In this paper we propose the first calibration exercise based on quantization methods. Pricing and calibration are typically difficult tasks to accomplish: pricing should be fast and accurate, otherwise calibration cannot be performed efficiently. We apply in a local volatility context the recursive marginal quantization methodology to the pricing of vanilla and barrier options. A successful calibration of the Quadratic Normal Volatility model is performed in order to show the potentiality of the method in a concrete example, while a numerical exercise on barrier options shows that quantization overcomes Monte-Carlo methods.

Pricing and Calibration in Local Volatility Models Via Fast Quantization

CALLEGARO, GIORGIA;FIORIN, LUCIO;GRASSELLI, MARTINO
2014

Abstract

In this paper we propose the first calibration exercise based on quantization methods. Pricing and calibration are typically difficult tasks to accomplish: pricing should be fast and accurate, otherwise calibration cannot be performed efficiently. We apply in a local volatility context the recursive marginal quantization methodology to the pricing of vanilla and barrier options. A successful calibration of the Quadratic Normal Volatility model is performed in order to show the potentiality of the method in a concrete example, while a numerical exercise on barrier options shows that quantization overcomes Monte-Carlo methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3034116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact