Let X and Y be two independent continuous random variables. We discuss three techniques to obtain confidence intervals for ρ_Pr[Y > X] in a semiparametric framework. One method relies on the asymptotic normality of an estimator for ρ; the remaining methods involve empirical likelihood and combine it with maximum likelihood estimation and with full parametric likelihood, respectively. Finite-sample accuracy of the confidence intervals is assessed through a simulation study. An illustration is given using a dataset on the detection of carriers of Duchenne Muscular Dystrophy.

Semiparametric interval estimation of Pr[Y > X]

Adimari, Gianfranco;Chiogna, Monica
2004

Abstract

Let X and Y be two independent continuous random variables. We discuss three techniques to obtain confidence intervals for ρ_Pr[Y > X] in a semiparametric framework. One method relies on the asymptotic normality of an estimator for ρ; the remaining methods involve empirical likelihood and combine it with maximum likelihood estimation and with full parametric likelihood, respectively. Finite-sample accuracy of the confidence intervals is assessed through a simulation study. An illustration is given using a dataset on the detection of carriers of Duchenne Muscular Dystrophy.
File in questo prodotto:
File Dimensione Formato  
2004_6.pdf

accesso aperto

Licenza: Accesso gratuito
Dimensione 292.96 kB
Formato Adobe PDF
292.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact