

4.4.3 Semi-hadronic tau regression results
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FIGURE 4.9: 2D scatterplots of regressed tau (y-axes) pr , 11 and ¢ val-

ues vs the corresponding generated tau attributes (x-axes). The model

is trained and validated on pions that are matched to the generator-
level decay products of real taus.

The model regresses to the semi-hadronic tau transverse momentum pr, pseudo-
rapidity # and the azimuth angle ¢. Figure 4.9 shows the predicted target variables
as a function of the generator-level quantities with two different train/validation
splits. A perfect regressor would place all the data points on the orange diagonal
line. With a larger training data sample the model performs better and this is valid
for all the regression models performing on the MC samples we have used. The

model suffers from the missing knowledge about the three-prong decay due to the
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non-observed neutrino and this is evident in the transverse momentum regression

plotin Fig. 4.9.

B; mass estimation

T 1%]
gen-mass 1 gen-mass 1y
regressed pr, 1, ¢ gen. pr, 1, ¢

energy Ey = \/ m% + pzegressed Ey = \/ m% + p§€”

M? = m% + ﬂ’l% +2- (El -Ey — Preg:essed : pgeﬂ)

TABLE 4.6: Generated or regressed tau attributes used in Bs mass
estimation

Using the attributes of both taus listed in Table 4.6 we estimate the B; mass (see
Fig. 4.11) that is centered at a mean y = 5.31 GeV (with a gaussian fit o = 0.52,
purple curve); as reference, the true mass of the B; meson is Mp, = 5.36 GeV. Since
at this step we are using generator level features for the tau which decays into a
muon and two neutrinos in the calculation, this must be considered an upper limit

to the precision of the B; mass reconstruction.

4.4.4 Full B; reconstruction
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FIGURE 4.10: 2D scatter plots of the regressed tau (y-axes) pr , # and
¢ values, which decays into a muon and two neutrinos vs the cor-
responding generated tau attributes (x-axes). The model is trained
and validated on pions that are matched to the generator-level decay
products of semi-hadronically decaying taus (40% validation split)

We now consider the other tau lepton, which decays into a muon and two neu-
trinos, and we attempt a regression to its attributes. This is a more challenging task
for a learning algorithm than the semi-hadronic tau regression, since we have two

neutrinos escaping our observation. The model performs poorer for pr regression
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(Figure 4.10), when compared to the previous result. However, we note that, most
of the features are the "visible" attributes of the muon only for this regression task.
Pseudorapidity # regression fails at around || = 1.5, this is due a cut on the trigger
muon pr at 7 GeV (the loosest trigger path for pr has the cut at 7 GeV). Pseudorapid-
ity  distribution of trigger muon (hence 7 distribution of the muon decaying tau)
has slim shoulders at around || = 1.5. Due to the lack of statistics above || = 1.5,
the regressor performs poorly.

Furthermore, we avoid using features from the semi-hadronic decay because this
will lead to a B; mass sculpting in the background events, where we will lose the

discrimination power in the signal region around 5.36 GeV.

B mass estimation

T [
gen-mass 11 gen-mass 11
regressed pr,1, ¢ regressed pr, 17, ¢

— 2 2 — 2 2
energy Ey = \/ my + pregressed,l Er = V my + p”g”SS‘?d'z

2 .2 2 - -
M" = U + m5 +2- (El i EZ - pregressed,l : Pregressed,Z)

TABLE 4.7: Generated or regressed tau attributes used in B; mass
estimation

As previously done, we estimate the B; mass using the quantities listed in Ta-
ble 4.6 (switching the taus), where we have regressed transverse momentum pr,
pseudorapidity 77 and azimuth ¢ variables for the muon decaying tau and the gen
attributes of the 3-prong decaying tau. Figure 4.11 shows the resulting Bs mass dis-
tribution, which is centered at a mean y = 5.48 GeV (with a gaussian fit 0 = 0.72, red
curve).

Finally we estimate the B; mass using the quantities listed in Table 4.7, where the
regressed attributes for both taus are plugged in. Figure 4.11 shows the resulting B;
mass distribution, which is centered at a mean y = 5.40 GeV (with a gaussian fit o =

0.78, brown curve).
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FIGURE 4.11: Histograms of the B; mass estimated using the at-
tributes predicted by the regressors on both tau candidates (yellow,
blue and green lines). Red curve represents the gaussian fit to the
distribution where we regress to the muon-decaying tau attributes
and use the gen attributes of the 3-prong tau to estimate the B; mass.
Purple curve represents the opposite case, whereas the brown curve
represents the gaussian fit to estimations computed with regressed
attributes for both taus.
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4.4.5 B-Parking data from LHC Run 2
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FIGURE 4.12: Histogram of the B; mass estimated using the attributes

predicted by the regressions on B-Parked data sample. In each event

there are multiple tau candidates for the 3-prong decaying tau and

are ordered by pr. Blue curve shows the study with the first most

energetic tau candidate, while the other curves represent the rest of
the candidates in pr order.

Given the expected rarity of the B; — 77 signal we may quite safely use real
data as a representative sample of background events. This will not impair or bias
our analysis choices until a stringent data selection is applied, targeting the highest
increase in signal to noise. This is because, not only does the signal (possibly) present
in the data does not affect our results, but also the possibility to perform a “blind
analysis” on the final signal extraction remains possible. The observation of the
behavior of data following a reconstruction of events according to the B; hypothesis
allows us to draw some conclusions on the effectiveness of the regression and to
give us information to improve it for the subsequent stages of the analysis, still to be
undertaken.

Figure 4.12 shows the distribution of the B; mass estimated for the B-Parked
data sample. After the reconstruction steps employed on the dataset (described in

Sec. 4.3), which give us the pion candidates of a three-prong decaying tau from the
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Bs — 77 decay, we utilize the two regressors, which are trained and validated on
the MC samples. The resulting B; mass peak for the blue curve (most energetic
tau candidates in the events which decays into three pions) is centered at a lower
region than the signal region around 5.36 GeV, whereas the B; mass estimated with
the rest of the tau candidates in the event result in a higher invariant mass centered
around 15-19 GeV. Since the phase space of the four considered particles is similar
for both regressors (the muon distribution is driven by the trigger requirements, and
pions from tau leptons are not very atypical in their momenta in the B-parked data
sample) the discrimination power of the reconstructed B; mass hypothesis is not as
large as one could hope around the B; mass of 5.36 GeV. Further studies of higher-
level kinematic features that account for the similarity of background and signal may
help provide further discrimination power from the kinematic characteristics of the

observed particles.

4.5 Classification

For this study Boosted Decision Trees (BDT) are employed to distinguish between
signal and background event candidates. For the training, B; — 7t MC simulation
samples where one tau decays T — v;uv, and other tau decays to three charged
pions (t — mmrtvy) are used for the signal, and event candidates from B-parked
data are used for the background. We expect negligible signal events in the real
data, so we treat a part of the real data as background and study its discrimination
from the signal. To avoid any selection bias, the signal and background events are
randomly split into two sets, such that the training and testing of the BDT becomes
independent to each other. We avoid the BDT to be sensitive to B; mass, as we plan
to use Bs mass as the final discriminating variable. However, some variables may be
correlated to Bs mass, so we use a planing [78] approach to make BDT insensitive to
Bs mass by re-weighting the background dataset in a way that B; mass distribution

is similar for both MC and the B-Parked data.
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4.5.1 Input variables

For each BDT, a selection of variables is considered, out of which twenty variables

are found to be effective and uncorrelated. Final input variables are shown in Ta-

ble 4.8.

Variable = Description

Tinass reconstructed tau mass

Trhomassl invariant mass of 2 opposite charged pion combination

Trhomass? invariant mass of 2 opposite charged pion combination

Ta cosine of the opening angle between primary (PV) and secondary vertex (SV)
line and the B; momentum

Tir, AR distance of tau from muon

Typrob vertex probability of tau

Talpha Cosine angle between 3 momentum vector of tau and position vector of tau
w.r.t. vertex.

Buipha Cosine angle between 3 momentum vector of B; and position vector of B; w.r.t. vertex.

Tinni=123 pion dnn

Tpr tau transverse momentum (visible)

Hpr muon transverse momentum (visible)

My muon pseudorapidity

EMET missing energy in the transverse direction

Bis, isolation variable of B;

d¢e, A¢ between transverse missing energy and muon

TABLE 4.8: Reconstructed variables used in training the BDTs

4.5.2 Hyperparameters

We tuned the hyperparameters of the BDT to get the maximum discrimination power;
these include the number of trees set to 1000 with 2% minimum node size, maximum
depth of 3, a boost type grad, the learning rate or shrinkage set to 0.005, the bagged

sample fraction at 0.6 and the separation type Gini index.

4.5.3 BDT performance

We employ three different BDTs; for the training of each BDT B; — vt MC sam-
ples where one tau decays T — v;uv, and other tau decays to three charged pions (
T — mmrtvr) are used as signal, whereas three different kinds of background event
candidates are used per BDT. The output response curve for the BDTs are shown

in the figure 4.14. Firstly, we use the combinatorial background and we get an area
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FIGURE 4.13: Selection of input variables for the BDT classifier

under ROC curve at 0.870, the BDT response curve for this is shown in figure 4.14a.
Secondly, since we expect negligible signal events in data, we use a part of data as
background. We get an area under ROC curve of 0.899, the BDT response curve for
this is shown in figure 4.14b. Lastly, we implement a "planning"” method where we
re-weight the combinatorial background distribution to mimic the signal distribu-
tion such that B; mass distribution becomes comparable for signal and background.
In this case we get an area under ROC curve of 0.790, response curve is shown in

figure 4.14c. After the implementation of planning, the BDT becomes insensitive to

B; mass.
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4.6 Semi-supervised Search with Ranbox

When a signal of known kinematic characteristics is sought, but a precise model of
the background is not available, the problem lays in middle ground between one of
anomaly detection and one of a classical supervised learning discrimination. Several
methods have been proposed to allow the construction of good discriminators in this
situation; for a review see [78].

Here we discuss how RanBox can be adapted to this task, which is of interest
to us because of its good match with the needs of the search for the rare B — 7T
decay in CMS proton-proton collision data. Indeed, the dataset where we wish to
carry out the search is a very complex one, contributed by many different low-pr
processes that Monte Carlo simulations cannot reproduce in high detail. On the
contrary, the Bs production and decay mechanisms are well understood and can
reliably be simulated.

For the study of the semi-supervised version of RanBox, in order to avoid the risk
of unconsciously biasing one’s decisions and analysis choices, we refrain from per-
forming the tests on real data, and rely instead on the HEPMASS dataset for the pro-
totyping phase of the algorithm. By introducing weak supervision, we exploit our
knowledge of the signal portion of the data, to identify a box in multi-dimensional
space which is both rich in signal, and poor in background. We act as if the lat-
ter information is not available a priori, i.e. from a precise model of that process,
and only rely on the local background density in sidebands of the search box in the
construction of a useful test statistic.

The decision to not exploit the full labels of available data in the same phase
space, but use label information for the two classes in different phase space regions,
effectively corresponds to a semi-supervised task. It also allows one to remain blind
to the real amount of data captured in the search box that the algorithm identifies at
the end of the gradient descent procedure that maximizes the test statistic of choice.
This enables a data-driven background prediction and avoids biases introduced un-
consciously by the analysts, as the procedure is fully automated. However, as we
well discuss below, a bias remains in the background estimation, due to the intrinsic

correlations between the variables of the feature space, and the similarity of these
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correlations between the signal and background processes.

4.6.1 Algorithm description

The semi-supervised version of RanBox, which we address in the following as RanBox_SS,

works as follows.

1. Real data where the search is to be performed is read in. We will call this
dataset D1 in the following. For the tests described in this report, D1 is com-
posed of HEPMASS simulated events belonging to the background category,
but for specific studies of the performance of the algorithm we include in D1 a

fraction of signal simulated events.
2. Simulated signal events are read in a dataset called D2.

3. A pruning of the variable list removes ones that are categorical, as well as ones
that have too high correlation with others, using the same procedure as that

described in Sec. 2.

4. Dataset D1 is used to define a variable transformation that reduces the feature

space into a copula space, as in the original version of RanBox.

5. Events from dataset D1 and dataset D2 are both subjected to the same variable
transformation. This produces transformed datasets spanning the copula fea-
ture space, where the search for the box maximizing a suitable test statistic Z

is performed.
6. A test statistic is defined to maximize the search power.

7. A number of dimensions of the subspaces scanned by the algorithm is cho-
sen. This number, D', should be not larger than 10-12, because of the curse of

dimensionality.

8. D' features are chosen at random from the list of active dimensions of the

space.

9. The scan of the corresponding D’-dimensional subspace of the transformed
feature space is performed by maximizing the test statistic Z via gradient de-

scent.
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10. The previous two steps are repeated a large number of times. At the end of
the iteration, the algorithm reports the boundaries of the box that maximizes

Z across all subspaces, and related statistics.

A number of details need to be discussed in order to clarify the above procedure.

We address them below.

Variable transformation

Because the variable transformation, based on the integral transform, is defined on
dataset D1 but is then applied to both datasets D1 and D2, a prescription needs to
be given for how to handle variable values which fall outside of the original range
of their distribution in dataset D1. For example, it might happen that dataset D1
only contains events for which variable 1 is in the [—100.,500.] range, but dataset D2
has a distribution of variable 1 which extends in the wider range [—150.,600.]. This
might happen if the signal process produces observable features that are exceed-
ingly rare in backgrounds. Since the range [—100.,500.] is mapped by the integral
transform into [0, 1], one needs to define transformed values for variable 1 in the
range [—150., —100.] or [500.,600.]. This is simply done by assigning transformed
value 0 to all values below —100. and transformed value 1 to all values of variable
1 above 500.. This ensures that the copula space remains unaltered when the signal
component is considered. However, one must keep note of the fact that such a sit-
uation complicates any extrapolation of the data density from sidebands to signal
region, when the signal region includes the singular points at 0. or 1: a bias in the

sidebands-driven background prediction can be expected in these situations.

Test statistic

Our focus in this work is to produce a suitable methodology that can be applied to
the search for a rare process that we do not expect will be observable in the available
data. In fact, current estimates for the branching fraction of the B; meson decay

to tau lepton pairs put this value below 1077, which corresponds to less than one
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event in the available LHC luminosity once one accounts for the unavoidably small
collection efficiency for identifiable signal events®.

Because of the above, it makes little sense to maximize a test statistic which is
monotonous with the significance of a signal component in the data. Rather, it ap-
pears reasonable to define a test statistic which minimizes the upper limit on the
signal process under study. This is in fact the reachable scientific objective of the B
search under way by the CMS collaboration in currently available data.

We therefore consider a counting experiment where a predicted background N,
is compared to an observed event count N,;;, the former extracted from a sideband
of equal feature space volume to the signal box, possibly after a bias correction (see
infra). The observed event counts N, is expected to be sampled from the back-
ground prediction, i.e. from a Poisson distribution centered on Nexp- If we define a
type-I error rate & = 0.05, we can compute the expected upper limit at a confidence
level 1 — a on the number of signal events contributing to the signal box, when N,
is predicted and N,s is observed. An exact calculation involves extracting the tail
integral of a Poisson distribution, and is sometimes impractical to perform (when
Neyxp is large). RanBox_SS uses a very good approximation given by the 95% C.L.

upper limit on the signal, N*? :

1
N*P = Eszl(l — o) — Nexp (4.1)

where F,» is the cumulative distribution function of Chi-squared distribution with
2(Nyps + 1) degrees of freedom. We may then convert the upper limit above into
an absolute upper limit on the cross section times branching fraction of the studied

process by the following formula:

up

0B(Bs — 17) = , 95% C.L. 4.2)

Letor

“The data where the search is performed is collected by a trigger which selects events with a muon
candidate of transverse momentum above 7-9 GeV (depending on data taking period and running
conditions). Once one accounts for the braching ratio of tau decays into muons, the small probabil-
ity of this giving rise to a muon above the stated momentum threshold, and the additional require-
ments on the other tau lepton decay, which must include three charged pions, the signal efficiency
becomes smaller than 1073; together with a 107 Bs — 17T branching fraction, this means that one
reconstructable event corresponds to over 10 billion Bs mesons, which correspond to an integrated
luminosity much larger than what is available for the present search.
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Above, the signal efficiency €, is computed by multiplying a pre-selection efficiency
€presel (Obtained from the Monte Carlo simulation) that describes the probability that
a B; — 77 signal event gets included in the analyzed sample, by the fraction of
events captured in the signal box €,

The procedure to define the test statistic that we wish to maximize therefore is to
extract from a signal box the number of events Nj;, in dataset D2 that are contained
within it, and to assess the number of expected background events Ny, in the same
signal box, by counting how many D1 events are collected in a properly defined
sideband. Using N,,, we obtain, by the formula (4.1), the 95% C.L. upper limit
on the signal, N*7; with N,;; we compute the signal efficiency €,,; and with these

inputs we may then define the test statistic to be maximized as

Zup, = Sbox (4.3)

whose maximization explicitly minimizes the upper limit on the signal cross section
times branching fraction.

It is clear what an algorithm tasked with maximizing Z will need to do: find a
region of space which contains a large number of signal Monte Carlo events from
dataset D2, while having as small as possible predicted contributions from dataset
D1. The latter comes from a "non-local" estimate, one derived from a sideband con-

structed exactly as described for RanBox in Sec. 2.

Gradient Descent

The gradient descent procedure used by RanBox_SS when studying each subspace
of the copula is the same of that of RanBox, and it has been already described in
Sec. 3. However, due to the fact that the results of RanBox_SS are more affected by a
biased background prediction, we implement for it a validation technique based on
an early stopping criterion. Datasets D1 and D2 are both split evenly into a training
and a validation subset, and only the training subset is used for the maximization of
the test statistic by the gradient descent procedure. During the procedure, however,
the algorithm keeps track of the value of the test statistic on the validation subset of

datasets D1 and D2. At the end of the routine, the box which produces the highest
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value of the test statistic on the validation sample is returned as the best one for the

considered subspace.

Box boundaries and sidebands

It should be clear that the initialization of the search box boundaries must be driven
by the density that can be assessed from the part of the data from which a local den-
sity estimate can be obtained, i.e. dataset D2, the signal Monte Carlo. Algorithm 2,
described in Sec. 2.5 above, can fulfil that task effectively, and is used for RanBox_SS.

The choice we made for RanBox_SS of using a sideband of volume equal to the
signal box to estimate the background in the signal region is dictated by the need of
an estimate affected by low bias. Indeed, bias is a much worse enemy than variance
in this particular application, as large correlations between the variables of the fea-
ture space have the potential of making any sideband-derived estimate completely
unreliable. While non-local, a sideband estimate from events which lie very close
to the signal box will suffer a manageable bias even in the presence of large corre-
lations. However, the gradient descent procedure which maximizes the test statistic
defined above explicitly tries to shrink the value of N,,, by moving to regions where
dataset D1 suffers negative fluctuations. Hence a strong negative bias on that num-
ber is anyway expected. We sidestep this problem by constructing a second side-
band around the sideband used for the calculation of the test statistic. This second
sideband is only used for the final estimate of Ny, and should be unaffected by the
gradient descent procedure.

At variance with RanBox, in RanBox_SS we enforce that sidebands (as well as
the second sidebands described below) have a volume exactly equal to that of the
signal box. This is a useful property when we need to characterize possible biases
in the extrapolation procedure, as the extrapolation factor is always equal to 1.0 and
thus is one less parameter to consider in such bias studies. In order to enforce that
the sideband has a volume exactly equal to the signal box, we devise an iterative

algorithm, described below.

1. The widening factor required to construct a box of volume twice larger than

that of the signal box is computed as f = 2!/?', such that if each side of the
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signal box were widened by a factor f, the resulting box would have a volume

equal to twice the signal box.

. A loop on the subspace dimensions is performed, and for each dimension the

signal box extension B; and the available region A; left in the [0,1] interval
once the signal box interval is excluded is stored. So, e.g., if the signal box has
an extension of B; = 0.3, having intervals [0.2,0.5] in variable 1, the available

region on variable 1is A; =1. - 03 =0.7.

. Available region values are sorted in increasing order.

. Starting with the smallest available region, the algorithm assigns sideband in-

tervals to each variable i by comparing A; to f x B;. If A; is larger than f x B;,
the interval defining the sideband in dimension i is simply defined by extend-
ing the box interval by a factor f (an attempt to construct a symmetric interval
is made, and if there is not enough space in one of the sides of the signal box,
all the extra space required to extend the interval to f x B; is assigned to the
sideband on the other side). If, on the other hand, A; is smaller than f x B;,
the sideband on direction i is defined as [0, 1], and the factor f required to each
additional variable to obtain a sideband of volume twice larger than the sig-
nal box is recomputed as f = (2B;)"/(P'~1). A similar rescaling is operated at
each successive iteration until the considered A; grows larger than the current

f value.

. The iteration on every variable continues, until all dimensions of the subspace

have been included in the sideband definition. The procedure converges to
a sideband of volume equal to twice the signal box (and thus a surrounding
region of volume equal to the signal box, once the signal box is vetoed) unless
the signal box has a volume larger than 0.5, which is however not allowed
in any step of the program (the initialization algorithms, as well as all box
extensions in the gradient descent routine, enforce that the signal box has a

volume not larger than 0.25 in RanBox_SS).
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In exact similarity to the algorithm described above, the second sideband is defined
as a multi-dimensional interval in the considered D’-dimensional subspace, of to-
tal volume exactly equal to three times the signal box, and thus also equal to 1.5
times the sidebands box. Once events in the second sidebands are vetoed if they are
contained within the first sideband, the effective volume of the second sideband is
equal to that of the signal box, hence the extrapolation factor required to predict the
number of events in the signal box from the second sideband is equal to 1.0. A mod-
ification of this factor may be required if an estimate of bias is obtained, as discussed

below.

4.6.2 Sample results on the HEPMASS dataset
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FIGURE 4.15: Normalized and standardized distributions of the 27
features of HEPMASS data for signal (black) and background (blue).
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Below we detail results of running RanBox_SS on the continuous features of the
HEPMASS dataset. As it was shown in the previous sections, the signal in that
dataset is rather easy to isolate from backgrounds, due to its distinguishing mass-
related features: multi-object invariant masses and energy of objects are all high for
the signal component. This is quite different from what will be the case of the B
search, which unfortunately features a signal very difficult to distinguish from back-
grounds. We do not expect any variable to have nearly as strong a discrimination
power as the most sensitive variables of the HEPMASS dataset. To make the HEP-
MASS data a better testbed of our algorithm, therefore, we remove from the list of
27 features not only the five categorical variables it contains (variables 6, 10, 14, 18,
22), which would complicate the preprocessing step of the data, but also six of the
most discriminating features: variables 4, 7, 11, 15, 26, and 27 (refer to Fig. 4.15). We
are thus left with a set of 16 features, which are in the same ballpark of the dimen-
sionality of the space of discriminating variables we will use for the Bs search, and
provide a discrimination problem of similar complexity to the one we are targeting.

To test the working of RanBox_SS, a run maximizing the test statistic Z; is per-
formed on a dataset D1 composed of 5,000 background events, and a dataset D2
composed of 5000 signal events, by searching in 10,000 different subspaces. The
results for the 10 best boxes are shown in Table 4.9 below.

Box | Zur  Nops Nexp Volume €, FPeatures

10.57 8 12 0.0024 0.044 0124568910111214
10.39 17 8 0.0040 0.052 02457891112131415
10.28 12 13 0.0044 0.059 0124568910111215
10.13 15 8 0.0038 0.055 0124578911121415
10.01 12 10 0.0034 0.052 01456791011121415

= O 0NNVl WDN -

997 18 5 0.0027 0.044 23456781011121314
997 18 5 0.0027 0.044 124568101112131415
997 18 5 0.0027 0.044 2345678910121314
9.81 15 8 0.0041 0.056 02347891011121314
0 9.77 16 9 0.0037 0.043 236789101112131415

TABLE 4.9: Results of a maximization scan of 5000 subspaces of the HEP-

MASS feature space, with a D1 dataset composed of 5000 background

events, and a D2 dataset made of 5000 signal events. N,y is the number

of D1 events in the signal box. The best identified signal boxes are ordered

by decreasing value of the Zy; test statistic, whose value is inversely propor-

tional to the estimated 95%CL upper limit on signal cross section achievable
by a counting experiment.
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The Zy;; values listed in Table 4.9 correspond to upper limits on the signal cross
section of 0g59,c;, = 1000/ (LZULGP,ESCZ), where €, is the fraction of signal events
that would be included in the original dataset before the RanBox_SS search, and L
is the integrated luminosity corresponding to the analyzed data. For a preselection
efficiency of €,yese = 0.1, e.g., and an integrated luminosity L = 1fb~!, the tabulated
highest value of Z;;;, corresponds to an upper limit of co59,c;, = 946fb.

A different test is performed by searching in 5,000 subspaces of a dataset D1
composed by 9500 background and 500 signal events, with a corresponding dataset
D2 of 10,000 signal events. Having injected signal in D1, we can check the increase
in signal purity of the returned boxes, and observe that the upper limit becomes
higher, as the maximum value of Z;;; reached is smaller. The results for the five best
boxes are shown in Table 4.10 below. One observes that the maximization of Zy,
corresponds to a significant increase in the signal over background fraction of the

selected portion of dataset D1, as shown by the second-to-right column.

Box | Zur Nyps Nexp Nsin  Volume €,y S/Ngain Features

1 713 59 37 22 0.0085862 0.08 7.45783 0123567810111214
2 71 59 37 22 0.0085004 0.08 7.45783 0123567810111215
3 701 61 41 22 0.00924 0.08 721331 01234567891315

4 6.97 58 32 21 0.0079897 0.08 7.24159 0123458910121315
5 6.56 58 31 22 0.00858 0.08 758641 0234568911121315

TABLE 4.10: Results of a maximization scan of 5000 subspaces of the HEP-
MASS feature space, with a D1 dataset composed of 9500 background events
and 500 injected signal events, and a D2 dataset containing 10,000 signal
events. N,ps is the number of D1 events in the signal box, and N, is the
number of signal events in dataset D1 captured in the signal box. The best
identified signal boxes are ordered by decreasing value of the Zy;y test statis-
tic, whose value is inversely proportional to the estimated 95% C.L. upper
limit on signal cross section achievable by a counting experiment.

The results of a RanBox_SS scan can also be visualized graphically, as shown in

Figs. 4.16 and 4.17.

4.6.3 Bias studies

As we discussed above, the estimate of events from dataset D1 in the signal box
with events in the second sideband is expected to be negatively biased, due to the

intrinsic correlations between kinematic variables defining the feature space. These
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FIGURE 4.16: Marginal distributions of the 12 features in the subspace
where RanBox_SS finds the best box, for a large-statistics run. The green
distributions show the selected data, the red distributions show data that are
rejected only because of their value of the shown feature (they would other-
wise be included in the signal box); the blue distributions show the original
unselected dataset D1 (rescaled by an arbitrary factor to fit in the graph),
and the black distributions show the unselected dataset D2 (also arbitrarily
rescaled). See the text for more detail.

correlations in many cases affect the signal, which drives the maximization of the
numerator of Zy;1, and the background in a similar manner — both have to withstand
to physical constraints between their kinematical features. We may define the bias

as follows:

b= 2(Nobs - Nexp)/(Nahs + Nexp) (4-4)

A principled way to estimate the above bias in N,y is to define a set of alternative
signals, simulate their characteristics, obtain a set of alternative datasets D2;, D2,,
D23,... and run RanBox_SS on each separately, maximizing Zy;; against the same
background D1. The resulting mean and variance of the distribution of ratios be-

tween observed events in the signal box and expected events in the second sideband
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FIGURE 4.17: Scatterplots of the 12 features in the copula space for a high-
statistics run. Each pair of graphs shows a two-dimensional subspace of the
12-dimensional space where RanBoz_SS finds the best box. The blue distri-
bution shows data in the D1 dataset before any selection; the corresponding
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are then sound estimators of the bias and its variability, and they can be used to cor-
rect the prediction Ny, in the case of the original datasets D1 and D2. These alterna-
tive datasets might, e.g., be constructed by artificially changing the mass of the tau
leptons in the simulation, or the mass of the B; meson, or even the mass of the p me-
son, as the latter is an almost certain intermediate state inthe T — pt~ — w7 7w
decay.

Since we have been testing RanBox_SS on a different sample of data from the one
which is our target, we study here a more general technique which is less depen-
dent on the specific kinematic properties of the datasets. The technique consists in
searching, for each signal box identified by RanBox_SS after gradient descent max-
imization of Zy, a corresponding alternative region of the considered subspace of
the feature space, and correspondingly a sideband and a second sideband to it. The

requirements of such an alternative region are the following:

¢ It must have the same extension in each subspace dimension as the original

signal box;
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¢ It must have no overlap with the original signal box;

¢ It must contain a number of D1 events in the signal box similar to the number

of the original signal box.

The alternative box is sought for by random trials, by changing the location of
the multi-dimensional interval while keeping its shape unaltered. This is a time-
consuming procedure, as it may prove very difficult to fulfil the above criteria, es-
pecially if the definition of "similarity" in the observed event counts from dataset
D1 in the signal boxes is too strict. We have observed that, with typical number of
events and dimensionality of the subspaces in runs on the HEPMASS dataset, the
identification of a box with the above characteristics typically requires less than 2000
trials; in few cases, when RanBox_SS has identified by gradient descent a unusually
dense and small region of phase space, which cannot easily be replicated by ran-
dom sampling, the required iterations diverge. A workable criterion of "similarity"
is to impose that the difference between the observed event counts in the two signal
boxes be smaller than 10% of their average value. We have observed that the bias
estimates depend very little on the precise value of this criterion.

A run on 10,000 D’-dimensional subspaces of the HEPMASS feature space, using
5000 events in dataset D1 (only composed of background events) and 5000 events in
dataset D2, allows to verify the soundness of the above bias estimation procedure.

The results are shown in Fig. 4.18 and reported in Table 4.11 below.
Bias SOM

Original box 0.2685 £+ 0.0039 0.392
Alternative box | 0.3452 4 0.0038 0.378

TABLE 4.11: Extrapolation bias and its estimate with random boxes. See
the text for details.

The estimated and real bias are different, but the difference in their means is not
very large. A larger systematic effect on the extrapolation than the one due to the
difference in mean biases above is potentially due to the variability of the bias, which

is only partly explained by the statistical fluctuation of the observed and expected
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FIGURE 4.18: Comparison of the distribution of bias (defined as in Eq. 4.4)

in 10,000 signal boxes returned by the gradient descent search in a HEP-

MASS data sample of 5000 signal and 5000 background events, with

Nyar = 12 (ved), with the bias estimated in the alternative boxes by the
procedure described in the text (blue).

event counts in the boxes °; however, by re-sampling multiple times random boxes
of characteristics similar to the one obtained by gradient descent, it may be possible
to reduce this effect.

The above study indicates that the procedure may in fact provide a viable correc-
tion to the background estimate provided by the second sideband. Of course, these
results are strongly dependent on the characteristics of the studied problem (the in-
ner correlations in the feature space), therefore a separate assessment needs to be
carried out in every case. The procedure to handle large biases, which are however
not expected in the case of the B, search due to the less striking characteristics of
the signal in that situation, is to run a Zy;; maximization to derive a bias estimate,
and then to correct the calculation of Zy;7 including it as a factor in the denominator
of that test statistic, so that a second run may converge more precisely to the most

advantageous signal region. More studies are needed to finalize this procedure.

5The typical number of events in the 10,000 signal boxes studied in this run is 37.3 (with a RMS
of 36.5); in such conditions, and with the average bias of 0.27 mentioned above, this translates into a
typical variability of bias estimates of about 0.21 due to Poisson statistics.
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Chapter 5

Conclusions and Outlook

In the first chapter of this thesis, the elementary particles and the characteristics of
their interactions with matter as well as their detection principles were discussed.
Furthermore the theoretical models for the fundamental interactions between par-
ticles were briefly introduced. In the second chapter, components of the Compact
Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) were described
and the operation principles were reviewed. The inference of the parameters of the
theoretical models occur by the aid of accurate simulations of the physics processes
taking place in the collisions as well as the simulation of the response of the detector
components. Simulated events can be used for training supervised learning models
which are then employed on the successfully reconstructed events. The principle
behind the supervised learning methods that were employed within the scope of
thesis were briefly described in Chapter 3.

The search for anomalous regions of a complex feature space can be performed
proficuously if the space is transformed into a standardized copula, where the marginal
density of every feature is uniform. This allows to identify a multi-dimensional in-
terval which captures unusual overdensities, possibly due to anomalous contamina-
tions of the data sample. In chapter 3 and 4 we describe an algorithm that performs
this search, RanBox, and demonstrated that it has considerable power in locating
anomalous signals. We have shown how to customize RanBox to search for a specific,
well-defined signal in data that are otherwise hard to model. In this semi-supervised
version the algorithm, RanBox_SS, is designed to minimize the upper limit on the
signal cross section extractable from the identified multi-dimensional interval by a

counting experiment that uses as a background prediction the number of data events
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captured in a suitable sideband in the multi-dimensional space.

The B; — 77 signal is a very difficult one to extract in LHC collisions data and
has never been attempted by a CMS analysis, due to its extreme rarity and to the
incompleteness of available information (missing neutrinos). Despite this, machine
learning tools may partially recover the missing information and provide a means of
improving the signal discrimination over the large backgrounds. Furthermore, the
sheer size of the available B-Parked data, comprised of many triggers, complicates
the data reduction and management. CMS does not have a simulation to model
these data, which makes the search even more difficult. The absence of a simulation
of real data and the complexity of the overlap of several prescaled triggers demands
that the background be studied with a data-driven technique.We produced an ini-
tial separation of signal and background by exploiting a fraction of the data for the
classification task.

Within the scope of this thesis, we have described the selection of a dataset where
the signal is enhanced, the construction of an estimate of the Bs kinematics that allow
to obtain a peak in the reconstructed mass distribution, and the definition of the
feature space where the final search will be carried out, along with a mention of
the semi-supervised algorithm we have developed for the signal extraction task.
Final considerations have been discussed at the end of the chapter 4. The future
steps of this analysis will involve the finalization of the search algorithm and its
application to the selected data. We expect to set a competitive upper limit on the
searched for process, and we believe this work will constitute a solid basis for future
searches of this very rare but important Standard Model process. Tests of the RanBox
algorithm show that it is a viable procedure for the search of the B meson in LHC
collisions data. Future work will allow us to define in an optimal way a feature space
where to run RanBox_SS and obtain a stringent upper limit on the cross section of
that process, which is currently still beyond the observability with available LHC
data. We believe that the characterization of rare decays of the B; meson will have
a chance to evidence deviations from the SM and pave the way to targeted searches

for new physics.
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