Recurrent neural networks fail to deal with prediction tasks, which do not satisfy the causality assumption. We propose to exploit bi-causality to extend the Recurrent Cascade Correlation model in order to deal with contextual prediction tasks. Preliminary results on artificial data show the ability of the model to preserve the prediction capability of Recurrent Cascade Correlation on strict causal tasks, while extending this capability also to prediction tasks involving the future.

Bi-causal Recurrent Cascade Correlation

SPERDUTI, ALESSANDRO
2000

Abstract

Recurrent neural networks fail to deal with prediction tasks, which do not satisfy the causality assumption. We propose to exploit bi-causality to extend the Recurrent Cascade Correlation model in order to deal with contextual prediction tasks. Preliminary results on artificial data show the ability of the model to preserve the prediction capability of Recurrent Cascade Correlation on strict causal tasks, while extending this capability also to prediction tasks involving the future.
2000
International Joint Conference on Neural Networks 2000
0769506194
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1369528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact