For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, let $D$ be the division algebra over $F$ of invariant $1/n$ and let $G^0$ be the subgroup of $\text{GL}_n(F)$ of elements with norm $1$ determinant. We show that the action of $D^\times$ on the Drinfeld tower induces an equivalence of categories from finite dimensional smooth representations of $D^\times$ to $G^0$-finite $\text{GL}_n(F)$-equivariant vector bundles with connection on $\Omega$, the $(n-1)$-dimensional Drinfeld symmetric space.

Equivariant Vector Bundles with Connection on Drinfeld Symmetric Spaces

James Taylor
2024

Abstract

For a finite extension $F$ of $\mathbb{Q}_p$ and $n \geq 1$, let $D$ be the division algebra over $F$ of invariant $1/n$ and let $G^0$ be the subgroup of $\text{GL}_n(F)$ of elements with norm $1$ determinant. We show that the action of $D^\times$ on the Drinfeld tower induces an equivalence of categories from finite dimensional smooth representations of $D^\times$ to $G^0$-finite $\text{GL}_n(F)$-equivariant vector bundles with connection on $\Omega$, the $(n-1)$-dimensional Drinfeld symmetric space.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3552249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact