We describe an optimal randomized MapReduce algorithm for the problem of triangle enumeration. This generalizes the well-known vertex partitioning approach proposed in (Suri and Vassilvitskii, 2011) to multiple rounds, significantly increasing the size of the graphs that can be handled on a given system. We also give new theoretical (high probability) bounds on the work needed in each reducer, addressing the "curse of the last reducer". Indeed, our work is the first to give guarantees on the maximum load of each reducer for an arbitrary input graph.
CTTP
SILVESTRI, FRANCESCO;
2014
Abstract
We describe an optimal randomized MapReduce algorithm for the problem of triangle enumeration. This generalizes the well-known vertex partitioning approach proposed in (Suri and Vassilvitskii, 2011) to multiple rounds, significantly increasing the size of the graphs that can be handled on a given system. We also give new theoretical (high probability) bounds on the work needed in each reducer, addressing the "curse of the last reducer". Indeed, our work is the first to give guarantees on the maximum load of each reducer for an arbitrary input graph.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.