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A mixed interpolation-regression approximation operator
on the triangle

Stefano De Marchi a · Francesco Dell’Accio b,c · Federico Nudo a

Abstract

In several applications, ranging from computational geometry and finite element analysis to computer
graphics, there is a need to approximate functions defined on triangular domains rather than rectangular
ones. For this purpose, frequently used interpolation methods include barycentric interpolation, piecewise
linear interpolation, and polynomial interpolation. However, the use of polynomial interpolation methods
may suffer from the Runge phenomenon, affecting the accuracy of the approximation in the presence of
equidistributed data. In these situations, the constrained mock-Chebyshev least squares approximation
on rectangular domains was shown to be a successful approximation tool. In this paper, we extend it to
triangular domains, by using both Waldron and discrete Leja points.

This paper is dedicated to Len Bos on the occasion of his retirement. Len, for us, is a master of mathematics
and also a big friend. He introduced us to the fascinating world of "finding good interpolation nodes and
effective interpolation strategies", mostly in the multivariate setting. The set of points we are using in
this paper, Waldron and Leja, have been introduced to us by him and we hope that this note can be of
some interest for him and all people working on approximation theory.

1 Introduction

In the field of computational sciences, a commonly encountered problem is the approximation of a function f , defined on a fixed
interval [a, b], through evaluations on a set of n+ 1 points Xn, where n is a positive integer. Without loss of generality, we can
assume we are working within the interval [−1,1]. For this purpose, a widely adopted approach is polynomial interpolation,
which entails determining a polynomial of degree at least n, Pn[ f ] ∈ Pn(R), that interpolates the function f at the points of Xn. A
classical scenario of interest arises when Xn is the set of equispaced points in [−1,1]

x j = −1+
2 j
n

, j = 0, . . . , n,

in correspondence of which the Runge phenomenon arises, demonstrating the inadequacy of such points to provide accurate
approximations even in the case of local analytic functions f . To defeat the Runge phenomenon, various approaches have been
proposed in recent years [2, 14, 15, 17, 32, 22]. A significant advancement is highlighted in the paper [14], which introduces the
constrained mock-Chebyshev least squares approximation operator to enhance the precision of the method presented in [2].
Explicitly, the approximation proposed in [2], involves exclusively interpolating the function f on a subset of nodes near the
Chebyshev–Lobatto nodes of a suitable order m+ 1 = O(

p
n). These nodes, denoted by X ′m =

�

x ′0, . . . , x ′m
	

, are referred as
mock-Chebyshev nodes. However, this approach leaves several data points unused. Later on in [14], the authors introduced
the constrained mock-Chebyshev least squares approximation, focusing on approximating the function f using a polynomial of
degree r > m. The construction of this polynomial consists of interpolating f on the mock-Chebyshev nodes of order m+ 1 and
by using the remaining nodes to refine the accuracy through a simultaneous regression. In detail, for any function f defined on
the discrete set Xn, the constrained mock-Chebyshev least squares polynomial P̂r,n[ f ] is the solution of the problem





 f − P̂r,n[ f ]






2

Xn ,2 = min
P∈P?r (R)

‖ f − P‖2
Xn ,2 , (1)

where ‖·‖Xn ,2 is the discrete 2-norm on Xn and P?r (R) is the space formed by all polynomials of degree less than or equal to r
interpolating f at the mock-Chebyshev nodes.
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Setting
X ′′n−m = Xn \ X ′m = {x

′′
1 , . . . , x ′′n−m},

we denote by Pm[ f ] ∈ Pm (R) the polynomial interpolating f at X ′m and by ωm the nodal polynomial on X ′m, that is

ωm(x) =
m
∏

i=0

(x − x ′i).

The constrained mock-Chebyshev least squares approximation can be then represented as

P̂r,n[ f ](x) = Pm[ f ](x) +Qn−m(x)ωm(x),

where




 f̂ −Qn−m







2

2,m = min
Q∈Pr−m−1(R)





 f̂ −Q






2

2,m , (2)

and

f̂ (x) =
f (x)− Pm(x)
ωm(x)

,

‖u‖2
2,m =

n−m
∑

k=1

ω2
m(x

′′
k )u

2(x ′′k ). (3)

Extending the constrained mock-Chebyshev least squares operator to the bivariate case necessitates the development of a
new technique [22], which leverages the method of Lagrange multipliers to solve constrained least squares problems. By fixing a
basis of the vector space Pr (R) say Br = {u0, . . . , ur}, the approximation of f is expressed as

P̂r,n[ f ] =
r
∑

i=0

aiui

where a = [a0, . . . , ar]T is the solution of KKT-linear system [22]. This method allows for constructing an accurate approximation
of the function f on a domain of the type R= [−1, 1]d , d ≥ 1, by knowing only its evaluations on the regular Cartesian grid

d
⊗

k=1

Xnk
=

d
⊗

k=1

¦

x (k)0 , . . . , x (k)nk

©

, x (k)i = −1+
2
nk

i, i = 0, . . . , nk, k = 1, . . . , d.

In recent years, the approximation method introduced in [14, 22], as well as other methods for defeating the Runge
phenomenon, like [15], have found application in various contexts, as demonstrated by references [18, 23, 24, 25, 26, 27, 28].
However, in many applications, the function f is not defined on rectangular domains but preferably on triangles or more generally
on simplices.

The interpolation process on triangles is widespread in computational geometry, finite element analysis, and computer
graphics (see [12, 29] and references therein). The use of triangular meshes is a popular choice for representing complex
geometries due to its efficiency in approximating irregular shapes. In practical applications, such as computed-aided geometric
design or CAD, accurate interpolation on triangular domains is then crucial. It allows researchers and engineers to analyze and
visualize data on surfaces, providing insights into physical phenomena or aiding in the design and optimization of structures.
Overall, the interpolation of functions on triangular domains showcases the versatility of mathematical techniques in handling
diverse geometric configurations and plays a pivotal role in advancing computational methods across various scientific and
engineering disciplines.

Usually, the interpolating function is known only at a set of equidistributed points within a triangular domain. The stability of
interpolation on such equidistributed points depends on several factors, including the chosen interpolation method, the regularity
of the grid, and the smoothness of the function being approximated. When utilizing polynomial interpolation methods, the
approximation can suffer from the Runge phenomenon. To address potential instability, exploring alternative interpolation
methods could be worthwhile. Moreover, opting for higher-degree interpolation polynomials does not always guarantee better
results; at times, lower-degree polynomials or alternative interpolation techniques might offer greater stability and accuracy [5].
In summary, while equidistributed points in a triangular domain can simplify interpolation, it is crucial to be mindful of potential
stability issues. The selection of an interpolation method should strike a balance between accuracy and stability, considering the
specific characteristics of the data and the requirements of the application.

Given the excellent results obtained using the constrained mock-Chebyshev least squares approximation in the case of
rectangular domains, this paper aims to broaden this approximation to triangular domains in two different ways. We employ
both Waldron points [8] and the well-known discrete Leja points [6] to guarantee precise and efficient interpolation.

The paper is organized as follows. In Section 2, we generalize the constrained mock-Chebyshev least squares approximation
to triangular domains, introducing a new interpolation-regression method. In Section 3, we present some numerical results,
demonstrating the accuracy of the proposed method.
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Figure 1: Plot of simplex points of degree n= 21 for the triangle T with vertices v1 = (0,0), v2 = (1,0), v3 = (0, 1).

2 Interpolation-regression approximation on the triangle

2.1 Constrained mock-Waldron least squares approximation

Let T ⊂ R2 be a non-degenerate triangle with vertices v1, v2, v3. For any multi-index

α= (α1,α2,α3) ∈ N3
0,

we denote by

|α|=
3
∑

i=1

αi .

Moreover, we use

κ(l) =
�

l + 2
2

�

, (4)

to denote the dimension of the space of bivariate polynomials of degree ≤ l.
Let f be an unknown function defined on T . We assume that we only know the evaluations of f at the simplex points of

degree n, given by

Xn :=

¨

xα =
3
∑

i=1

αi

n
v i : |α|= n

«

, (5)

see Figure 1. We denote by Pn

�

R2
�

the space of polynomials of degree n in 2 variables. We observe that the cardinality of Xn is
N = κ(n). For this reason, we also write

Xn =
�

xα1
, . . . , xαN

	

.

The goal of this subsection is to broaden the constrained mock-Chebyshev least squares approximation to triangular domains,
presenting a novel interpolation-regression method. To achieve this, we need points capable of replacing the well-known
Chebyshev–Lobatto nodes used in the domain [−1,1]. The Waldron points [8] provide an example of points with these
characteristics. Defining these points requires specifying an allowable weight function.

Definition 2.1. The function
ω : [0,1] −→ [0,1], (6)

is called an allowable weight function if it satisfies the following conditions:

• it is an increasing function;

• ω(0) = 0 and ω(1) = 1;

• for any non-negative θi , i = 1,2, 3 and
3
∑

i=1
θi = 1, the inequality

3
∑

i=1
ω (θi)≤ 1 is satisfied.

Remark 1. An example of allowable weight function is (cf. [8])

ω(x) = sin2
�

π
x
2

�

. (7)
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Figure 2: The discretization of the triangle with Waldron (*) and mock-Waldron (o) points for n= 21 for the weight functions ω1, with k = 2,
ω2, ω3 and ω4.

The following functions

ω1(x) = x k (k ∈ N), ω2(x) =
ex − 1
e− 1

, ω3(x) =
�

sin(x)
sin(1)

�2

, ω4(x) =
log(x2 + 1)

log(2)
,

are also allowable weight functions. Indeed, they trivially satisfy the first two properties outlined in Definition 2.1. Moreover,
since

ωi(x)≤ x , x ∈ [0, 1], i = 1, 2,3,4,

they fulfill the third property. We stress that Waldron points vary depending on the selected weight function. Throughout the paper,
we use Waldron points corresponding to the weight function (7), as these points share the same density as the Chebyshev–Lobatto
points on each side of the triangle while, by using the other weight functions, this property is lost (Fig. 2).

Definition 2.2. Let ω be an allowable weight function. The set of Waldron points of degree m for a triangle T ⊂ R2 with vertices
v1, v2, v3 associated to ω is the set

Wm :=

¨

x W
γ =

3
∑

j=1

ω j v j : |γ|= m

«

, (8)

where

ω j :=ω
�γ j

m

�

+
1
3

�

1−
3
∑

i=1

ω
�γi

m

�

�

, j = 1, 2,3.

The cardinality of Wm is M = κ(m), which corresponds to the dimension of the bivariate polynomials of total degree m. The
points of Wm can be used to interpolate arbitrary data by polynomials of degree ≤ m in R2 [8].

The mock-Waldron approach for the triangle consists then of finding a suitable natural number m< n such that we can uniquely
identify M distinct points from Xn that are close to those of Wm. These points can be determined by a suitable nearest-neighbor
algorithm and we denote the subset of mock-Waldron points by

W ′
m =

¦

ζγ1
, . . . ,ζγM

©

⊂ Xn. (9)

To determine the parameter m, we observe that the Waldron points associated with the weight function (7) exhibit the same
density as the Chebyshev–Lobatto points on each side of the triangle, as illustrated in Figure 3. Therefore, following the approach
proposed in [14, 22], we can set

m :=
�

π

s

n
2

�

as the greatest positive integer such that we can find, without repetitions, κ(m) distinct nodes of Xn that are close to the Waldron
points.

The fundamental idea behind this new interpolation-regression approximation is to approximate the function f with a
bivariate polynomial of total degree r such that m < r < n, interpolating f at the mock-Waldron points of degree m, and
leveraging the remaining nodes to improve the accuracy of the approximation through a simultaneous regression (see Figure 3).
For these reasons, we refer to this new interpolation-regression approximation as the constrained mock-Waldron least squares
approximation. To define this approximation, some settings are needed. We set

p :=
�

π

s

n
12

�

, r := m+ p+ 1, R := κ(r).

We consider a basis of the polynomial space Pr

�

R2
�

given by

Br =
�

bβ1
, . . . , bβR

	

, (10)
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Figure 3: Left: The discretization of the triangle with Waldron (*) and mock-Waldron (o) points for n= 21. Right: Plot of Waldron points of
degree m= 10 (*), and the scaled Chebyshev–Lobatto nodes on [0,1] (�).

and, by assuming that
span

�

bβ1
, . . . , bβM

	

= Pm

�

R2
�

, (11)

we set
Bm =

�

bβ1
, . . . , bβM

	

.

For the sake of simplicity, we assume that the set Xn has been rearranged so that

xαi
= ζγi

, i = 1, . . . , M . (12)

Let AN ,R ∈ RN×R be the interpolation matrix corresponding to Br and Xn, that is

AN ,R :=











bβ1

�

xα1

�

bβ2

�

xα1

�

· · · bβR

�

xα1

�

bβ1

�

xα2

�

bβ2

�

xα2

�

· · · bβR

�

xα2

�

...
...

. . .
...

bβ1

�

xαN

�

bβ2

�

xαN

�

· · · bβR

�

xαN

�











. (13)

We also denote by AM ,R ∈ RM×R the submatrix of AN ,R formed by its first M rows, that is

AM ,R :=











bβ1

�

xα1

�

bβ2

�

xα1

�

· · · bβR

�

xα1

�

bβ1

�

xα2

�

bβ2

�

xα2

�

· · · bβR

�

xα2

�

...
...

. . .
...

bβ1

�

xαM

�

bβ2

�

xαM

�

· · · bβR

�

xαM

�











. (14)

Additionally, we set
a :=

�

f
�

xα1

�

, . . . , f
�

xαN

��T
, d :=

�

f
�

xα1

�

, . . . , f
�

xαM

��T

and
V := AT

N ,RAN ,R, v := AT
N ,Ra. (15)

Given assumptions (11) and (12), we can define the constrained mock-Waldron least squares approximation operator as follows

P̂W
r,N : C(T ) −→ Pr(R2)

f 7−→ P̂W
r,N [ f ] :=

R
∑

i=1

ci( f )bβ i

(16)

where the vector of coefficients c( f ) = [c1( f ), c2( f ), . . . , cR( f )]T is the solution of the linear system
�

2V AT
M ,R

AM ,R 0

��

c( f )
z

�

=

�

2v
d

�

. (17)

Here, z represents the vector of Lagrange multipliers.
The following theorem establishes the well-defined nature of the approximation operator (16).
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Theorem 2.1. The matrix
�

2V AT
M ,R

AM ,R 0

�

(18)

is nonsingular.

Proof. To establish this theorem, it suffices to demonstrate that the matrices AN ,R and AM ,R, have maximum rank (cf. [4, Ch. 16]).
Let us consider the matrix AN ,R. By extending the basis Br =

�

bβ1
, . . . , bβR

	

to the basis BN =
�

bβ1
, . . . , bβR

, bβR+1
, . . . , bβN

	

of the vector space Pn

�

R2
�

, we observe that AN ,R is the submatrix N × R of the interpolation matrix

AN ,N :=











bβ1

�

xα1

�

bβ2

�

xα1

�

· · · bβN

�

xα1

�

bβ1

�

xα2

�

bβ2

�

xα2

�

· · · bβN

�

xα2

�

...
...

. . .
...

bβ1

�

xαN

�

bβ2

�

xαN

�

· · · bβN

�

xαN

�











made up of its first R columns. Since the simplex points (5) are unisolvent for the space Pn

�

R2
�

, the matrix AN ,N is nonsingular [10].
Therefore, its columns are linearly independent, and consequently, the columns of AN ,R are linearly independent. Since R< N ,
the matrix AN ,R has maximum rank.

Now, let us prove that the matrix AM ,R has maximum rank. We observe that the submatrix of AM ,R formed by its first M
columns

AM ,M :=











bβ1

�

xα1

�

bβ2

�

xα1

�

· · · bβM

�

xα1

�

bβ1

�

xα2

�

bβ2

�

xα2

�

· · · bβM

�

xα2

�

...
...

. . .
...

bβ1

�

xαM

�

bβ2

�

xαM

�

· · · bβM

�

xαM

�











is nonsingular because the set of mock-Waldron points W ′
m is unisolvent for the space Pm

�

R2
�

[34]. Therefore, its rows and the
rows of the matrix AM ,R, are linearly independent. Being R> M , the matrix AM ,R has maximum rank.

Remark 2. A direct implication of Theorem 2.1 is that, for any f ∈ C (T ), the coefficients of the polynomial P̂W
r,N [ f ] are uniquely

determined. Consequently, the approximation operator (16) is well-defined.

Remark 3. For any f , g ∈ C(T ) and α ∈ R, the operator P̂W
r,N satisfies the following properties:

• P̂W
r,N [ f + g] = P̂W

r,N [ f ] + P̂W
r,N [g],

• P̂W
r,N [α f ] = αP̂W

r,N [ f ].

In other words, the operator P̂W
r,N is a linear operator.

Remark 4. For any p ∈ Pr

�

R2
�

, the operator P̂r,N satisfies

P̂W
r,N [p] = p.

Moreover, we observe that
P̂W

r,n[ f ] = P̂W
r,n [Pn[ f ]] , (19)

where Pn[ f ] ∈ Pn

�

R2
�

is the polynomial interpolation of f on Xn. In simpler terms, the approximation P̂W
r,N [ f ] relies solely on

the evaluations of the function f on Xn.

Remark 5. Since P̂W
r,N [ f ] ∈ Pr

�

R2
�

⊂ Pn

�

R2
�

, it can be expressed with respect to the Lagrange polynomial basis [10, Ch. 10]

LN = {`1(x ), . . . ,`N (x )}

as follows

P̂W
r,N [ f ] =

N
∑

i=1

Lxαi

�

P̂W
r,N [ f ]

�

`i(x ),

where Lxαi
are the point evaluations functionals on Xn satisfying

Lxαi

�

` j

�

= ` j(xαi
) = δi j .

The change of basis LN → BN allows us to write

P̂W
r,N [ f ] =

N
∑

i=1

ci

�

P̂r,N [ f ]
�

bβi
=

R
∑

i=1

ci ( f ) bβi
,
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since, by hypothesis, Br = {bβ1
, . . . , bβR

} spans Pr

�

R2
�

. If Br is an orthonormal basis with respect to some inner product 〈·, ·〉, we
get

¬

P̂W
r,N [ f ], bβ j

¶

=

®

R
∑

i=1

ci ( f ) bβi
, bβ j

¸

=
R
∑

i=1

ci ( f )
¬

bβi
, bβ j

¶

= c j( f ),

and then
¬

P̂W
r,N [ f ], P̂W

r,N [ f ]
¶

=
R
∑

i=1

|ci ( f )|
2 .

In the language of finite tight frames [35], we say that ci( f ) are the canonical coordinates for P̂W
r,N [ f ] with respect to the spanning

sequence {bβ1
, . . . , bβR

} for the vector space Pr

�

R2
�

.

Remark 6. The comparison between the constrained mock-Chebyshev least squares polynomial and the Lagrange polynomial
interpolation on the nodes of Xn has been shown in the paper [22]. In the univariate case, it has been proved that the constrained
mock-Chebyshev least squares polynomial improves the accuracy of the approximation of the mock-Chebyshev polynomial which,
in its turn, defeats the Runge phenomenon due to the interpolation on the equispaced nodes. In the simplex case, the comparison
between constrained mock-Chebyshev least squares polynomial and Lagrange interpolation polynomial on Xn shows an analogous
behavior. In fact, the restrictions of these polynomials on the sides of the simplex are univariate polynomials of the same type.

2.2 Constrained Leja least squares approximation

The aim of this subsection is to modify the interpolation-regression method introduced in the previous section by using interpolation
at discrete Leja points in the triangle [6], see Figure 4. These points share characteristics similar to Chebyshev–Lobatto points
for the interval [−1,1] [13, 6, 7]. Hence, we refer to this new interpolation-regression method as the constrained Leja least
squares approximation. The widely adopted set of discrete Leja points in polynomial interpolation has found application in
various numerical contexts [31, 9, 11, 21, 20, 19]. These points are strategically chosen to enhance the stability and accuracy
of the interpolation process, addressing potential numerical instability issues that could arise with certain node selections in
specific interpolation scenarios [6]. The underlying concept is that Gaussian elimination with row pivoting performs a sort of
greedy optimization of the Vandermonde determinant by iteratively selecting the new row in such a way that the modulus of the
augmented determinant is maximized. Consequently, the discrete Leja points provide an unisolvent interpolation set with a low
computational cost since a nonzero Vandermonde determinant is automatically sought. Moreover, since they are computed by
greedy maximization, one can expect, as a qualitative guideline, that the condition number of the Vandermonde matrix does not
increase rapidly and there is an improvement in the accuracy of the approximation interpolation polynomial [6]. The adoption of
discrete Leja points is recognized for its significant contribution to establishing a more stable interpolation process, particularly
beneficial for certain types of functions.

In the following discussion, we maintain the same notation as in the previous subsection. To define the constrained Leja least
squares approximation, we assume that the basis Br of the polynomial space Pr

�

R2
�

satisfies the condition (11). Let

LM =
¦

ξγ1
, . . . ,ξγM

©

⊂ Xn

be a set of M discrete Leja points defined using the Greedy algorithm [6]. This process involves the use of the Vandermonde-type
rectangular matrix AM ,N , associated with Xn and the basis Bm, that is

AN ,M =











bβ1

�

xα1

�

bβ2

�

xα1

�

· · · bβM

�

xα1

�

bβ1

�

xα2

�

bβ2

�

xα2

�

· · · bβM

�

xα2

�

...
...

. . .
...

bβ1

�

xαN

�

bβ2

�

xαN

�

· · · bβM

�

xαN

�











. (20)

A Greedy maximization of nested square submatrix determinants, implemented through LU factorization with row pivoting
of AN ,M , leads to the extraction of discrete Leja points from a weakly admissible mesh as outlined in [7, 6]. Since the set Xn

defined in (5) is a weakly admissible mesh [16], the extraction of discrete Leja points from this set can be accomplished using the
Algorithm 1 [6].

In analogy to the previous subsection, for the sake of simplicity and brevity of notation, we assume that the set Xn has been
rearranged, such that

xαi
= ξγi

, i = 1, . . . , M . (21)

Taking into account the assumptions (11) and (21), and in analogy to (16), we introduce the constrained Leja least squares
approximation, denoted as P̂ L

r,N . The fundamental idea behind the constrained Leja least squares approximation is to interpolate
the function f at M discrete Leja points LM and leverage the remaining nodes to improve the accuracy of the approximation
through a simultaneous regression, see Figure 4.
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Algorithm 1

Require: Xn = [xα1
, . . . , xαN

]T ,Br =
�

bβ1
, . . . , bβR

	

Ensure: LM = [ξ1, . . . ,ξM ]
T

1: Compute N and M
2: A0 = AM ,N ; k = 1 : N
3: [L0, U0, P0] = lu (A0); k = P0k;
4: Lm = [ξ1, . . . ,ξM ] = Xn(i1, . . . , iM ).
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Figure 4: Left: Plot of simplex points of degree n = 21 (*) and M = 66 discrete Leja points with respect to the Koornwinder-Dubiner polynomial
basis (o). Right: Plot of M = 66 discrete Leja points extracted from the uniform discretization of the unitary triangle T with vertices v1 = (0, 0),
v2 = (1,0), v3 = (0,1).

Remark 7. Taking into consideration the assumptions (11) and (21), we observe that the submatrix of AM ,R formed by its first M
columns

AM ,M :=




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


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


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



is nonsingular due to the unisolvency of the set of discrete Leja points LM for the space Pm

�

R2
�

. Consequently, its rows, and
therefore the rows of the matrix AM ,R, are linearly independent. Since R> M , the matrix AM ,R has maximum rank. Therefore,
following the same approach of Theorem 2.1, the operator P̂ L

r,n is well-defined.

Remark 8. Since the constrained Leja least squares approximation is defined in the same way as the constrained mock-Waldron
least squares approximation, it possesses the same properties.

3 Numerical experiments

In this section, we conduct numerical experiments to assess the accuracy of the proposed approximation method outlined in the
previous section. We perform two types of numerical experiments. In the first type, we consider the following test functions

f1(x , y) = cos(10(x + y)), f2(x , y) =
1

x2 + y2 + 0.1
, f3(x , y) =

e8(x−y)

x3 + y3 + 5

f4(x , y) = sin(5πx) cos(5πy), f5(x , y) =
sin(5πx)

x4 + y4 + 25
, f6(x , y) = log(x6 + y6 + 1).

For all experiments, we assume knowledge of the functions f1- f6 on the grid of simplex points of degree n = 40 (m = 14).
The approximations P̂W

r,N [ f ], with respect to the weight function (7), and P̂ L
r,N [ f ] are expressed using the Koornwinder-Dubiner

polynomial basis, constituting an orthogonal basis on the triangle T [33, 30]. The software to calculate the Koornwinder-Dubiner
basis is available on the website https://www.math.unipd.it/~alvise/sets.html.

In Table 1 and Table 2, we compare the precision achieved by the interpolation operator at the mock-Waldron points W ′
m,

denoted as PW
m [ f ], with that obtained by the constrained mock-Waldron least squares approximation P̂W

r,N [ f ] and with the
interpolation operator on Waldron points of degree r, Wr . However, it should be noted that functional evaluations at these points
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Interpolation operator on W ′
m Interpolation-regression operator P̂W

r,N Interpolation operator on Wr

f1 4.7343e-08 3.6907e-12 3.4438e-11
f2 1.2251e-05 2.0910e-07 3.5149e-07
f3 1.3528e-05 2.1387e-09 1.1565e-08
f4 3.4388e-02 6.3979e-04 1.2377e-03
f5 4.0873e-06 4.4018e-10 2.2188e-09
f6 2.0401e-08 1.7654e-10 2.0607e-09

Table 1: Comparison between the mean approximation error produced by interpolation operator at the mock-Waldron points W ′
m, denoted by

PW
m [ f ], with that produced by the interpolation-regression operator P̂W

r,N [ f ] and with the interpolation operator at the Waldron points Wr

.

are not available. Furthermore, since the density of the Waldron points on the x-axis is the same as that of the Chebyshev–Lobatto
nodes, it is not possible to identify a subset of simplex points that emulate the behavior of the nodes of Wr in the mock-Chebyshev
sense, as r > m and m is the largest number for which this is possible. For more details, see [14].

The evaluations include the assessment of the maximum approximation error (emax ) and mean approximation error (emean),
computed as follows:

emax := max
i=1,...,Ne

ri , emean :=
1
Ne

Ne
∑

i=1

ri ,

where ri represents the absolute approximation error computed at the simplex points of degree ne = 131, and Ne = κ(ne).
Similarly, in Table 3 and Table 4, we conduct the same experiments comparing the accuracy achieved by the interpolation

operator at Lm, denoted as P L
m[ f ], with that obtained by the constrained Leja least squares approximation P̂ L

r,N [ f ]. The evaluation
metrics include the maximum approximation error (emax ) and mean approximation error (emean).

In all experiments, we observe that the approximation produced by P̂W
r,N is of the same order of accuracy as that produced by

P̂ L
r,N . Additionally, in all experiments, we observe an enhancement in the approximation achieved by the operators P̂W

r,N [ fi], P̂ L
r,N [ fi],

i = 1, . . . , 6. In certain instances, this improvement is notably significant.

Interpolation operator on W ′
m Interpolation-regression operator P̂W

r,N Interpolation operator on Wr

f1 2.6795e-07 1.1358e-10 1.2741e-09
f2 1.1403e-04 7.4169e-06 7.7197e-06
f3 3.7675e-04 4.1717e-07 3.3340e-07
f4 4.1733e-01 6.2127e-02 2.5833e-02
f5 1.8959e-05 8.4473e-09 8.7747e-08
f6 7.5857e-08 3.6484e-09 3.8842e-08

Table 2: Comparison between the maximum approximation error produced by interpolation operator at the mock-Waldron points W ′
m, denoted

by PW
m [ f ], with that produced by the interpolation-regression operator P̂W

r,N [ f ] and with the interpolation operator at the Waldron points Wr

.

Interpolation operator on Lm Interpolation-regression operator P̂ L
r,N

f1 4.3280e-08 3.5227e-12
f2 1.3689e-05 2.0706e-07
f3 1.2287e-05 2.0370e-09
f4 3.2576e-02 6.1144e-04
f5 3.6089e-06 4.2373e-10
f6 1.9039e-08 1.7599e-10

Table 3: Comparison between the mean approximation error produced by interpolation operator at the discrete Leja points Lm, denoted by
P L

m[ f ], with that produced by the interpolation-regression operator P̂ L
r,N [ f ].

In the second type of experiment, we consider two different functions:

f7(x , y) =
1

1+ 25(x2 + y2)
, f8(x , y) =

1

1+ 100
�

x − 1
3

�2

1

1+ 100
�

y − 1
3

�2 ,
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Interpolation operator on Lm Interpolation-regression operator P̂ L
r,N

f1 3.1048e-07 9.8591e-11
f2 1.6461e-04 8.6597e-06
f3 2.8134e-04 3.9013e-07
f4 4.4848e-01 5.4833e-02
f5 3.0969e-05 8.1826e-09
f6 9.3728e-08 3.5562e-09

Table 4: Comparison between the maximum approximation error produced by interpolation operator at the discrete Leja points Lm, denoted by
P L

m[ f ], with that produced by the interpolation-regression operator P̂ L
r,N [ f ].
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Figure 5: Plot of the mean approximation error for the functions f7 (left) and f8 (center), obtained using the constrained mock-Waldron least
squares approximation with the Koornwinder-Dubiner polynomial basis, computed on a simplex of degree n+ 1 = 51 : 50 : 501. Additionally, the
condition number of the corresponding KKT matrix is shown (right).

the latter of which is defined in [3] to generalize the Runge function on a tetrahedron and was later used in [1] to find a Runge-like
counterexample for 1-forms. We analyze the trend of the mean approximation errors produced by the constrained mock-Waldron
least squares approximation relative to the Koornwinder-Dubiner polynomial basis. The results are shown in Figure 5.

We note that the results obtained are consistent with those found in the univariate case and in the bivariate rectangular
domains. Specifically, we observe that the error trend decreases as n increases, and once the maximum precision is reached, it
remains constant.

4 Conclusions and future work

In this paper, we extended the constrained mock-Chebyshev least squares approximation to triangular domains by using both
Waldron and discrete Leja points. The results showcased here underscore the effectiveness of our method in addressing the
unique challenges posed by triangular domains. Looking ahead, buoyed by the promising outcomes of this approach, our future
aims are

• to find a suitable error estimation;

• to extend this approach to more general domains, such as polygonal or star-like in 2d or tetrahedral, pyramidal, conic
sections, and cylindrical domains.

This endeavor builds upon our success on triangular domains and would seek to provide a versatile and robust polynomial
approximation tool across a broader spectrum of applications.

Acknowledgments

This research has been achieved as part of RITA “Research ITalian network on Approximation” and as part of the UMI group “Teoria
dell’Approssimazione e Applicazioni”. The research was supported by GNCS-INdAM 2024 project “Metodi kernel e polinomiali per
l’approssimazione e l’integrazione: teoria e software applicativo”. The authors are members of the INdAM-GNCS Research group.
Project funded by the EuropeanUnion-NextGenerationEU under the National Recovery and Resilience Plan (NRRP), Mission 4
Component 2 Investment 1.1 - Call PRIN 2022 No. 104 of February 2, 2022 of Italian Ministry of University and Research; Project
2022FHCNY3 (subject area: PE - Physical Sciences and Engineering) “Computational mEthods for Medical Imaging (CEMI)”.

References

[1] A. Alonso Rodríguez, L. Bruni Bruno, and F. Rapetti. Whitney edge elements and the Runge phenomenon. Journal of Computational and
Applied Mathematics, 427:115117, 2023.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Marchi · Dell’Accio · Nudo 43

[2] J. P. Boyd, F. Xu. Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock–Chebyshev
subset interpolation. Applied Mathematics and Computation, 210:158–168, 2009.

[3] M. G. Blyth, H. Luo, C. Pozrikidis. A comparison of interpolation grids over the triangle or the tetrahedron. Journal of Engineering
Mathematics, 56:263–272, 2006.

[4] S. Boyd, L. Vandenberghe. Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge University Press, 2018.

[5] L. Bos, A. Sommariva, M. Vianello. Least-squares polynomial approximation on weakly admissible meshes: disk and triangle. Journal of
Computational and Applied Mathematics, 235:660–668, 2010.

[6] L. Bos, S. De Marchi, A. Sommariva, M. Vianello. Computing multivariate Fekete and Leja points by numerical linear algebra. SIAM Journal
on Numerical Analysis, 48:1984–1999, 2010.

[7] L. Bos, M. Caliari. Application of modified Leja sequences to polynomial interpolation. Dolomites Research Notes on Approximation, 8:66–74,
2015.

[8] L. Bos, S. Ma’u, S. Waldron. On Waldron Interpolation on a Simplex in Rd arXiv preprint arXiv:2306.08392, 2023.

[9] D. Calvetti, L. Reichel. Adaptive Richardson iteration based on Leja points. Journal of Computational and Applied Mathematics, 71:267–286,
1996.

[10] E. W. Cheney, W. A. Light. A course in approximation theory. Americal Mathematical Society, 2009.

[11] D. I. Coroian, P. Dragnev. Constrained Leja points and the numerical solution of the constrained energy problem. Journal of Computational
and Applied Mathematics, 131:427–444, 2001.

[12] M. de Berg, O. Cheong , M. van Kreveld, M. Overmars. Computational Geometry: Algorithms and Applications. Springer, 2008.

[13] S. De Marchi. On Leja sequences: some results and applications. Applied Mathematics and Computation, 152:621–647, 2004.

[14] S. De Marchi, F. Dell’Accio, M. Mazza. On the constrained mock-Chebyshev least-squares. Journal of Computational and Applied Mathematics,
280:94–109, 2015.

[15] S. De Marchi, F. Marchetti, E. Perracchione, D. Poggiali. Polynomial interpolation via mapped bases without resampling. Journal of
Computational and Applied Mathematics, 364:112347, 2020.

[16] L. Bos, S. De Marchi, A. Sommariva, M. Vianello. Weakly admissible meshes and discrete extremal sets. Numerical Mathematics: Theory,
methods and applications, 4:1–12, 2011.

[17] S. De Marchi, F. Marchetti, E. Perracchione, D. Poggiali. Multivariate approximation at fake nodes. Applied Mathematics and Computation,
391:125628, 2021.

[18] S. De Marchi, G. Elefante, E. Perracchione, D. Poggiali. Quadrature at fake nodes. Dolomites Research Notes on Approximation, 14:39–45,
2021.

[19] R. Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso, N. Siar, A. Sommariva, M. Vianello. Numerical cubature on scattered data by
adaptive interpolation. Journal of Computational and Applied Mathematics, 444:115793, 2024.

[20] F. Dell’Accio, F. Di Tommaso, N. Siar, M. Vianello. Numerical differentiation on scattered data through multivariate polynomial interpolation.
BIT Numerical Mathematics, 62:773–801, 2022.

[21] F. Dell’Accio, F. Di Tommaso, O. Nouisser, N. Siar. Solving Poisson equation with Dirichlet conditions through multinode Shepard operators.
Computers & Mathematics with Applications, 98:254–260, 2021.

[22] F. Dell’Accio, F. Di Tommaso, F. Nudo. Generalizations of the constrained mock-Chebyshev least squares in two variables: Tensor product vs
total degree polynomial interpolation. Applied Mathematics Letters, 125:107732, 2022.

[23] F. Dell’Accio, F. Di Tommaso, F. Nudo. Constrained mock-Chebyshev least squares quadrature. Applied Mathematics Letters, 134:108328,
2022.

[24] F. Dell’Accio, F. Di Tommaso, E. Francomano, F. Nudo. An adaptive algorithm for determining the optimal degree of regression in constrained
mock-Chebyshev least squares quadrature. Dolomites Research Notes on Approximation, 15:35–44, 2022.

[25] F. Dell’Accio, D. Mezzanotte, F. Nudo, D. Occorsio. Product integration rules by the constrained mock-Chebyshev least squares operator. BIT
Numerical Mathematics, 63:24, 2023.

[26] F. Dell’Accio, F. Nudo. Polynomial approximation of derivatives through a regression-interpolation method. Applied Mathematics Letters,
152:109010, 2024.

[27] F. Dell’Accio, D. Mezzanotte, F. Nudo, D. Occorsio. Numerical approximation of Fredholm integral equation by the constrained mock-
Chebyshev least squares operator. Journal of Computational and Applied Mathematics, 447:115886, 2024.

[28] F. Dell’Accio, F. Marcellán, F. Nudo. An extension of a mixed interpolation-regression method using zeros of orthogonal polynomials. Journal
of Computational and Applied Mathematics, 450:116010, 2024.

[29] J. Hoschek, D. Lasser. Fundamentals of Computer Aided Geometric Design. A K Peters/CRC Press, 1996.

[30] F. Rapetti, A. Sommariva, M. Vianello. On the generation of symmetric Lebesgue-like points in the triangle. Journal of Computational and
Applied Mathematics, 236:4925–4932, 2012.

[31] L. Reichel. The application of Leja points to Richardson iteration and polynomial preconditioning. Linear Algebra and its Applications,
154:389–414, 1991.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Marchi · Dell’Accio · Nudo 44

[32] D. Occorsio, G. Ramella, W. Themistoclakis. Lagrange–Chebyshev Interpolation for image resizing. Mathematics and Computers in Simulation,
197:105–126, 2022.

[33] R. Pasquetti, F. Rapetti. Spectral element methods on triangles and quadrilaterals: comparisons and applications. Journal of Computational
Physics, 198:349–362, 2004.

[34] M. Vianello. Dubiner distance and stability of Lebesgue constants. Journal of Inequalities and Special Functions, 10:49–60, 2019.

[35] S. Waldron. An introduction to finite tight frames. Birkhäuser, 2018.

Dolomites Research Notes on Approximation ISSN 2035-6803


