In this work we investigate an alternative bootstrap approach based on a result of Ramsey (1974) and on the Durbin-Levinson algorithm to obtain surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semiparametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from Normality. The approach is useful also to estimate condence intervals for the memory parameter d by improving the coverage level of the interval.

Bootstrap approaches for estimation and condence intervals of long memory processes.

Bisaglia, Luisa;Bordignon, Silvano;Cecchinato, Nedda
2008

Abstract

In this work we investigate an alternative bootstrap approach based on a result of Ramsey (1974) and on the Durbin-Levinson algorithm to obtain surrogate series from linear Gaussian processes with long range dependence. We compare this bootstrap method with other existing procedures in a wide Monte Carlo experiment by estimating, parametrically and semiparametrically, the memory parameter d. We consider Gaussian and non-Gaussian processes to prove the robustness of the method to deviations from Normality. The approach is useful also to estimate condence intervals for the memory parameter d by improving the coverage level of the interval.
File in questo prodotto:
File Dimensione Formato  
2008_13_20080929111941.pdf

accesso aperto

Licenza: Non specificato
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3442251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact