The aim of this paper is to base robust inference about a shape parameter indexing a composite transformation model on a quasi- prole likelihood ratio test statistic. First, a general procedure is presented in order to construct a bounded prole estimating function for shape parameters. This method is based on a standard truncation argument from the theory of robustness. Hence, a quasi-likelihood test is derived. Numerical studies and applications to real data show that its use reveals extremely powerful, leading to improved inferences with respect to classical robust Wald and score-type test statistics.
Robust inference in composite transformation models
Ventura, Laura;Greco, Luca
2006
Abstract
The aim of this paper is to base robust inference about a shape parameter indexing a composite transformation model on a quasi- prole likelihood ratio test statistic. First, a general procedure is presented in order to construct a bounded prole estimating function for shape parameters. This method is based on a standard truncation argument from the theory of robustness. Hence, a quasi-likelihood test is derived. Numerical studies and applications to real data show that its use reveals extremely powerful, leading to improved inferences with respect to classical robust Wald and score-type test statistics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2006_1_20060222090138.pdf
accesso aperto
Licenza:
Accesso gratuito
Dimensione
657.11 kB
Formato
Adobe PDF
|
657.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.