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A B S T R A C T   

For all applications, subsurface models should be consistent with all available geological and geophysical 
knowledge. Current practices for synergistic interpretation of geological and geophysical approaches often rely 
on purely qualitative comparisons, resulting sometimes in inconsistent findings. This study introduces a pro-
cedure for a statistical and geo-constrained clustering of electrical resistivity data derived from Electrical Re-
sistivity Tomography (ERT) to address this gap, providing a quantitative parameterization for site-specific 
geoelectrical signatures of litho-stratigraphic architectures. Seventeen boreholes and three ERT surface profiles 
were employed to link geophysical inversion results to geological criteria. Core samples allowed grain size an-
alyses, while geological-statistical clustering of electrical resistivity, driven by the observation of stratigraphic 
contacts in drilled boreholes, established a parametric relationship between geology and geophysics. The iter-
ative clustering procedure, utilizing a classification algorithm, geological boundary constraints, and granulo-
metric analyses, discriminated six distinct lithological clusters, capturing the lateral and vertical heterogeneity of 
shallow deposits. Subsequent spatial grouping of anthropogenic materials delineated lithological structures and 
facilitated the classification and identification of filling materials, silty sands, clayey sands, and clays and silts, 
each exhibiting distinct resistivity variations. The geo-driven geophysical clustering revealed complex litho-
logical structures, especially paleo-channels, capturing their unique geoelectric footprints. The iterative clus-
tering of geo-constrained resistivity data emerges as a powerful tool for subsurface exploration, contributing 
significantly to understanding lithological heterogeneity, quantifying statistically-based geoelectrical parame-
trization of shallow sediments, and evaluating the resistivity signature of different deposits. By bridging the gap 
between geology and geophysics, this data-driven approach establishes a benchmark for future applications. For 
instance, in the context of contaminated sites, it can be applied to identify pollutants versus geological 
heterogeneities.   

1. Introduction 

In the realm of subsurface exploration, the synergy of geological and 
geophysical characterization methods plays a pivotal role in unraveling 
the unknown structure of the Earth’s subsurface (Foged et al., 2014; 
Høyer et al., 2015; Lelièvre et al., 2009; Looms et al., 2008). Geological 
surveys provide a foundational understanding of subsurface features and 

stratigraphy, while geophysical investigations, such as electrical re-
sistivity tomography (ERT) surveys, delve into the hidden complexities 
of the subsurface providing a complete spatial coverage and high spatial 
resolution, albeit in the form of physical, rather than geological, prop-
erties of different structures (Binley and Slater, 2020; Crook et al., 2008; 
Loke et al., 2013; Revil et al., 2017). While the direct lithological 
knowledge of the subsurface obtained through stratigraphic boreholes is 
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irreplaceable, geophysical investigations, despite their intrinsic uncer-
tainty both in terms of relationship between physical properties and 
geological characteristics, and in terms of inversion uncertainties, open 
up the possibility of capturing geostatistical properties in detail (He 
et al., 2014; Slater, 2007; Stan and Stan-Kłeczek, 2014). Besides, 
geophysical techniques can also play a crucial role in uncovering sub-
surface properties, extending beyond mere lithological characteristics 
(Binley et al., 2015; De Donno and Cercato, 2023; Flores-Orozco et al., 
2021; Linde et al., 2015; Maurya et al., 2018; Whiteley et al., 2021). The 
strong link between geophysical investigations and direct information 
from drilling is at the heart of exploration for oil and gas or geothermal 
resources. The approach is much less adopted, and adopted in much 
rougher manner, in environmental applications, albeit here too it has the 
same potential. The combination of the observational capability of 
geological surveys with the high-resolution characterization and data 
spatialization of geoelectrical methods is a process that incorporates 
several forms of knowledge. In fact, quantitative interpretation of 
geophysical data generates pictures of the examined subsoil volume, 
which must be calibrated against geological features (Ciampi et al., 
2022; Gemail, 2015; Samouëlian et al., 2005; Wu and Grana, 2017). This 
fusion of knowledge, typically deciphered by specialists based on qual-
itative principles through traditional approaches such as correlating 
features one by one (Di Maio et al., 2014; Giao et al., 2003; Klose, 2006; 
Sudha et al., 2009). Current practices involve qualitatively comparing 
geophysical models to hydrogeological data (Hubbard and Rubin, 2000; 
Nazaruddin et al., 2017), with limited exploration into the correlation 
between geological attributes and physical parameters (Abbas et al., 
2022; Olierook et al., 2021). As a consequence, interpretations become 
challenging and can lead to inconsistent, ambiguous, and erroneous 
findings in reconstructing the spatial heterogeneity of subsurface 
geological models (Klose, 2006). By integrating stratigraphic observa-
tions with widely adopted, easily deployable, and cost-effective 
geophysical techniques, and utilizing statistically-driven geological 
and geophysical data models, it becomes feasible to effectively address 
spatial heterogeneity within these models (Aleardi et al., 2021; Bersezio 
et al., 2007; Madsen et al., 2023). Notoriously, a statistical approach can 
combine heterogeneous data sources, managing the distributions of 
variables associated with and conditioned by the observed data (Gian-
nini et al., 2021; Jenks, 1967). Recent advances in integrated geologic- 
physical statistical analysis stem from a significant shift in modeling 
techniques and computational tools (Foged et al., 2014; Michel et al., 
2020; Pedregosa et al., 2011; Piegari et al., 2023). In recent years, there 
has been a notable upswing in the application of machine learning for 
data fusion, driven by its proficiency in processing experimental datasets 
(Bressan et al., 2020; Jia et al., 2021; Marzán et al., 2021; Nawaz and 
Curtis, 2019; Xu and Green, 2023). Clustering algorithms and coupled 
inversion techniques have also found widespread use (Bouchedda et al., 
2012; Hinnell et al., 2010; Whiteley et al., 2021; Yu and Ma, 2021). 

Embarking on cutting-edge methodologies, this research aims to 
advance our comprehension of the relationships between lithological 
units and the electrical resistivity of formations (Bosh, 1999; Bosh et al., 
2001). Although literature reports various ranges of resistivity for soils 
and Earth materials (Alpaslan, 2021; Chang et al., 2023; Park et al., 
2017; Sikandar and Christen, 2012), drawing from the work of Palacky 
(1988), a gap becomes evident in attributing a typical electrical re-
sistivity to lithological units: in particular, the observable ranges of re-
sistivity are so wide and so widely superimposed as not to allow any 
general correlation to be drawn. This is due, essentially, to the strong 
dependence of soil and rock electrical resistivity on factors other than 
lithology, and particularly water saturation and water ionic content. 
This highlights a need for a quantitative geophysical lithology param-
eterization and the identification of site-specific geoelectrical signatures 
for different deposits. Our approach develops an integrated interpreta-
tional methodology for a quantitative description of geological- 
geophysical structures, bolstered by validation through geological- 
technical analyses. Several studies in the literature have made 

attempts to integrate ERT with geotechnical data for subsurface soil 
characterization (Braga et al., 1999; Cosenza et al., 2006; Stan and Stan- 
Kłeczek, 2014; Sudha et al., 2009). Recent strides in petrophysical 
reconstruction from geophysical models, aided by open-source Python 
codes for data inversion (Rücker et al., 2017), have paved the way for 
promising endeavors. 

While geophysics and geology furnish essential spatial information 
for modeling heterogeneity, their credibility necessitates validation 
through direct measurements. To fortify the reliability of both indirect 
(geophysics) and direct (stratigraphic logs) data, this research imple-
ments a statistical and geo-driven clustering procedure for geophysical 
data. Leveraging stratigraphic contact information from boreholes as a 
training set, the research employs a geological-statistical clustering of 
electrical behavior based on grain size analyses. Compared to the ap-
proaches commonly used in the literature, which rely purely on quali-
tative comparison for the joint interpretation of geophysical and 
geological data, our study showcases a novel procedure for statistical 
and geo-constrained clustering of electrical resistivity data. This 
approach synergistically interprets geological and geophysical findings 
and provides a quantitative parameterization for site-specific geo-
electrical signatures of litho-stratigraphic architectures. This strategy, 
distinct from predictive models and synthetic approximations, signifies 
an important advancement in the interpretation of the geological- 
geophysical interplay. This strategy establishes a parametric relation-
ship between geology and geophysics, leading to a simple and objective 
classification. The approach we delineate for establishing connections 
between resistivity information and lithologies was implemented in the 
analysis of shallow sediments at the new high-speed railway station in 
Bologna, Italy. The sedimentary architecture of the case study has been 
comprehensively characterized on a broader scale within the context of 
remediating contaminated groundwater, as outlined in Ciampi et al. 
(2019). In the following we will concentrate the analysis essentially in 
the portions of the subsurface better imaged by the acquired ERT data. 
The geostatistical-based geophysical parametrization of subsurface 
structures attempts to enhance the discretization resolution of known 
classification tables and the association of resistivity ranges with 
different types of deposits reported in the literature. In contrast to 
conventional methods that heavily depend on interpreting geophysical 
inverted models, the innovative approach presented effortlessly adjusts 
to produce comprehensive model sections. It seamlessly integrates var-
ied information sources, establishing a harmonious connection between 
the lithological attributes of sediments and their resistivity distribution. 
This method delivers a geological-statistical and data-driven interpre-
tation of electrical behavior, grounded in a profound understanding of 
geological parameters. Ultimately, the proposed method contributes 
significantly to formulating a parametric relationship between geology 
and geophysics. 

2. Materials and methods 

In the context of the proposed case study, 17 boreholes were drilled 
and 3 parallel ERT profiles gathered in the same area. These in-
vestigations covered a total area of approximately 900 m2. The 
geological surveys reach variable depths, ranging from approximately 9 
m to 17 m. Twelve core samples (S1-S12) were collected at different 
depths to perform grain size analyses (ASTM International, 2011), 
determine Atterberg limits (ASTM International, 2010), and provide soil 
classification according to the unified soil classification system (USCS) 
(Table 1). 

The 3 ERT lines consist of 72 electrodes each, with an electrode 
spacing of 1 m. A dipole-dipole skip-4 acquisition scheme was employed 
(skipping 4 electrodes in each dipole), resulting in dipole lengths of 5 m 
for both current injection and voltage measurement. Electrodes are ar-
ranged in a linear pattern on the ground surface. The dipole-dipole skip- 
4 acquisition scheme refers to a specific arrangement and spacing of 
these electrodes for measuring subsurface resistivity. In this scheme, two 

P. Ciampi et al.                                                                                                                                                                                                                                  



Engineering Geology 337 (2024) 107589

3

pairs of electrodes are used: one pair for injecting current into the 
ground and another pair for measuring the resulting voltage difference. 
“Skipping 4 electrodes” means that 4 electrodes are left out between the 
electrodes in each dipole configuration. With a skip of 4 electrodes, the 
dipole length is 5 times the spacing between adjacent electrodes. For 
instance, if each electrode is spaced 1 m apart, the dipole length would 
be 5 m. A comprehensive reciprocal acquisition was performed to assess 
measurement errors, following best practices for high-quality data 
acquisition (e.g. Cassiani et al., 2006, 2014). A complete acquisition of 
all reciprocity pairs (exchanging the potential with the current elec-
trodes) is crucial for error estimation in data acquisition, allowing for 
the identification and removal of anomalous elements before data 
inversion (e.g. Binley and Kemna, 2005; Deiana et al., 2007). ERT 
inversion was carried out using the ERT inversion programs provided by 
Lancaster University (ResIPy - Blanchy et al., 2020). An error level equal 
to 5% was used, as the raw data were filtered out using the same level of 
reciprocal error, corresponding to about 65% of the used quadrupoles to 
be saved for the inversion process. Note that the presence of a shallow 
clay layer in the near subsurface makes deep penetration of electrical 
current problematic, thus requiring in general larger quadrupoles to 
enhance the signal-to-noise ratio. To test the suitability of different 
acquisition schemes, three different approaches were tested along the 
same line (referred to as Line 1 in the following description), namely: a 
dipole-dipole skip-2, a dipole-dipole skip-4, and a Wenner- 
Schlumberger schemes. The results (not reported here for brevity) are 
very similar – being filtered at the same 5% reciprocal error level, with 
the Wenner-Schluberger results being a slightly smoother version of the 
dipole-dipole acquisitions, being the latter essentially indistinguishable 
from each other. To warrant a suitable resilience towards signal/noise 
ratio out choice was to adopt the larger dipole-dipole scheme (skip-4) 
that evidently is not detrimental, in this case, of the resulting spatial 
resolution. 

The information derived from borehole samples, concerning depth of 
stratigraphic contacts, particle-size characteristics, liquid and plastic 
limit, plasticity index, and resistivity parameters has been stored in a 
multi-source geodatabase, a model for the simultaneous storage and 
management of spatial data (Ciampi et al., 2021). The interpolation of 
observed geological boundaries during drilling was employed to craft a 
3D comprehensive visualization of geological borehole observations and 
stratigraphic schemes. The interpolation of inverted resistivity data was 
performed to generate a 2D canvas depicting the spatial distribution of 
the parameters obtained from ERT investigations. The inverse distance 
weighted (IDW) method was chosen for interpolating geological- 
physical data. IDW interpolation is a weighted averaging technique in 
which the weights of known data points are inversely proportional to 
their distances from an interpolated unknown point. The distance is 
elevated to an exponent. The number of adjacent known points and the 
exponent are user-specified parameters (Wang et al., 2017). In imple-
menting the gridding method, we set 4 neighboring data points and a 
fixed weighting exponent of 2. Notably, high-fidelity served as an 

additional filtering option in this process, ensuring that the voxel values 
in the 3D solid model and the pixel values in the 2D sections align with 
the observations of stratigraphic contacts in the drilled boreholes and 
the inverted resistivity in two-dimensional space. Essentially, the 
interpolation error at points where measurements/data are available is 
zero. This approach enhances the accuracy and reliability of the overall 
model (Ciampi et al., 2022). Our work bypasses the analysis of the in-
fluence of different gridding methods on geological modeling, a topic 
extensively covered in the literature (Wang et al., 2017), and instead 
focuses on the search for a quantitative correlation method for electrical 
behavior with geological parameters. 

Subsequently, attention was focused on the opportunity to link and 
correlate geophysical data with geological data to understand the re-
sistivity behavior of different lithologies and identify the geoelectrical 
signature of various deposits. To achieve this, the resistivity values ob-
tained from 1D profiles extracted from the 2D resistivity inverted sec-
tions were associated and overlaid with observations of stratigraphic 
contacts deduced from boreholes B1, B2, B3, B4, and B5, located within 
a distance of 2 m from the ERT line EF (Fig. 1). This coupled geological- 
physical attributes approach aims at discriminating geologically data- 
driven structures based on electrical properties. The contouring of the 
geoelectrical section (Binley and Slater, 2020), should be harmonized 
with geological constraints, specifically the stratigraphic discontinuity 
identified by the geologist during drilling. It must be noted that the re-
sistivity images derived from ERT are naturally a smooth version of 
reality, as a consequence of both the diffusive nature of the underlying 
current flow equation, and the regularization towards smooth solutions 
utilized in the inversion process (Binley and Kemna, 2005). Therefore, 
the identification of possible sharp geological contacts in the ERT sec-
tion shall look for plausible resistivity value contours that mimic such 
interfaces and closely match these geological features. 

An iterative clustering process of resistivity data collected along 
vertical sections of the 2D inverted ERT images, starting with two 
clusters up to six in this case, halts upon minimizing the differences 
between the cluster separation line and the stratigraphic discontinuity. 
The adopted iterative classification method uses a k-means algorithm to 
cluster stratigraphic units based on resistivity distribution (Han et al., 
2012; Jenks, 1967; MacQueen, 1967). 

The k-means algorithm is a well-known unsupervised technique for 
partitioning-based clustering of a n-dimensional vector. k-means clus-
tering may not be the most efficient algorithm for clustering 1D data, 
however, we decide to implement and adapt k-means for 1D resistivity 
data clustering considering future developments of the study by intro-
ducing new variables. Since k-means was originally designed for 
multidimensional clustering (Hartigan and Wong, 1979), using it for 
clustering a single variable like resistivity is an adaptation. The natural 
break method, for instance, is a native 1D clustering approach, so 
theoretically, it would appear more appropriate to use this approach 
(Jenks, 1967). However, the use of k-means opens up the future op-
portunity to analyze clustering with multiple variables, such as water 
content and contaminant concentration data. The k-means algorithm 
aims to minimize the within-cluster variance, effectively trying to make 
the clusters as compact as possible. As an unsupervised method, it’s not 
possible to define a priori a number k of clusters, although many sci-
entific works report results applied to different fields of study, where the 
attempt is made to solve this issue (Kumar et al., 2024). Since k-means 
requires k as an input and doesn’t learn it from data, there is no right 
answer in terms of the number of clusters that we should have in any 
problem. The geological domain is not an exception, knowledge and 
expert judgment may help. To try to solve this issue we decide to 
implement the k-means algorithm in a geo-iter-supervised procedure. 

We define the vector space V, representing geophysical measure-
ments: 

V = {v ∈ ℝn|v = (v1, v2,…, vn) }

Each vector v includes spatial coordinates and physical measure-

Table 1 
Core samples collected at various depth intervals from the boreholes drilled in 
the case study area.  

Borehole Sampling depth range (m) Sample ID 

B1 
6–7 S1 
7–8 S2 

8–9.5 S3 

B2 
5.5–6.5 S4 

7–8 S5 
8.5–9.5 S6 

B4 
5.5–6.5 S7 
7.5–8.5 S8 
9–10 S9 

B5 
5–6.5 S10 
7–8 S11 
9–10 S12  
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ments such as electrical resistivity (ρ), forming a n − dimensional vector 
space where n encompasses both spatial and measurement dimensions 
(electrode spacing). The geological frontier, F is defined as a subset of V 
that indicates significant geological changes: 

F⊂V 

The method adapts the k-means algorithm to focus on minimization 
of the Euclidean distance between geographically situated measurement 

Fig. 1. Localization of ERT profiles and drilled boreholes in the investigation domain (a). 3D geological cross sections and stratigraphic boreholes realized at the 
study site (b). 2D ERT images acquired along profiles AB, CD, and EF (c). 
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points and the defined geological frontier, labeling these points with 
relevant physical measurements, such as electrical resistivity. For a 
labeled point v, the computation of distance to the geological frontier F 
relies solely on its geographic location, articulated by the formula: 

d(v, F) = min
f∈F

⃦
⃦xv − xf

⃦
⃦

2 

Here, xv and xf denote the geographic coordinates of a point v and a 
point f on the frontier F, respectively. 

In the case study presented, we solve a 2D geometrical problem with 
regularly spaced x,y data points, each associated with a value of inverted 
resistivity. The iterative resistivity data clustering procedure is delin-
eated as follows:  

• data initialization: Initialize the analysis by organizing the ERT data 
into a dataset 

{(
xi, yi, ρi

)}N
i=1, where N represents the total number of 

data points, xi, yi, are the spatial coordinates, and ρi is the inverted 
resistivity value at each point. Geological frontiers, delineating sig-
nificant discontinuities, are defined by a specific subset of spatial 

point 
{(

xf , yf

)}M

i=1
, where M indicates the count of such frontier 

points identified through physical samplings.  
• initial cluster number selection k: Select an initial count of clusters k, 

with the premise that the ideal count will be determined dynamically 
through iterative analysis.  

• clustering and labeling: Apply the k-means algorithm to classify and 
group the ERT data based on resistivity values ρi, assigning each 
point to a specific cluster.  

• formalization of the separation geometry within cluster that is, the 
determination of the separation geometry and distribution of its 
constituent data points relative to F, encapsulating a novel approach 
to cluster differentiation in geophysical data analysis. The separation 
geometry is articulated as follows: 
a) for clusters exhibiting a linear distribution of data points, indic-

ative of linear geological features, the separation geometry is 
formalized as a line. This line is mathematically derived through a 
process of linear regression applied to the data point within the 
cluster, optimizing the fit to minimize the orthogonal distance to 
F, thus ensuring an accurate representation of the cluster’s 
alignment with geological boundaries. 

b) in instances where clusters manifest a more complex spatial dis-
tribution, extending over a broader area, the separation geometry 
is delineated as a surface. The determination of this surface in-
volves an optimization process that employs methods such as 
least squares fitting to define a surface that minimizes the cu-
mulative distances between the cluster’s data points and the 
points constituting F. This surface serves as a geometric abstrac-
tion of the cluster’s area in relation to the geological frontier, 
offering insights into the areal extent of geological formations.  

• cumulative distance calculation: For each iteration, characterized by 
a specific cluster configuration with k clusters, we calculate the cu-
mulative distance dk. This distance represents the total Euclidean 
distance from all data points to their nearest geological frontier, 
defined as: 

dk =
∑N

i=1
min
f∈F

⃦
⃦xi − xf

⃦
⃦

2   

This metric quantifies the alignment of data points with respect to 
the geological frontier.  

• iterative optimization and cluster adjustment. To minimize dk, 
thereby enhance the geological relevance of the clustering outcome, 
the number of clusters k is iteratively adjusted as follows:  

a) increase k by one, k←k+ 1, to explore a more granular cluster 
configuration.  

b) reapply the clustering algorithm with the new k, redefining 
cluster assignments and recalculating dk+1.  

c) if the change in cumulative distance Δd = |dk+1 − dk| falls below 
a predefined threshold, this indicates that further refinement does 
not significantly improve the geological interpretability of the 
clustering. 

By adjusting the cluster count based on the sum of distances to these 
frontiers, the methodology seeks to achieve a balance between the 
granularity of the subsurface segmentation and the fidelity to geological 
realities, thereby facilitating a more nuanced and geologically informed 
interpretation of the ERT data. 

Observed geological boundaries are employed as geometric param-
eters to halt the iteration cycle and separate different lithologies during 
the iterative search for the optimal number of clusters. The discriminant 
criterion for determining the geo-fitted number of clusters also derives 
from grain size analyses conducted on samples collected at the borehole 
points. To conduct the analysis, we developed a standalone procedure 
comprising procedural Python code (https://www.python.org/doc/). 
For data clustering through the k-means algorithm, we employed the 
Scikit-learn library (Pedregosa et al., 2011). The code operates by 
computing the minimization of the Euclidean distance between the 
geological hyperplane, inherited from the geological survey (in this case 
drilled boreholes and particle size analyses), and the hyperplane derived 
from the clustering process. The geological-physical data classification 
method was initially applied to geoelectrical section EF and then repli-
cated on ERT sections AB and CD (Fig. 1). 

In a subsequent step, clustering of the anthropogenic materials 
(rubble on top of the natural geological sequence) was performed to 
address the well-known heterogeneity of these deposits, both in terms of 
composition and compaction, and consequently, electrical resistivity. 
Starting from this assumption, we delimited the filling material by 
searching for a surface- or multiple surfaces-such that the entropy of 
resistivity values is maximized and the surface area between the surface 
(free air) and the underlying geological substrate is minimized. Thus, the 
clustering of filling materials is performed by grouping points with the 
maximum variation in resistivity closest to the topographic surface. 

The above-described classification of geological-geophysical data, 
strongly geo-constrained by inherited geological information and 
combining mathematical-statistical rules, aims at identifying different 
signatures in terms of resistivity within the geological-technical hori-
zons characterizing the sequence of the study area. The statistical-based 
geophysical parametrization of subsurface structures attempts to 
enhance the level of discretization detail of known classification tables 
and the association of resistivity ranges with different types of deposits 
reported in the literature (Alpaslan, 2021; Chang et al., 2023; Palacky, 
1988; Park et al., 2017; Sikandar and Christen, 2012). The technique 
presented in this study aims at connecting the lithological characteristics 
of sediments with their resistivity distribution and deliver a data-driven 
interpretation of electrical behavior based on knowledge of the 
geological parameters, contributing to the formulation of a parametric 
relationship between geology and geophysics. 

3. Results 

3.1. Hydrogeophysical site model 

The geological and geophysical models were introduced earlier 
(Ciampi et al., 2019) and have been further developed for the purposes 
of the present study. 3D modeling of borehole log stratigraphy and 2D 
ERT images show the geometry of subsurface units and their geophysical 
signatures with a high-resolution characterization (Fig. 1). The geolog-
ical framework reveals a distinctive alternation of fine-grained and 
coarse-grained sediments. This litho-stratigraphic sequence, extensively 
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documented in the literature for alluvial deposits in the Po River plain 
(Meisina et al., 2022), can be clearly recognized and differentiated down 
to a depth of 17 m as follows:  

• filling (anthropogenic debris) materials, with a thickness varying 
from approximately 0.2 to 3 m in the boreholes;  

• shallow clays and silts: This level is characterized by the presence of 
silty clays and clayey silts with thin laminations of very fine sand;  

• sands, fine sands with silt, and sandy silts, which constitute a shallow 
aquifer;  

• plastic clays and silty clays, serving as a bottom aquiclude (Fig. 1b). 

The groundwater table is encountered at a depth of about 3.7 m. 
Joint hydrogeophysical findings strengthen the understanding of litho-
logical variations. The spatial continuity of the geoelectrical data asso-
ciates the sandy deposits of the superficial aquifer with a high-resistivity 
lenticular body, while the low-resistivity layers correspond to clayey 
horizons. 

The lenticular shape of the sands is captured by ERT imaging but it is 
not clearly delineated by the stratigraphic correlations of geological 
borehole drillings, that are placed too far apart to image this type of 
bodies. In addition, the high resistivity variability characterizing the 
filling material becomes evident. This feature reflects the environmental 
context of the site, which is heavily anthropized and marked by the 
presence of road pavements and metallic objects on the ground surface. 

3.2. Iterative clustering of geo-constrained resistivity data reveals 
distinctive lithological architectures 

The iterative data-driven classification procedure, ranging from two 
clusters to six, statistically, parametrically, and quantitatively correlates 
electrical behavior with the geological parameter. Fig. 2 illustrates the 
results obtained by applying the developed classification methodology 
on resistivity section EF (see Fig.1), subsequently replicated on sections 
AB and CD. The lithological classification based on geophysical signa-
tures originates from overlaying the resistivity values collected along 
different vertical section of the ERT image with geological information 
about stratigraphic contacts as from borehole characterization (Fig. 2a). 
Categorizing resistivity values into two classes distinguishes filling 
materials with anomalous electrical properties from a geologically 
essentially undifferentiated domain (Fig. 2b). The contouring of three 
clusters potentially outlines sandy lenses positioned in the saturated 
domain and on the smear zone, between the progressive distances of 
38–47 m and 52–54 m (Fig. 2c). From a mathematical perspective, the 
correct solution could appear to be the one with 4 clusters that mini-
mizes the Euclidean distance of the geological constraint represented by 
the stratigraphic contact (red star) from the hyperplanes delimiting the 
resistivity clusters (Fig. 2d). However, the step-by-step iteration suggests 
an increased resolution of discretization for geophysical-lithological 
classes as the number of clusters increases up to 5 and 6 (Fig. 2d, e, f). 

The particle size distribution of the core samples provide the 
geological-technical parameterization of subsurface deposits and guide 
the final choice of the number of clusters, already constrained both 
geologically and geophysically. According to the USCS classification 
criteria, deposits sampled at different depths generally correspond to 
silty clayey sands (SC-SM), silty sands (SM), sandy lean clays (CL), and 
sandy silty clays (CL-ML), characterized by a percentage content of 
sands ranging from approximately 24% to 84%. The pronounced 
granulometric-compositional variability in the subsurface is accentu-
ated by the results obtained from the analysis conducted on sample S3, 
corresponding to soil classified as fat clay (CH) (Table 2). 

Samples S1-S12 are nestled within the lenticular structure of het-
erogeneous sandy deposits that compose the aquifer, clearly delineated 
by the iterative grouping process into 6 clusters (Fig. 3a). The spatial 
match of the shallow deposit granulometric parameterization and the 
clustering procedure constrained by litho-stratigraphical and electrical 

attributes, defines a cluster number of 6, consistent with all grain-size 
media properties and the available geological and geophysical knowl-
edge. The replication of the iterative classification procedure with 6 
clusters on the geoelectrical sections AB (Fig. 3c) and CD (Fig. 3b) fol-
lows the training on the resistivity section EF, and the data-driven choice 
of a cluster number. 

The entire clustering procedure establishes a relationship between 
the geological data based on borehole logs and the resistivity data 
resulting from ERT, depicting subsurface lithological architectures and 
capturing horizontal heterogeneity. The resulting coherent image de-
picts the geo-constrained clusters of subsurface lithologic structures, 
puzzled by statistical physics and geological-technical parameterization 
of lithotypes. From Fig. 3, sandy-silty lenticular and laminar units, 
sometimes laterally discontinuous, emerge clearly. Additionally, clays 
and silts, overlapping and underlying the heterogeneous aquifer body, 
become evident. The final clustering procedure leads to the delimitation 
of the base surface and grouping of filling materials, and the distinction 
of anthropogenic materials from the geological substrate (Fig. 4a, b, c). 

By linking and restricting geophysical data to geological criteria, a 
statistical perspective of subsurface lithological structures is defined, 
providing a quantitative geophysical lithology parameterization, iden-
tifying the geoelectrical signature of different deposits, and associating a 
range of resistivity with different clusters constrained geologically and 
geophysically. The basic statistical analysis in the form of box plots 
quantitatively describes the distinctive distribution of electrical re-
sponses of the geological media, which are conditioned by the observed 
data, presenting different classes corresponding to all sampled litho-
logical units. Fig. 5 illustrates the ranges of variability of resistivity for 
the differentiated lithological classes, revealing a well-distinguishable 
geoelectric footprint that characterizes and parameterizes the elec-
trical behavior of shallow horizons. The filling material is distinguished 
by a high resistivity variability, ranging from 18 Ω⋅m to 1293 Ω⋅m, due 
to disturbances to the geoelectric signal introduced by a heavily 
anthropized environment. The electrical signature attributed to sandy 
lithologies oscillates between 16 Ω⋅m and 78 Ω⋅m, a significantly nar-
rower range than reported in the literature (Alpaslan, 2021; Chang et al., 
2023; Palacky, 1988; Park et al., 2017; Sikandar and Christen, 2012), 
despite the high granulometric variability evident from laboratory an-
alyses. The typical footprint of in-situ clayey-silty deposits is distributed 
in a range between 1 Ω⋅m and 20 Ω⋅m, falling within the variability 
ranges illustrated in known bar plots (Fig. 5). 

Note from Fig. 5 how the local identification of lithotypes on the 
basis of direct sampling and geoelectrical information tends to avoid the 
typical overlap of electrical resistivity values of different lithotypes as 
they appear in the literature. This overlap is an effect of varying mois-
ture content and pore water salinity at different sites, that largely 
obliterates the differences due to lithology: this is not the case when such 
an analysis is conducted at a specific site, as clearly demonstrated here. 
The constitution of a statistics-based relationship on the geologically- 
geophysically combined analysis procedure of experimental results 
lead to better tools for understanding the resistivity behavior of different 
lithologies at the specific sites of interest. 

4. Discussions 

In the presented research, we employ a comprehensive geological- 
physical interpretational methodology to explore the geophysical 
signature of the lithologies constituting the geological sequence of al-
luvial sediments. This approach integrates statistical techniques and 
quantitative analysis to describe subsurface structures, lithology, and 
electrical properties, honoring the spatial distribution of geological pa-
rameters provided as prior information on local geology. The aggrega-
tion of geoelectrical and geological-technical information was 
performed in the central portion of the ERT cross section, aligning with a 
high-resolution tomographic discretization and the target depths of the 
geophysical imaging. This is intended to leave out the lateral and deep 
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Fig. 2. Placement of drilled boreholes (B1-B5) on section EF and identification of stratigraphic contacts (red stars) (a). Representation of the iterative geo- 
constrained resistivity data clustering procedure into 2 (b), 3 (c), 4 (d), 5 (e), and 6 (f) classes. Different colors identify various clusters, and the red stars corre-
spond to the stratigraphic contacts (b, c, d, e, f). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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portions of the ERT cross section that can be known to suffer more from 
inversion errors and poorer resolution (Day-Lewis et al., 2005; Loke 
et al., 2013; Uhlemann et al., 2018). Through this methodology, we 
derive an interpretation of the geoelectrical behavior, combining our 

understanding of geological parameters with the resistivity distribution 
of different lithotypes. This integrated approach enhances our ability to 
discern and characterize the intricate relationships within the subsur-
face geophysical signature and geological architecture. Note that the 

Table 2 
Percentage ratio of granulometric fractions, liquid limit, plastic limit, plasticity index, and USCS classification resulting from analyses on the twelve soil samples 
collected from boreholes.  

Sample 
ID 

Gravel 
(%) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Passing the No. 
200 sieve (%) 

Retained on No. 
200 sieve (%) 

Liquid limit 
(LL) (%) 

Plastic limit 
(PL) (%) 

Plasticity index 
(PI) = LL - PL (%) 

Unified soil classification 
system (USCS) classification 

S1 0.7 54.9 18.1 26.3 44.4 55.6 24.1 20 4.1 SC - SM (silty clayey sand) 
S2 0 35.6 32.1 32.3 64.4 35.6 28 18.3 9.7 CL (sandy lean clay) 
S3 0.2 4.4 37.1 58.3 95.3 4.7 55.8 24.5 31.3 CH (fat clay) 
S4 1.6 38.7 24.5 35.2 59.7 40.3 25.4 20.9 4.5 CL - ML (sandy silty clay) 
S5 1.1 44.1 28.7 26.2 54.9 45.1 29.3 15.4 11.2 CL (sandy lean clay) 
S6 1.6 23.8 41.1 33.5 74.6 25.4 42.4 33.8 8.7 CL (lean clay with sand) 
S7 0 84.2 6 9.8 15.8 84.2 39.5 30 9.5 SC - SM (silty clayey sand) 
S8 0.1 79.8 10.1 9.9 20 80 / / / SM (silty sand) 
S9 8.4 49 23 19.6 42.6 57.4 35.9 28.6 7.3 SC - SM (silty clayey sand) 
S10 1 80.7 7.4 10.9 18.3 81.7 28.2 21.8 6.4 SC - SM (silty clayey sand) 
S11 0 75.9 12 12 24.1 75.9 / / / SM (silty sand) 
S12 6 44.6 23.6 25.8 49.4 50.6 38.8 34.7 4.1 SC - SM (silty clayey sand)  

Fig. 3. Placement of samples collected for granulometric analysis (S1-S12) on section EF discretizing 6 clusters of electrical behavior based on knowledge of the 
geological parameters (a). Corresponding result of the iterative clustering procedure of geo-constrained resistivity data into 6 classes for sections CD (b) and AB (c). 
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essential contribution of geophysical data, in this context, is to provide a 
dense and complete spatial coverage, while the local sampling data can 
only be, at most, interpolated spatially and may easily fail to identify 
lateral variations in the subsoil structure (compare, e.g., Fig. 1b and c). 

The iterative clustering of geo-constrained resistivity data associates 
an electrical signature with the surface sediments of the study site, 
characterized by high-definition information. The distinct signatures, 
expressed in terms of resistivity, delineate geological horizons, aiming to 
enhance the geological-geophysical discretization detail of classification 
tables and known intervals in the literature for site-specific studies 
(Alpaslan, 2021; Chang et al., 2023; Palacky, 1988; Park et al., 2017; 
Sikandar and Christen, 2012). Despite their technical-scientific signifi-
cance, these tables are deemed unsuitable for detailed usage due to the 
broad resistivity ranges associated with each lithological class, and the 
large overlapping of the same resistivity ranges of very different 
lithologies. 

In the existing literature, a variety of machine learning methods have 
been proposed to capture the intricate interrelationships between 
geological models and geophysical evidence (Bressan et al., 2020; Jia 
et al., 2021; Marzán et al., 2021; Xu and Green, 2023). These methods 
encompass random forests, support vector machines, artificial neural 
networks, multilayer perceptrons, decision trees, and are often highly 
sophisticated. The demand for a substantial dataset for effective learning 

is apparent, and the selection of the right algorithm can pose challenges. 
Also, geophysical inversion, employing diverse data-driven and statis-
tical techniques (Aleardi et al., 2021; Bosh, 1999; Bersezio et al., 2007; 
Foged et al., 2014), such as the Markov chain Monte Carlo (MCMC) 
approach, qualitative geological constraints, and probability density 
functions, aims to seamlessly integrate physical reasoning with obser-
vational data. First, a coupled hydrogeophysical inversion approach 
may be susceptible to errors in the hydrological model (Linde et al., 
2006; Hinnell et al., 2010) leading sometimes to physically paradoxical 
results (such as in Linde et al., 2006). In all the aforementioned in-
stances, the definition of linking functions and the selection of methods 
for learning these functions are predominantly contingent on the type 
and complexity of the features to be modeled, necessitating an inter-
pretative approach. Furthermore, the form of stratigraphic contacts may 
not be adequately constrained by the available data (Bosh et al., 2001). 
In geophysical inversion clustering processes, the choice of the number 
of clusters emerges as a key element that can be set a priori based on the 
knowledge of the geological units of the site. In reality, this assumption 
may not be warranted in regions of complex geology (Singh and Sharma, 
2018; Sun and Li, 2015). Also care must be given to accounting for 
spatially varying factors others than lithology itself, such as water 
saturation or water salinity. The analytical approach outlined in this 
study streamlines the establishment of a parametric relationship 

Fig. 4. AB (c), CD (b), and EF (a) 2D profiles depicting the clustering of the statistical-based and geologically-geophysically analysis procedure following the 
delineation and grouping also of filling materials (debris). 
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Fig. 5. Bar plots depict resistivity values for clusters differentiated in the EF (a), CD (b), and AB (c) sections through the geologic-geophysical data-driven approach. 
These plots are overlaid with resistivity variation ranges derived from the literature. 
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between geology and geophysics across space. Rather than attempting to 
predict specific parameters, our methodology relies on geoconstrained 
statistical characteristics of resistivity parameters and allows for the 
representation of the true and simple model-data relationship. This 
stands in contrast to synthetic and simulated approximations, offering a 
more authentic portrayal of lithological patterns with distinct resistivity 
values and resolving the ambiguity in distinguishing geophysical data 
from geological characteristics based on observations from drilled 
boreholes, grain size analysis, and electrical properties. As a result, 
iterative clustering of geo-constrained resistivity based on real data has 
the capacity to grasp greater complexity in a problem with less effort, 
compared to the resources needed to create an accurate predictive 
model for the same issue. This distinction highlights the efficacy of our 
method in harnessing the richness and authenticity of real-world data to 
improve the comprehension and representation of intricate 
relationships. 

The implications of the findings discussed in the text are substantial 
for the field of engineering geology. Assigning typical, albeit local, 
electrical resistivity values to lithological units and establishing a link 
between geophysical imaging and direct geological investigation can 
significantly contribute to various engineering and geological projects. 
This advancement has the potential to greatly enhance our under-
standing of underground geological structures, as well as the geo-
mechanical and hydrological conditions crucial for construction 
engineering and the mitigation of hydrogeological risks such as land-
slides (Boyd et al., 2024; Nie et al., 2024). 

The results obtained from the statistical clustering procedure, guided 
by geophysical data and constrained by geological contact information, 
offer an opportunity for a retrospective analysis of both resistivity data 
and visual interpretations of field observations regarding stratigraphic 
contacts. Potential sources of uncertainty, such as inaccurate borehole 
descriptions, field measurements, and inversion, as well as variations in 
spatial resolutions and contrasting scales between borehole and 
geophysical data, may introduce uncertainties (He et al., 2014; 
Refsgaard et al., 2014). The cluster’s hyperplane generally honors the 
geoconstraint and does not deviate significantly from the stratigraphic 
boundary observed in the drilled borehole. On the other hand, the lack 
of alignment between the clustering procedure and granulometric 
classification, observed in our case for sample S3, can be explained by 
both the marked horizontal and vertical lithological variability and the 
different sampling and analysis resolution characterizing ERT imaging 
and granulometric analyses. High-contrast heterogeneities in the sub-
surface could be present at a smaller spatial scale than the electrode 
discretization capacity of ERT imaging (Loke et al., 2013). In this sense, 
the resolution limitations of the array can lead to information loss where 
spatial geological variation exceeds the investigative resolution detail. 
The iterative clustering method paves the way for the geological inter-
pretation of geoelectrical data, which remains constrained by the 
discriminative capability of ERT. A rearrangement of the array can 
potentially enhance the quantitative geophysical lithology parameteri-
zation capability, making the method increasingly resolute. However, 
the issues related to the expected signal/noise ratio should also be 
considered, and these require a larger current dipole size, in contrast 
with the resolution requirements. In addition, some complex and 
challenging-to-explain quantitative correlations between ERT data and 
geological-technical classifications for subsurface soil characterization 
have been reported in the literature. This highlights the need for further 
investigations in this direction (Braga et al., 1999; Cosenza et al., 2006; 
Giao et al., 2003; Sudha et al., 2009). One possible extension of the 
approach may include accounting explicitly for the spatially variable 
sensitivity and resolution of any geophysical inverted image. A possible 
use of a-posteriori sensitivity maps as a weighting factor in the clustering 
algorithm is envisaged. In the foreseeable future, our endeavor involves 
expanding and refining our methodology to seamlessly integrate 
hydrogeological and chemical data. This advancement aims to enhance 
our capacity for detecting water table levels and directly visualizing 

pollution, while also discerning geological heterogeneities. 

5. Conclusions 

The iterative and statistical clustering of geo-constrained resistivity 
data has emerged as a powerful tool in the quest to unravel the complex 
subsurface geostructures, shedding light on distinctive lithological ar-
chitectures and geoelectrical footprints of shallow lithologies. By inte-
grating data from 17 borehole drillings, 3 parallel ERT profiles, and 
complete laboratory analyses, a comprehensive dataset was assembled. 
This multi-source picture offers a quantitative parameterization for the 
site-specific geoelectrical signatures of lithological architectures. The 
innovative statistical clustering approach, driven by geological bound-
aries, high resolution ERT data, and informed by particle size analyses, 
successfully delineated six clusters, capturing the high contrasting het-
erogeneity of shallow deposits. Notably, the iterative clustering process 
was strategically halted by aligning with observed stratigraphic dis-
continuities, showcasing its adaptability to geological features. The 
derived resistivity clusters not only portrayed distinct lithological 
structures but also facilitated a quantitative parameterization of the 
geoelectrical behavior, showcasing unique geoelectric footprints asso-
ciated with different lithologies. The successive grouping of anthropo-
genic deposits, coupling spatial clustering with geological-statistical 
data-driven classification, identifies key geological-physical units. These 
include filling materials, silty sands, clayey sands, and clays and silts, 
each differentiated and distinguished by a specific range of resistivity 
variation for every lithotype. Note that the ranges of resistivity values 
thus identified at the local site-specific scale do not suffer from the large 
overlap across different lithologies typical of wide range literature 
studies. The results, presented through 2D visualizations, offer a 
comprehensive understanding of subsurface lithological architectures, 
establishing a link and bridging the gap between geology and geophysics 
in a simple and data-driven manner. This methodology, distinct from 
predictive models and synthetic approximations, leverages real-world 
data richness to authentically represent complex relationships, making 
it a valuable asset in subsurface exploration and characterization. The 
study’s success in overcoming challenges and uncertainties, such as 
granulometric variability and spatial resolution disparities, underscores 
its efficacy in providing an advanced interpretation of the geological- 
geophysical interplay. Overall, this innovative approach sets a bench-
mark for the integration of geological and geophysical information, 
contributing significantly to our understanding of subsurface heteroge-
neity and pave the way for its application in contaminated contexts for 
discretization of pollutants in the geological arena. 
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