We introduce the "sharp" (universal) extension of a 1-motive (with additive factors and torsion) over a field of characteristic zero. We define the "sharp de Rham realization" by passing to the Lie-algebra. Over the complex numbers we then show a (sharp de Rham) comparison theorem in the category of formal Hodge structures. For a free 1-motive along with its Cartier dual we get a canonical connection on their sharp extensions yielding a perfect pairing on sharp realizations. We thus provide "one-dimensional sharp de Rham cohomology" of algebraic varieties.
Sharp de Rham realization
BERTAPELLE, ALESSANDRA
2006
Abstract
We introduce the "sharp" (universal) extension of a 1-motive (with additive factors and torsion) over a field of characteristic zero. We define the "sharp de Rham realization" by passing to the Lie-algebra. Over the complex numbers we then show a (sharp de Rham) comparison theorem in the category of formal Hodge structures. For a free 1-motive along with its Cartier dual we get a canonical connection on their sharp extensions yielding a perfect pairing on sharp realizations. We thus provide "one-dimensional sharp de Rham cohomology" of algebraic varieties.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.