This is the revised second edition of the well-received book by the first two authors. It offers a a systematic treatment of the theory of vector bundles with integrable connection on smooth algebraic varieties over a field of characteristic 0. Special attention is paid to singularities along divisors at infinity, and to the corresponding distinction between regular and irregular singularities. The topic is first discussed in detail in dimension 1, with a wealth of examples, and then in higher dimension using the method of restriction to transversal curves. The authors develop a new approach to classical algebraic/analytic comparison theorems in De Rham cohomology, and provide a unified discussion of the complex and the p-adic situations while avoiding the resolution of singularities. They conclude with a proof of a conjecture by Baldassarri to the effect that algebraic and p-adic analytic De Rham cohomologies coincide, under an arithmetic condition on exponents. As used in this text, the term “De Rham cohomology” refers to the hypercohomology of the De Rham complex of a connection with respect to a smooth morphism of algebraic varieties, equipped with their Gauss-Manin connection. This simplified approach suffices to establish the stability of crucial properties of connections based on higher direct images. The main technical tools used include: Artin local decomposition of a smooth morphism in towers of elementary fibrations, and spectral sequences associated with affine coverings and with composite functors.

De Rham Cohomology of Differential Modules on Algebraic Varieties - second edition

Francesco Baldassarri;Maurizio Cailotto
2020

Abstract

This is the revised second edition of the well-received book by the first two authors. It offers a a systematic treatment of the theory of vector bundles with integrable connection on smooth algebraic varieties over a field of characteristic 0. Special attention is paid to singularities along divisors at infinity, and to the corresponding distinction between regular and irregular singularities. The topic is first discussed in detail in dimension 1, with a wealth of examples, and then in higher dimension using the method of restriction to transversal curves. The authors develop a new approach to classical algebraic/analytic comparison theorems in De Rham cohomology, and provide a unified discussion of the complex and the p-adic situations while avoiding the resolution of singularities. They conclude with a proof of a conjecture by Baldassarri to the effect that algebraic and p-adic analytic De Rham cohomologies coincide, under an arithmetic condition on exponents. As used in this text, the term “De Rham cohomology” refers to the hypercohomology of the De Rham complex of a connection with respect to a smooth morphism of algebraic varieties, equipped with their Gauss-Manin connection. This simplified approach suffices to establish the stability of crucial properties of connections based on higher direct images. The main technical tools used include: Artin local decomposition of a smooth morphism in towers of elementary fibrations, and spectral sequences associated with affine coverings and with composite functors.
2020
978-3-030-39719-7
File in questo prodotto:
File Dimensione Formato  
1.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 201.69 kB
Formato Adobe PDF
201.69 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3339338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact