A composite likelihood consists in a combination of valid likelihood objects, usually related to small subsets of data. The merit of composite likelihood is to reduce the computational complexity so that it is possible to deal with large datasets and very complex models, even when the use of standard likelihood or Bayesian methods is not feasible. In this paper, we aim to suggest an integrated, general approach to inference and model selection using composite likelihood methods. In particular, we introduce an information criterion for model selection based on composite likelihood. Applications to modelling time series of counts through dynamic generalized linear models and to the analysis of the well-known Old Faithful geyser dataset are also given.

A note on composite likelihood inference and model selection

Vidoni, Paolo;Varin, Cristiano
2004

Abstract

A composite likelihood consists in a combination of valid likelihood objects, usually related to small subsets of data. The merit of composite likelihood is to reduce the computational complexity so that it is possible to deal with large datasets and very complex models, even when the use of standard likelihood or Bayesian methods is not feasible. In this paper, we aim to suggest an integrated, general approach to inference and model selection using composite likelihood methods. In particular, we introduce an information criterion for model selection based on composite likelihood. Applications to modelling time series of counts through dynamic generalized linear models and to the analysis of the well-known Old Faithful geyser dataset are also given.
File in questo prodotto:
File Dimensione Formato  
2004_4.pdf

accesso aperto

Licenza: Accesso gratuito
Dimensione 504.15 kB
Formato Adobe PDF
504.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact