Excess pressure within water distribution systems not only increases the risk for water losses through leakages but provides the potential for harnessing excess energy through the installation of energy recovery devices, such as turbines or pump-as-turbines. The effect of pressure management on leakage reduction in a system has been well documented, and the potential for pressure management through energy recovery devices has seen a growth in popularity over the past decade. Over the past 2 years, the effect of energy recovery on leakage reduction has started to enter the conversation. With the theoretical potential known, researchers have started to focus on the location of energy recovery devices within water supply and distribution systems and the optimization thereof in terms of specific installation objectives. Due to the instrumental role that both the operating pressure and flow rate plays on both leakage and potential energy, daily variation and fluctuations of these parameters have great influence on the potential energy recovery and subsequent leakage reduction within a water distribution system. This paper presents an enhanced optimization procedure, which incorporates user-defined weighted importance of specific objectives and extended-period simulations into a genetic algorithm, to identify the optimum size and location of potential installations for energy recovery and leakage reduction. The proposed procedure proved to be effective in identifying more cost-effective and realistic solutions when compared to the procedure proposed in the literature.

The Optimization of Energy Recovery Device Sizes and Locations in Municipal Water Distribution Systems during Extended-Period Simulation

Cavazzini, Giovanna
2020

Abstract

Excess pressure within water distribution systems not only increases the risk for water losses through leakages but provides the potential for harnessing excess energy through the installation of energy recovery devices, such as turbines or pump-as-turbines. The effect of pressure management on leakage reduction in a system has been well documented, and the potential for pressure management through energy recovery devices has seen a growth in popularity over the past decade. Over the past 2 years, the effect of energy recovery on leakage reduction has started to enter the conversation. With the theoretical potential known, researchers have started to focus on the location of energy recovery devices within water supply and distribution systems and the optimization thereof in terms of specific installation objectives. Due to the instrumental role that both the operating pressure and flow rate plays on both leakage and potential energy, daily variation and fluctuations of these parameters have great influence on the potential energy recovery and subsequent leakage reduction within a water distribution system. This paper presents an enhanced optimization procedure, which incorporates user-defined weighted importance of specific objectives and extended-period simulations into a genetic algorithm, to identify the optimum size and location of potential installations for energy recovery and leakage reduction. The proposed procedure proved to be effective in identifying more cost-effective and realistic solutions when compared to the procedure proposed in the literature.
2020
File in questo prodotto:
File Dimensione Formato  
water-12-02447.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.11 MB
Formato Adobe PDF
4.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3348335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact