The Seemingly Unrelated Regressions (SUR) model is a wide used estimation procedure in econometrics, insurance and finance, where very often, the regression model contains more than one equation. Unknown parameters, regression coefficients and covariances among the errors terms, are estimated using algorithms based on Generalized Least Squares or Maximum Likelihood, and the method, as a whole, is very sensitive to outliers. To overcome this problem M-estimators and S-estimators are proposed in the literature together with fast algorithms. However, these procedures are only able to cope with row-wise outliers in the error terms, while their performance becomes very poor in the presence of cell-wise outliers and as the number of equations increases. A new robust approach is proposed which is able to perform well under both contamination types as well as it is fast to compute. Illustrations based on Monte Carlo simulations and a real data example are provided.

A robust seemingly unrelated regressions for row-wise and cell-wise contamination

Saraceno, G.
;
2021

Abstract

The Seemingly Unrelated Regressions (SUR) model is a wide used estimation procedure in econometrics, insurance and finance, where very often, the regression model contains more than one equation. Unknown parameters, regression coefficients and covariances among the errors terms, are estimated using algorithms based on Generalized Least Squares or Maximum Likelihood, and the method, as a whole, is very sensitive to outliers. To overcome this problem M-estimators and S-estimators are proposed in the literature together with fast algorithms. However, these procedures are only able to cope with row-wise outliers in the error terms, while their performance becomes very poor in the presence of cell-wise outliers and as the number of equations increases. A new robust approach is proposed which is able to perform well under both contamination types as well as it is fast to compute. Illustrations based on Monte Carlo simulations and a real data example are provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3533808
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact