Four regions of the canine brain (frontal lobe, parieto-occipital lobe, brainstem, and cerebellum) were each fractionated by differential centrifugation into a crude mitochondrial pellet (P2) and a crude microsomal pellet (P3). Markers of endoplasmic reticulum (glucose-6-phosphate phosphatase and rotenone-insensitive NADPH cytochrome c reductase) and markers of the 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store ([3H]IP3 binding and IP3-induced Ca2+ release) were measured. No correlation was found between the two classes of markers, which suggests that the IP3 receptor does not belong to the endoplasmic reticulum in canine brain. Cerebellum P2 and P3 fractions displayed levels of [3H]IP3 binding 10- to 30-fold higher, and rates of IP3-induced Ca2+ release greater than 15-fold faster than the homologous cerebrum and brainstem fractions. Actively accumulated Ca2+ was only partially released by IP3, both before and after saponin disruption of the plasma membrane compartment. The proportion of the IP3-sensitive Ca2+ store relative to that of the total (IP3-sensitive and IP3-insensitive) Ca2+ store was variable; i.e., it was larger in cerebellum P2 (approximately 90%) than in cerebrum fractions (less than 30%). Cerebellum fractions constitute the best source from which an IP3-sensitive Ca2+ storing organelle can be purified.

Distribution of endoplasmic reticulum and calciosome markers in membrane fractions isolated from different regions of the canine brain.

VOLPE, POMPEO
1989

Abstract

Four regions of the canine brain (frontal lobe, parieto-occipital lobe, brainstem, and cerebellum) were each fractionated by differential centrifugation into a crude mitochondrial pellet (P2) and a crude microsomal pellet (P3). Markers of endoplasmic reticulum (glucose-6-phosphate phosphatase and rotenone-insensitive NADPH cytochrome c reductase) and markers of the 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store ([3H]IP3 binding and IP3-induced Ca2+ release) were measured. No correlation was found between the two classes of markers, which suggests that the IP3 receptor does not belong to the endoplasmic reticulum in canine brain. Cerebellum P2 and P3 fractions displayed levels of [3H]IP3 binding 10- to 30-fold higher, and rates of IP3-induced Ca2+ release greater than 15-fold faster than the homologous cerebrum and brainstem fractions. Actively accumulated Ca2+ was only partially released by IP3, both before and after saponin disruption of the plasma membrane compartment. The proportion of the IP3-sensitive Ca2+ store relative to that of the total (IP3-sensitive and IP3-insensitive) Ca2+ store was variable; i.e., it was larger in cerebellum P2 (approximately 90%) than in cerebrum fractions (less than 30%). Cerebellum fractions constitute the best source from which an IP3-sensitive Ca2+ storing organelle can be purified.
1989
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2499547
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 33
  • OpenAlex ND
social impact