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Abstract

�e increasing availability of data and the decreasing computational power
cost sparked the data-revolution that we are in nowadays, with machine
learning and artificial intelligence methods influencing our daily life more
and more. Such trend also influenced several scientific fields, as now com-
plex and massive data analyses are performed in multiple fields allowing
researchers to test elaborate hypotheses and to speed-up discoveries. A sig-
nificant drawback of traditional machine learning approaches, however, is
their ability to discover only correlations between variables that do not al-
ways reflect the true causal mechanisms of the phenomenon under study,
possibly leading to misleading conclusions.

In light of such obstacles, the field of causality has gained significant
traction due to its natural ability to answer two fundamental questions for
knowledge discovery from data. �e first is to select the important variables
among a pool of observed ones, as big datasets comprised of multiple and
heterogeneous measurements are collected for subsequent analyses with-
out any prior knowledge of the importance of each feature. �e second is
to understand how those variables influence each other, as this helps un-
derstanding the evolution of the scenario under study. Both questions can
be answered using the causal framework as causal discovery algorithms aim
to recover cause and effect relationships among variables, upon which it is
possible to identify the important ones for the task under study, and effect es-
timation techniques quantify how modifying a feature (or treatment) in the
real-world influences the other variables, allowing us to be�er understand
the system under study.

One last common issue of data analysis on datasets is to report false dis-
coveries in output, that are results that arise by chance without reflecting
causal effects or other relationships in the data. �is problem is especially
important when performing large analyses comprised of multiple hypothe-
ses, and this is critical in high-stake fields such as in financial or medical
analyses. One way to address this problem is to adopt suitable techniques
designed to bound the Family-Wise Error Rate (FWER), that is the probabil-
ity of returning at least one false discovery in output, below an user-defined
threshold. In this �esis we develop two causality methods with rigorous
guarantees on the FWER: the first focuses on a causal discovery problem
and the second involves effect estimation and its application on cancer data.

In the first part of the �esis we focus on a sub task of causal discovery,
the local causal discovery task, that given a target variable and a candidate
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set of variables, aims at selecting a subset of the la�er with specific causal or
statistical properties with the target. In particular, local causal discovery fo-
cuses on inferring two sets of variables: the Parent-Children (PC) set, which
is composed of variables that are direct causes or direct consequences of the
target, and the Markov boundary (MB) of the target, which is the minimal
set of variables with the highest target prediction performances. We present
the first two algorithms for local causal discovery that bound the FWER of
their output, as the inference of PC and MB sets requires performing multi-
ple independence tests from data. We prove that state-of-the-art algorithms
cannot be adapted for the task due to untestable and unrealistic assump-
tions on the statistical power of independence tests used for the discovery,
while our algorithms come with provable guarantees on their results and re-
quire less assumptions. We successfully control the FWER either by exploit-
ing the well-known Bonferroni correction for multiple hypotheses testing or
by implementing data-dependent bounds based on Rademacher averages, a
tool commonly used to measure the complexity of a family of functions. To
the best of our knowledge, our work is the first one introducing the use
of Rademacher averages in (local) causal discovery. We then introduce two
test statistics to be used in independence testing with Rademacher averages.
Finally, we analyse the performances of our algorithms and our proposed
statistics both on synthetic and real-world data.

We then focus on the problem of inferring the effect of multiple treat-
ments on a target variable using the syntax of causal rules, which are con-
venient ways of representing multiple variables taking specific values. Our
aim is to discover the top-𝑘 (where 𝑘 is a user-defined parameter) rules with
highest effect from a dataset of observations by controlling the FWER, since
to address this problem multiple hypotheses need to be tested. We develop
a branch-and-bound algorithm with provable guarantees for such discovery
task, and we also prove that the underlying problem is NP-hard. We then
adapted our algorithm for the breast cancer context by adding two param-
eters: a first one that encodes the set of admissible rules to study, and a
second one that controls the discovery non-overlapping results. �ese two
features steer the rule-mining process towards a set of diverse biologically-
informed rules that represent the combinations of treatments with the high-
est causal effect on the target variable. We extensively assess the perfor-
mances of our tool on synthetic data and we run it on real-world breast
cancer datasets, where it was able to identify both well-known mutational
pa�erns that cause this malignancy and novel candidate relationships to test
via follow-up studies.
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Chapter 1

Introduction

As humanity, we are now traversing the information age, an era in which we
generate, retrieve and analyse an unprecedented quantity of data on which
we ground our choices. Such revolution has allowed us to record and store
data from various phenomena, such as industrial processes, medical analy-
ses, or market trends, with the hope of extracting useful information from
such data that will lead us to improve our productive systems, health sta-
tuses, and economies.

In order to get such value from data, however, we need to process it and
extract meaningful information upon which to base our decisions. �is can
be accomplished via hypothesis testing that leverages observed data to val-
idate a thesis while ensuring a certain level of statistical reliability within
a specified margin of error. Another way is to automatically analyse data
for discovering specific trends and relationships, as in data mining tasks.
Finally, it is possible to combine the two worlds by designing data mining
algorithms with statistical guarantees on their results. Achieving such goal
is not straightforward, as it involves testing multiple hypotheses and the
combination of their statistical errors o�en leads to an increased probability
of reporting incorrect results in the output. In the context of multiple hy-

pothesis testing we therefore have to adopt specific techniques to control the
error achieved over the discoveries in output to the algorithms. A commonly
adopted strategy is to bound the Family-Wise Error Rate (FWER), that is the
probability of returning in output at least one false positive, and algorithms
with such guarantees play a key role in high-stakes decisions fields, as in
the financial or in the medical areas.

Even if they provide statistical guarantees, however, most of data min-
ing results are based on correlations and that may lead to incorrect (or even
worse, harmful) decisions, especially in the just mentioned high-stakes field.
Such problem is not related to correlation strength, as an high correlation
between variables may not reflect a true cause-effect relationship, but it has
a different nature. As a simple example, let us examine the relationship
between the number of fires in a city and the size of its firefighting person-
nel. �e number of firefighters is strongly and positively correlated with the
amount of fires in a city, but that does not mean that reducing the former
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will decrease the la�er (it would actually have an opposite effect). �e key
here is that the real-world model is more complex than the one under anal-
ysis: both variables are direct consequences of a third one, that is the fire
hazard of the city under study, and not including such variable would lead us
to erroneous conclusions. Such issues may arise in much more complex sce-
narios in which our knowledge of cause-effect relationships is not as deep
as the previous example, and they justify the development of causal tech-
niques that distinguish spurious correlations from real-world mechanisms
using data.

�e gold standard for inferring causal relationships is to perform a ran-
domized control trial (RCT), that is a real-world experiment in which the pop-
ulation under study is divided into two homogeneous groups, one of which
performs a given action (e.g. ingesting a treatment pill) while the other does
not (e.g. it takes a placebo), for then comparing the two cohorts outcomes.
In the previous example context, that would translate into spli�ing the pool
of cities under study in two groups with homogenous features (such as pop-
ulation, infrastructure status, and climate), and to decrease the amount of
firefighters in one of the two. As in this example, it is clear that performing
RCTs may be risky, unethical or unfeasible, therefore the causal community
developed methods to answer causal questions from observational data, i.e.
data gathered without performing any experiment.

Causal inference can be exploited to answer two fundamental scientific
questions concerning the presence of interactions between different vari-
ables composing a system, and their strength. �e first is a causal discov-

ery question, whose aim is to infer cause and effect relationships among
the variables under study and that is particularly useful in exploratory data
analyses to understand each variable’s role. As an example, causal discovery
applied to biological data aims at inferring relationships (such as coopera-
tion or competition mechanisms) among groups of organisms. �e second is
an effect estimation task that aims at quantifying the strength of each cause-
effect relationship without accounting for confounding effects and spurious
correlations. Such techniques are exploited in the medical field during pre-
liminary phases of drug effect assessment, that is before performing a RCT
which will empirically confirm the drug effectiveness.

In this �esis we develop causal algorithms for the two fundamental
problems introduced above with theoretical guarantees on the FWER of
their output. �at is especially important in high-stake scenarios, as our
algorithms are able to address finite sample issues while distinguishing be-
tween spurious and genuine associations. Our algorithms work on obser-
vational data, as it is the most common type of data that does not require
conducting any RCT. �is �esis work contributes to the state-of-the-art
with the following results:

• In Chapter 3 we address the causal discovery problem, with guaran-
tees on the returned outputs. In particular, we focus on the local causal
discovery problem, which aims at inferring the causal structure in the
proximity of a target variable, and it is a useful primitive for global
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causal discovery, which aims at the whole network inference. Given a
target variable, local causal discovery aims at inferring two sets of el-
ements: the parent-children set (or PC), that contains all the variables
that are direct causes or consequences of such target, and theMarkov

boundary (or MB), that is the minimal set of variables that make the
target independent from any other variable in the network upon con-
ditioning on it. We prove, both analytically and experimentally, that
state-of-the-art algorithms for local causal discovery do not provide
guarantees on the FWER of their output and cannot be adapted for
the task by simply correcting for multiple hypotheses testing due to
their reliance on strong and untestable assumptions. We then present
RAveL-PC and RAveL-MB, that are the first local causal discovery algo-
rithms with statistical guarantees on the FWER of their outputs. Our
algorithms rely on Rademacher averages, a key concept from statis-
tical learning theory, to tackle the multiple hypotheses testing prob-
lem in scenarios where a large number of independence tests are per-
formed. To the best of our knowledge, this is the first application of
such concepts in (local) causal discovery. We then introduce two novel
statistics for the task, and we evaluate them exhaustively both on syn-
thetic and real-world datasets. �is work appeared in [Simionato and
Vandin, 2022, 2023].

• In Chapter 4 we focus on an effect estimation problem exploiting the
syntax of causal rules. Causal rules represent specific combinations of
treatments, that are the variables for which we want to estimate the
causal effect, to which it is assigned a score representing their aver-
age treatment effect on the target variable. More specifically, we focus
on the reliable causal effect estimation that takes into account estima-
tion errors due to finite data samples providing confidence intervals
for each estimate. We extend such framework taking into account the
multiple hypotheses testing problem and develop ALLSTAR, a branch-
and-bound algorithm for mining the top-𝑘 rules with the highest re-
liable effect and probabilistic guarantees on the FWER of its output.
We prove that the underlying discovery problem is NP-hard, and we
adapt the algorithm for applications in the medical domain. In such
scenarios it is typical to collect plenty of measurements from a mod-
est amount patients, which can complicate the discovery process. In
order to deal with such issue, we study rules with up to a given num-
ber of distinct variables and we exploit a graph G for encoding the
set of biologically-meaningful rules to study. Additionally, we present
a novel and tighter bound to speed-up the discovery in single-core
machines. We analyse ALLSTAR performances on synthetic data, and
we run it on real-world breast cancer data, where it is able to retrieve
both relations well established in the literature and novel biologically-
sound rules to be verified via follow-up experiments. We finally tested
the stability of the retrieved rules with respect to variations in G com-
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paring such results with cancer literature.

�e reminder of the �esis is organized as follows. In Chapter 2 we
introduce basic notions and notations used throughout this work. In Chap-
ter 3 we introduce the problem of local causal discovery, and we present
RAveL-PC and RAveL-MB, that are the first algorithms for PC and MB dis-
covery with guarantees on the FWER of their results. In Chapter 4 we ad-
dress the effect estimation task and we present ALLSTAR, our algorithm for
causal rule reliable effect estimation, and its application on real-world breast
cancer data. Finally, Chapter 5 discusses the contribution presented in this
�esis and highlights future research directions.
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Chapter 2

Preliminaries

In this Chapter, we introduce preliminary concepts and notations that will
be used throughout the �esis. Section 2.1 introduces the concept of causal
Bayesian network for representing cause and effect relationships among a
set of variables. Section 2.2 and Section 2.3 present the structure discovery
and the effect estimation problems, for which we developed ad-hoc algo-
rithms in Chapter 3 and 4 respectively. Finally, Section 2.4 introduces the
concept of statistical hypothesis testing and presents the challenges associ-
ated with conducting multiple tests.

2.1 Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models useful to encode
joint probabilities among a set of variables V by means of a Directed Acyclic
Graph (DAG) G (one such example is shown in Figure 2.1) and a probability
distribution function 𝑝 over V. Formally, they are defined as follows.

Definition 2.1 (Bayesian network [Neapolitan et al., 2004]). Let 𝑝 be a joint

probability distribution over V. Let G = (W,A) be a DAG where the vertices

W of G are in a one-to-one correspondence with members of V, and such that

∀𝑋 ∈ V, 𝑋 is conditionally independent of all non-descendants of 𝑋 , given the

parents of 𝑋 (i.e., the Markov condition holds). A Bayesian Network (BN) is
defined as a triplet 〈V,G, 𝑝〉.

As by definition, the Markov condition allows us to represent BNs com-
pactly by modelling the probability distribution function of each variable
𝑋 ∈ V as a function of its parents 𝑝𝑎(𝑋 ) [Pearl, 2009] only, where the par-
ents 𝑝𝑎(𝑋 ) are those elements𝑌 for which the arc {𝑌 → 𝑋 } ∈ A. �is allows
us to decompose big (i.e. within a large set of variables) join probabilities
into smaller ones. In a Bayesian network with G defined as in Figure 2.1, this
would translate for example of having the probability distribution function
of 𝑋3 as a function of 𝑋1 and 𝑋2 only, that is 𝑝𝑎(𝑋3) = {𝑋1, 𝑋2}.

Statistical dependencies among variables of a BN can be inferred by
studying the paths that link them, that is by studying G structure. In or-
der to introduce such concept, let us define a path of any directionality from
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Figure 2.1: Example of DAG G associated to a Bayesian network.

𝑋 ∈ V to 𝑌 ∈ V\ {𝑋 } as a sequence of arcs among adjacent nodes that starts
from𝑋 and ends on𝑌 . �e path is directed if each all the edges are oriented in
the same direction. �e directional separation, or d-separation [Pearl, 2009],
criterion can be used to study the dependence between two subsets X and Y
of variables conditional on another set Z, such that X,Y,Z ⊆ V are disjoint.
Informally, the criterion marks a path between any variable in X and any
variable in Y as blocked by Z if the flow of dependency between the two sets
is interrupted and therefore the two sets are independent conditioning on Z,
wri�en (X ⊥⊥ Y|Z)G . Viceversa, if the two sets X and Y are conditionally
dependent given Z, denoted with (X 6⊥⊥ Y|Z)G , the path is marked as open.
More formally, the definition of d-separated path is the following.

Definition 2.2 (d-separation [Pearl, 2009]). Apath𝑞 is d-separated, or blocked,
by a set of nodes Z if and only if:

1. 𝑞 contains a chain 𝐼 → 𝑀 → 𝐽 or a fork 𝐼 ← 𝑀 → 𝐽 such that𝑀 ∈ Z,
or

2. 𝑞 contains an inverted fork (or collider) 𝐼 → 𝑀 ← 𝐽 such that 𝑀 ∉ Z
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and no descendant of𝑀 is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from

a node in X to a node in Y.

As an example on the structure of Figure 2.1, 𝑋6 and 𝑋7 are independent
without conditioning on any variable (that is (𝑋6 ⊥⊥ 𝑋7 |∅)G , or (𝑋6 ⊥⊥ 𝑋7)G),
as the collider passing through 𝑋9 is blocked. If we condition on 𝑋9, the
two variables become dependent (wri�en (𝑋6 6⊥⊥ 𝑋7 |𝑋9)G), but if we also
condition on 𝑋8 they are independent due to the chain 𝑋6 → 𝑋8 → 𝑋9

being blocked (i.e. (𝑋6 ⊥⊥ 𝑋7 |𝑋8, 𝑋9)G).
In most real-world scenarios, however, the graph G is not known a priori

and therefore it should be inferred from data: this is possible only under the
assumption of faithfulness that links the probabilistic properties of 𝑝 with
the graphical ones of G, as defined below.

Definition 2.3 (Faithfulness [Spirtes et al., 2000]). A directed acyclic graph

G is faithful to a joint probability distribution 𝑝 over a variable setV if and only

if every independence present in 𝑝 is entailed by G and the Markov Condition.

A distribution 𝑝 is faithful if and only if there exists a DAG G such that G is

faithful to 𝑝 .

Under the faithfulness assumption, the independencies encoded by the
d-separation criterion map one-to-one to statistical independencies, that is
(𝑋 ⊥⊥ 𝑌 |Z)G ⇔ (𝑋 ⊥⊥ 𝑌 |Z)𝑝 [Pearl, 2009], where the la�er notation
represents statistical independence between 𝑋 and 𝑌 conditional on Z. In
the following we will consider only faithful BNs, therefore we will use the
notation𝑋 ⊥⊥ 𝑌 |Z to refer to either d-separation or statistical independence
depending on the context. Faithfulness is an untestable assumption on the
underlying data generative scenario that may not always hold, as in the case
inwhichmultiple different paths from𝑋 to𝑌 (e.g. the two paths𝑋2 → 𝑋3 →
𝑋6 and 𝑋2 → 𝑋4 → 𝑋6 from 𝑋2 to 𝑋6 of Figure 2.1) cancel each other out
creating a statistical independence that is not implied in the graph structure
(as in Example 6.34 of Peters et al. [2017]). Luckily, under mild conditions,
such scenario happens with zero probability (see�eorem 3.2 of Spirtes et al.
[2000]).

Lastly, a faithful BN can be causal if it encodes cause-effect relation-
ships allowing us to reason about interventions on variables [Pearl, 2009].
An atomic intervention se�ing the value of 𝑋 to 𝑥 (wri�en as 𝑑𝑜 (𝑋 = 𝑥))
is a real-world action that forces the variable 𝑋 to take the specified con-
stant value 𝑥 without imposing any additional constraint on the values of
the other variables in the network. In the example of Figure 2.1, 𝑃 (𝑋6 =

𝑥6 |𝑑𝑜 (𝑋4 = 𝑥4)) measures the probability of observing 𝑋6 = 𝑥6 a�er forcing
the variable 𝑋4 to take the value 𝑥4, action that may change the probability
distribution of each descendant of 𝑋4 in the graph, that are 𝑋6, 𝑋9, 𝑋10, and
𝑋11. Intervening on 𝑋 makes it independent of its parents (as now we have
𝑝 (𝑋 = 𝑥) = 1 and 0 otherwise, without considering 𝑝𝑎(𝑋 ) values) and al-
lows variables that are causally influenced by 𝑋 to change as a consequence
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of the intervention. Interventional distributions (i.e. 𝑝 (𝑌 = 𝑦 |𝑑𝑜 (𝑋 = 𝑥)))
can be inferred from observational distributions (i.e. 𝑝 (𝑌 = 𝑦 |𝑋 = 𝑥)) if
there exists a set Z of variables that satisfies the back-door criterion, defined
as follows.

Definition 2.4 (Back-door [Pearl, 2009]). A set of variables Z satisfies the

back-door criterion relative to an ordered pair of variables (𝑋,𝑌 ) in a DAG G
if:

1. no node in Z is a descendant of 𝑋 ; and

2. Z blocks all paths between 𝑋 and 𝑌 that contain an arrow into 𝑋 .

Similarly, if X and Y are two disjoint set of nodes in G, then Z is said to satisfy

the back-door criterion relative to (X,Y) if it satisfies the criterion relative to

any pair (𝑋𝑖, 𝑌𝑗 ) such that 𝑋𝑖 ∈ X and 𝑌𝑗 ∈ Y.

If Z satisfies the back-door criterion for (𝑋,𝑌 ), then interventional dis-
tributions is identifiable by back-door adjustment as follows.

�eorem 2.1 (Back-door adjustment [Pearl, 2009]). If a set of variables Z

satisfies the back-door criterion relative to (𝑋,𝑌 ), then the causal effect of 𝑋

on 𝑌 is identifiable and is given by the formula

𝑝 (𝑌 = 𝑦 |𝑑𝑜 (𝑋 = 𝑥)) =
∑︁

z

𝑝 (𝑌 = 𝑦 |𝑋 = 𝑥,Z = z)𝑝 (Z = z).

�e back-door adjustment allows us to infer causal relationships from
observational data if the back-door paths for the couple (𝑋,𝑌 ) are properly
blocked. �is can be the case for calculating 𝑃 (𝑋6 = 𝑥6 |𝑑𝑜 (𝑋4 = 𝑥4)) by
conditioning on Z = {𝑋2} given the structure of Figure 2.1, leading to

𝑝 (𝑋6 = 𝑥6 |𝑑𝑜 (𝑋4 = 𝑥4)) =
∑︁

𝑥2

𝑝 (𝑋6 = 𝑥6 |𝑋4 = 𝑥4, 𝑋2 = 𝑥2)𝑝 (𝑋2 = 𝑥2).

2.2 Structure Discovery

One of the main causal inference tasks is the causal discovery task which
aims at inferring structural properties of the BN from observational data,
proving to be useful in data exploration phases for understanding depen-
dencies between variables. �e discovery task may focus on inferring the
complete graphG, that is the global discovery task, or the region in proximity
of a target variable 𝑇 ∈ V, as in the local causal discovery task. Algorithms
for the la�er can be used as useful primitives for global causal discovery and
they focus on discovering two sets of variables, namely the Parent-Children
set and the Markov boundary of 𝑇 .

�e Parent-Children (or PC) set of 𝑇 is composed of variables that are
direct causes or direct consequences of 𝑇 , that are respectively the parents
and the children of 𝑇 in G.
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Definition 2.5 (Parent-children set of T [Ma andTourani, 2020]). �e parent-
children set of 𝑇 , or PC(T), is the set of all parents and all children of 𝑇 , i.e.,

the elements directly connected to 𝑇 , in the DAG G.

Statistically, the elements in 𝑃𝐶 (𝑇 ) are the only that cannot be d-separated
by 𝑇 (as a consequence of being directly connected to it) that is, by the
Markov property, 𝑃𝐶 (𝑇 ) = {𝑋 ∈ V \ {𝑇 } : ∀Z ⊆ V \ {𝑇,𝑋 },𝑇 6⊥⊥ 𝑋 |Z}.
As an example, in Figure 2.1 we have 𝑃𝐶 (𝑋6) = {𝑋3, 𝑋4, 𝑋5, 𝑋9, 𝑋10} that is
the union of the parents of 𝑋6 (i.e. 𝑋3, 𝑋4, and 𝑋5) and its children (i.e. 𝑋9

and 𝑋10).

�e second set is the Markov Boundary (or MB) of 𝑇 that is the minimal
set of variables that make 𝑇 independent of any other variable in the BN
by conditioning on it. Such property makes it the optimal solution for the
feature selection task when predicting the value of𝑇 [Ma and Tourani, 2020,
Tsamardinos et al., 2003a], and its definition follows.

Definition 2.6 (Markov Boundary of 𝑇 [Pearl, 2009, Tsamardinos et al.,
2003a]). �e Markov Boundary of T or MB(T) is the smallest set of variables

in V \ {𝑇 } conditioned on which all other variables are independent of 𝑇 , that

is

𝑀𝐵(𝑇 ) = {𝑋 ∈ V \ {𝑇 } : ∀𝑌 ∈ V \ {𝑀𝐵(𝑇 ) ∪ {𝑇 }},𝑇 ⊥⊥ 𝑌 |𝑀𝐵(𝑇 )}.

�eMarkov boundary of𝑇 is composed by parents, children, and spouses
of 𝑇 , that are parents of children of 𝑇 that are not 𝑇 . �is implies that 𝑇
and each spouse 𝑋 form a collider structure with a common child 𝑌 , and
it mathematically translates into the following set 𝑠𝑝𝑜𝑢𝑠𝑒𝑠 (𝑇 ) = {𝑋 ∈ V \
{𝑇 } : ∃𝑌 ∈ 𝑃𝐶 (𝑇 ), 𝑋 ∈ 𝑃𝐶 (𝑌 ) : ∀Z ⊆ V \ {𝑋,𝑌,𝑇 }, 𝑋 ⊥⊥ 𝑇 |Z ∧ 𝑋 6⊥⊥
𝑇 |Z∪{𝑌 }}. �eMarkov Boundary of𝑋6 in Figure 2.1 is𝑀𝐵(𝑋6) = 𝑃𝐶 (𝑋6)∪
𝑠𝑝𝑜𝑢𝑠𝑒𝑠 (𝑋6) = {𝑋3, 𝑋4, 𝑋5, 𝑋9, 𝑋10} ∪ {𝑋8}. 𝑋8 is in fact, the only spouse of
𝑋6 with 𝑋9 as common child, that is the spouse definition holds by se�ing
𝑇 = 𝑋6, 𝑋 = 𝑋8, and 𝑌 = 𝑋9.

2.3 Effect Estimation

Another main causal inference task is effect estimation, which goal is to in-
fer how much a treatment 𝑋 influences a specific target variable 𝑇 taking
into account the presence of confounder variables Z1. Such tasks focuses on
estimating post-intervention probabilities (i.e. 𝑝 (𝑇 = 𝑡 |𝑑𝑜 (𝑋 = 𝑥))) from
observational data avoiding biases and finite sample data issues, for then
combining them to calculate the effect value of interest.

When dealing with binary treatments, the most studied quantity is the
Average Treatment Effect (ATE), orAverage Causal Effect (ACE), defined as [Hol-

1�is section definitions can be easily extended in the case of multiple treatments X.
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land, 1986, Rubin, 1974]2

𝐴𝑇𝐸 (𝑋 → 𝑇 ) = 𝐸 [𝑇 |𝑑𝑜 (𝑋 = 1)] − 𝐸 [𝑇 |𝑑𝑜 (𝑋 = 0)]

whichmeasures the average increase of𝑇 when performing the action𝑑𝑜 (𝑋 =

1)w.r.t. 𝑑𝑜 (𝑋 = 0). Such concept can be adapted for categorical treatment by
considering two categories at a time, as suggested in [Wang et al., 2017], or
for continuous data studying the average causal derivative [Chernozhukov
et al., 2022] defined as follows

𝐴𝐶𝐷 (𝑋 → 𝑇 ) = 𝐸 [𝛿/𝛿𝑥𝑇 |𝑑𝑜 (𝑋 = 𝑥)] .

2.4 Statistical and Multiple Hypothesis Test-

ing

Causal discovery tasks assume to rely on the knowledge of the true prob-
ability distribution function 𝑝 in order to test for independencies between
variables but in most cases such function is unknown pushing us to infer its
properties from data via statistical hypothesis testing. Such tests take as an
input a null hypothesis 𝐻0 and a set of observations S, and they compute a
test statistic that follows a specific distribution if 𝐻0 is true. As an output,
such tests return a 𝑝-value representing the probability of observing a test
statistic as extreme as the one observed if 𝐻0 holds.

In practice, while testing for the independence of two variables 𝑋 and
𝑌 , they are considered dependent if the 𝑝-value of the corresponding test
is below a threshold 𝛿 , that is if there is a very low probability (lower than
𝛿) of observing such dependence by chance. It is easy to see that such pro-
cedure guarantees that if 𝑋 and 𝑌 are independent, then the probability of
a false discovery, that is falsely rejecting their independence, is at most 𝛿 .
�e situation is drastically different when a large number 𝑁 of hypotheses
are tested, as in the case of local causal discovery. In this case, if the same
threshold 𝛿 is used for every test, the expected number of false discoveries
can be as large as 𝛿𝑁 . �erefore, it is of fundamental importance to correct
for multiple hypothesis testing, with the goal of providing guarantees on
false discoveries.

A commonly used guarantee is provided by the Family-Wise Error Rate

(FWER), which is the probability of having at least one false discovery among
all the tests. A common approach to control the FWER is the so called Bon-

ferroni correction [Bonferroni, 1936], which performs each test with a cor-
rected threshold 𝛿𝑐𝑜𝑟𝑟 = 𝛿/𝑁 (a simple union bound shows that the resulting
FWER is at most 𝛿).

2�e reader used to Rubin causal models may recall the same definition with coun-
terfactuals in place of interventional probabilities. Despite being related to two different
concepts, counterfactual and interventional probabilities are equivalent if we do not condi-
tion on any evidence, as the abduction phase (see�. 7.1.7 of [Pearl, 2009]) does not update
the probabilities over the unobserved variables U. For a more in-depth discussion, we point
the interested reader to Chapter 7 of [Pearl, 2009], and its note at page 221.
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A similar problem arises when we want to estimate confidence intervals
around empirical probabilities 𝑝 that contain the true ones 𝑝 with probability
1 − 𝛿 , as in the task of effect estimation with guarantees. If multiple confi-
dence intervals are estimated, then we have to account for the multiple hy-
pothesis problem and perform each inference with a threshold 𝛿𝑐𝑜𝑟𝑟 = 𝛿/𝑁
in order to bound the FWER of the family of estimations.

2.5 Notation

Finally, we summarize part of the notation we will use in this work in Ta-
ble 2.1.

Table 2.1: Notation table.

Symbol Description

𝑋 Variable 𝑋
𝑥 Value 𝑥 of variable 𝑋
X Set of variables X
x Set of values x of variables X

G = (V,A) Directed Acyclic Graph (DAG) G with nodes V and arcs A
(X ⊥⊥ Y|Z)G D-separation of X and Y given Z on graph G
(X ⊥⊥ Y|Z)𝑝 Statistical conditional independence w.r.t. probability

distribution function 𝑝 of X and Y conditioning on Z

(X ⊥⊥ Y|Z) Conditional independence of X and Y conditioning on Z,
equivalent both to statistical conditional independence
and d-separation if faithfulness holds.
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Chapter 3

RAveL

In this Chapter we address the local causal discovery problem with guar-
antees on the FWER. A�er proving that state-of-the-art algorithms cannot
be adapted for the task, we introduce RAveL-PC and RAveL-MB for the 𝑃𝐶
and 𝑀𝐵 discovery, respectively. RAveL-PC and RAveL-MB come with prov-
able guarantees on the FWER of their outputs, and they tackle the multiple
hypothesis problem using data-dependent bounds based on Rademacher av-
erages. We finally assessed RAveL-PC and RAveL-MB performances both on
synthetic and real-world datasets.

3.1 Introduction

One of the most fundamental and challenging problems in science is the
discovery of causal relations from observational data [Pearl, 2009]. Bayesian
networks are graphical models that are widely used to represent causal rela-
tions and have been the focus of a large amount of research in data mining
and machine learning. Bayesian networks represent random variables or
events as vertices of graphicalmodels, and encode conditional-independence
relationships according to the (directed) Markov property among the vari-
ables or events as directed acyclic graphs (DAGs). �ey are a fundamental
tool to represent causality relations among variables and events, and have
been used to analyze data from several domains, including biology [Pe’er,
2005, Sachs et al., 2005], medicine [Velikova et al., 2014], and others [Yusuf
et al., 2021, Kusner and Lo�us, 2020].

One of the core tasks in learning Bayesian networks from observational
data is the identification of local causal structures around a target variable
𝑇 . In this work we focus on two related local structures. �e first one is the
set of parents and children (i.e., the neighbours) of 𝑇 in the DAG, denoted
as the parent-children set 𝑃𝐶 (𝑇 ). 𝑃𝐶 (𝑇 ) has a natural causal interpretation
as the set of direct causes and effects of 𝑇 [Spirtes et al., 2000], and the ac-
curate identification of 𝑃𝐶 (𝑇 ) is a crucial step for the inference of Bayesian
networks. �e second structure is the Markov boundary of 𝑇 , denoted as
𝑀𝐵(𝑇 ). 𝑀𝐵(𝑇 ) is a minimal set of variables that makes 𝑇 conditionally in-
dependent of all the other variables, and comprises the elements of 𝑃𝐶 (𝑇 )
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and the other parents of the children of 𝑇 . �us, 𝑀𝐵(𝑇 ) includes all direct
causes, effects, and causes of direct effects of 𝑇 . Moreover, under certain
assumptions, the Markov boundary is the solution of the variable selection
problem [Tsamardinos and Aliferis, 2003], that is, it is the minimal set of
variables with optimal predictive performance for 𝑇 .

In several real-world applications, such as biology [Sachs et al., 2005]
and neuroscience [Bielza and Larrañaga, 2014], the elements in 𝑃𝐶 (𝑇 ) and
𝑀𝐵(𝑇 ) identified from observational data provide candidate causal relations
explored in follow-up studies and experiments, which o�en require signifi-
cant resources (e.g., time or chemical reagents). In other areas, such as algo-
rithmic fairness [Mhasawade and Chunara, 2021, Kusner and Lo�us, 2020],
local causal discovery can help in identifying discriminatory relationships
in data. In these scenarios, it is crucial to identify reliable causal relations
between variables, ideally avoiding any false discovery.

While the stochastic nature of random sampling implies that false dis-
coveries cannot be avoided with absolute certainty (when at least a relation
is reported), a common approach from statistics to limit false discoveries is to
develop methods that rigorously bound the Family-Wise Error Rate (FWER),
that is, the probability of reporting one or more false discoveries. However,
current approaches for local causal discovery do not provide guarantees on
false discoveries in terms of FWER, and the study of causal discovery with
false positive guarantees has received scant a�ention in general (see Sec-
tion 3.3).

Our contributions In this Chapter we introduce two novel algorithms
that exploit Rademacher Averages for Local structure discovery (RAveL) pro-
viding rigorous guarantees on the FWER: RAveL-MB for the MB discovery
task and RAveL-PC for the PC identification task. To the best of our knowl-
edge, our algorithms are the first ones to allow the discovery of the PC
set and the MB of a target variable while providing provable guarantees
on false discoveries in terms of the FWER. Our algorithms crucially rely on
Rademacher averages, a key concept from statistical learning theory [Bartle�
and Mendelson, 2002], to properly account for the multiple-hypothesis test-
ing problem arising in local causal discovery, where a large number of sta-
tistical test for conditional independence are performed. To the best of our
knowledge, this work is the first one to introduce the use of Rademacher
averages in (local) causal discovery. We prove, both analytically and ex-
perimentally, that currently used approaches to discover the PC set and the
MB of a target variable cannot be adapted to control the FWER simply by
correcting for multiple-hypothesis testing. �is is due to their additional re-
quirement of conditional dependencies being correctly identified, which is
an unreasonable assumption due to the stochastic nature of random sam-
pling and finite sample sizes. We then introduce two test statistics to be
used in independence testing with Rademacher averages. Our experimental
evaluation shows that our algorithms do control the FWER while allowing
for the discovery of elements in the PC set and in the MB of a target vari-
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able. On real data, our algorithms return a subset of variables that causally
influences the target in agreement with prior knowledge.

�e rest of the Chapter is organized as follows. Section 3.2 revisits the
preliminary concepts used in the rest of the Chapter. Section 3.3 describes
previous works related to our contribution. Section 3.4 describes our algo-
rithms and their analysis, and the assumptions required by previously pro-
posed algorithms in order to provide rigorous results in terms of the FWER.
For clarity, we describe our algorithms focusing on the case of continuous
variables, but our algorithms can be easily adapted to discrete and categori-
cal variables. Section 3.5 describes our experimental evaluation on synthetic
and real data. Finally, Section 3.6 offers some concluding remarks.

3.2 Preliminaries

In this section, we revisit basic notions and preliminary concepts used in the
rest of the Chapter. More specifically, in Section 3.2.1 we formally define
Bayesian networks (BNs) and the sets 𝑃𝐶 (𝑇 ) and 𝑀𝐵(𝑇 ) for a target vari-
able 𝑇 . In Section 3.2.2 we describe the statistical testing procedure com-
monly used by algorithms for the identification of 𝑃𝐶 (𝑇 ) and 𝑀𝐵(𝑇 ). In
Section 3.2.3 we introduce the multiple hypotheses testing problem and the
FWER. Finally, in Section 3.2.4 we introduce the concept of Rademacher av-
erages for supremum deviation estimation.

3.2.1 Bayesian networks

Bayesian Networks (BNs) are convenient ways to model the influence among
a set of variables V. BNs represent interactions using a Direct Acyclic Graph
(DAG), and employ probability distributions to define the strength of the
relations. More formally, they are defined as follows.

Definition 3.1 (Bayesian network [Neapolitan et al., 2004]). Let 𝑝 be a joint

probability distribution over V. Let G = (W,A) be a DAG where the vertices

W of G are in a one-to-one correspondence with members of V, and such that

∀𝑋 ∈ V, 𝑋 is conditionally independent of all non-descendants of 𝑋 , given the

parents of 𝑋 (i.e., the Markov condition holds). A Bayesian Network (BN) is
defined as a triplet 〈V,G, 𝑝〉.

A common assumption for the study of BNs is faithfulness, defined as
follows.

Definition 3.2 (Faithfulness [Spirtes et al., 2000]). A directed acyclic graph

G is faithful to a joint probability distribution 𝑝 over variable set V if and only

if every independence present in 𝑝 is entailed by G and the Markov Condition.

A distribution 𝑝 is faithful if and only if there exists a DAG G such that G is

faithful to 𝑝 .
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�e dependencies between variables in a faithful BN can be analyzed
through the study of paths, which are sequences of consecutive edges of
any directionality (i.e. 𝑋 → 𝑌 or 𝑋 ← 𝑌 ) in G. In particular, the direc-

tional separation, or d-separation [Pearl, 2009], criterion can be used to study
the dependence between two subsets X and Y of variables conditioning on
another set Z of variables, such that X,Y,Z ⊆ V are disjoint. Informally,
the criterion marks a path between any variable in X and any variable in
Y as blocked by Z if the flow of dependency between the two sets is inter-
rupted and therefore the two sets are independent conditioning on Z, wri�en
X ⊥⊥ Y | Z. Viceversa, if the two sets X and Y are conditionally dependent
givenZ, denoted withX 6⊥⊥ Y | Z, the path is marked as open. More formally,
the definition of d-separated path is the following.

Definition 3.3 (d-separation [Pearl, 2009]). Apath𝑞 is d-separated, or blocked,
by a set of nodes Z if and only if:

1. 𝑞 contains a chain 𝐼 → 𝑀 → 𝐽 or a fork 𝐼 ← 𝑀 → 𝐽 such that𝑀 ∈ Z,
or

2. 𝑞 contains an inverted fork (or collider) 𝐼 → 𝑀 ← 𝐽 such that 𝑀 ∉ Z

and no descendant of𝑀 is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from

a node in X to a node in Y.

A causal Bayesian network is a Bayesian network with causally relevant
edge semantics [Pearl, 2009, Ma and Tourani, 2020].

Local causal discovery

�e task of inferring the local region of a causal BN related to a target vari-
able 𝑇 from data is called local causal discovery. Two sets of variables are
of major importance in local causal discovery. �e first set is the parent-

children set 𝑃𝐶 (𝑇 ), which contains the variables that are direct cause of 𝑇
or that are its direct consequence.

Definition 3.4 (Parent-children set of T [Ma andTourani, 2020]). �e parent-
children set of T, or PC(T), is the set of all parents and all children of 𝑇 , i.e.,

the elements directly connected to 𝑇 , in the DAG G.

�e elements in 𝑃𝐶 (𝑇 ) are the only variables that cannot be d-separated
from 𝑇 , that is, by the Markov property, for each 𝑋 in 𝑃𝐶 (𝑇 ) : 𝑋 6⊥⊥ 𝑇 |
Z,∀Z ⊆ V \ {𝑋,𝑇 }. �e second set is the Markov boundary 𝑀𝐵(𝑇 ) of a
target variable 𝑇 , defined as follows.

Definition 3.5 (Markov boundary of T [Pearl, 2009, Tsamardinos et al.,
2003a]). �e Markov boundary of T or MB(T) is the smallest set of variables

in V \ {𝑇 } conditioned on which all other variables are independent of 𝑇 , that

is ∀𝑌 ∈ V \𝑀𝐵(𝑇 ), 𝑌 ≠ 𝑇,𝑇 ⊥⊥ 𝑌 | 𝑀𝐵(𝑇 ).
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Given its definition and the d-separation criteria, in a faithful BN𝑀𝐵(𝑇 )
is composed of all parents, children, and spouses (i.e., parents of children) of
𝑇 [Ma and Tourani, 2020], that are those variables 𝑋 ∈ V \ {𝑇 } for which
∃𝑌 ∈ 𝑃𝐶 (𝑇 ) such that 𝑋 ⊥⊥ 𝑇 | Z and 𝑋 6⊥⊥ 𝑇 | Z ∪ {𝑌 } for all Z ⊆
V\{𝑋,𝑇 }. 𝑀𝐵(𝑇 ) is theminimal subset S ⊆ V forwhich 𝑝 (𝑇 | S) is estimated
accurately [Ma and Tourani, 2020, Tsamardinos et al., 2003a], therefore is the
optimal solution for feature selection tasks.

3.2.2 Statistical testing for independence

�e identification of 𝑃𝐶 (𝑇 ) and 𝑀𝐵(𝑇 ) is based on the definitions of con-
ditional dependence and independence between two variables 𝑋 and 𝑌 . In
practice, given a dataset, the conditional dependencies between variables are
assessed using statistical hypothesis testing. Since a universal independence
test does not exist [Shah and Peters, 2020], a commonly used approach is to
compute the Pearson’s linear correlation coefficient 𝑟 between two vectors x
and y of 𝑘 elements:

𝑟x,y =

∑𝑘
𝑖=1 𝑥𝑖𝑦𝑖 − 𝑘𝑥𝑦
(𝑘 − 1)𝑠x𝑠y

(3.1)

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖-th element x and y, respectively, 𝑥 and 𝑦 are the
sample mean of x and y, respectively, and 𝑠x and 𝑠y are the sample standard
deviations.

�e vectors x and y correspond to the observations of 𝑋 and 𝑌 in the
data, but their definition depends on whether the test is unconditional, or
conditional on a set Z of variables. In the first case, x and y are the vectors
of observations for variables𝑋 and𝑌 , respectively. In the second case, x and
y represent the residuals of the linear regression of the observations of the
variables in Z on the ones in 𝑋 (respectively, for y, the ones in 𝑌 ). For sake
of simplicity, in what follows we will use 𝑟𝑋,𝑌,Z to denote the value of 𝑟x,y
when x and y are obtained conditioning on the set Z, potentially with Z = ∅
(i.e., for unconditional testing), as we just described.

Under the null hypothesis of independence between𝑋 and 𝑌 conditional
on Z (including the case Z = ∅), the expected value of 𝑟𝑋,𝑌,Z is 0, and the
statistic 𝑡 =

𝑟𝑋,𝑌,Z
√︃

(1−𝑟 2
𝑋,𝑌,Z
)/(𝑘−2)

follows a Student’s t distribution with 𝑘 − 2 de-

grees of freedom. �e dependence between𝑋 and𝑌 is then usually assessed
by computing (with Student’s t distribution) the 𝑝-value for the test statistic
𝑡 , that is the probability that the statistic is greater or equal than 𝑡 under the
null hypothesis of independence. In practice, algorithms for local causal dis-
covery (e.g., [Tsamardinos et al., 2003b, Pena et al., 2007]) consider 𝑋 and 𝑌
as independent (unconditionally or conditional onZ) if the 𝑝-value is greater
than a threshold 𝛿 (common values for 𝛿 are 0.01 or 0.05), while 𝑋 and 𝑌 are
considered as dependent otherwise.
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3.2.3 Multiple hypotheses testing

As described above, in testing for the independence of two variables 𝑋 and
𝑌 , they are considered dependent if the 𝑝-value of the corresponding test is
below a threshold 𝛿 . It is easy to see that such procedure guarantees that
if 𝑋 and 𝑌 are independent, then the probability of a false discovery, that is
falsely rejecting their independence, is at most 𝛿 . �e situation is drastically
different when a large number 𝑁 of hypotheses are tested, as in the case of
local causal discovery. In this case, if the same threshold 𝛿 is used for every
test, the expected number of false discoveries can be as large as 𝛿𝑁 . �ere-
fore, it is necessary to correct for multiple hypothesis testing, with the goal
of providing guarantees on false discoveries. A commonly used guarantee is
provided by the Family-Wise Error Rate (FWER), which is the probability of
having at least one false discovery among all the tests. A common approach
to control the FWER is the so called Bonferroni correction [Bonferroni, 1936],
which performs each test with a corrected threshold 𝛿𝑡𝑒𝑠𝑡 = 𝛿/𝑁 (a simple
union bound shows that the resulting FWER is at most 𝛿).

3.2.4 Supremum deviation and Rademacher averages

While Bonferroni correction does control the FWER, it conservatively as-
sumes the worst-case scenario (of independence) between all null hypothe-
ses. �is o�en leads to a high number of false negatives (i.e. false null hy-
potheses that are not rejected). We nowdescribe Rademacher averages [Bartle�
and Mendelson, 2002, Koltchinskii and Panchenko, 2000], which allow to
compute data-dependent confidence intervals for all hypotheses simultane-

ously, leading to improved tests formultiple hypotheses testing scenarios [Pel-
legrina et al., 2022]. Rademacher averages are a concept from statistical
learning theory commonly used to measure the complexity of a family of
functions and that, in general, also provide a way to probabilistically bound
the deviation of the empirical means of the functions in the family from their
expected values.

Let F be a family of functions from a domain D to [𝑎, 𝑏] ⊂ R and let
S be a sample of 𝑚 i.i.d. observations from an unknown data generative
distributionW over D. We define the empirical sample mean ÊS [𝑓 ] of a
function 𝑓 ∈ F and its expectation E[𝑓 ] as

ÊS [𝑓 ] ¤=
1

𝑚

∑︁

𝑠𝑖∈S
𝑓 (𝑠𝑖) and E[𝑓 ] ¤=EW

[

1

𝑚

∑︁

𝑠𝑖∈S
𝑓 (𝑠𝑖)

]

. (3.2)

Note that E[𝑓 ] = EW [𝑓 ], that is, the expected value of the empirical mean
corresponds to the expectation according to distributionW. A measure of
the maximum deviation of the empirical mean from the (unknown) expec-
tation for every function 𝑓 ∈ F is given by the supremum deviation (SD)
𝐷 (F ,S) that is defined as

𝐷 (F ,S) = sup
𝑓 ∈F
|ÊS [𝑓 ] − E[𝑓 ] |. (3.3)
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Computing 𝐷 (F ,S) exactly is not possible given the unknown nature
ofW, therefore bounds are commonly used. An important quantity to es-
timate tight bounds on the SD is the Empirical Rademacher Average (ERA)
𝑅(F ,S) of F on S, defined as

𝑅(F ,S) ¤=E𝝈

[

sup
𝑓 ∈F

1

𝑚

𝑚
∑︁

𝑖=1

𝜎𝑖 𝑓 (𝑠𝑖)
]

(3.4)

where 𝝈 is a vector of𝑚 i.i.d. Rademacher random variables, i.e. for which
each element𝜎𝑖 equals 1 or -1 with equal probability. ERA is an alternative of
VC dimension for computing the expressiveness of a setS over class function
F , whose main advantage is that it provides tight data-dependent bounds
while the VC dimension provides distribution-free bounds that are usually
fairly conservative ([Mitzenmacher and Upfal, 2017], chap. 14).

Computing the exact value of 𝑅(F ,S) is o�en infeasible since the expec-
tation is taken over 2𝑚 elements. A common approach is then to estimate
𝑅(F ,S) using a Monte-Carlo approach with 𝑛 samples of 𝝈 . �e 𝑛-samples
Monte-Carlo Empirical Rademacher Average (𝑛-MCERA) 𝑅𝑛𝑚 (F ,S,𝝈) is de-
fined as

𝑅𝑛𝑚 (F ,S,𝝈) ¤=
1

𝑛

𝑛
∑︁

𝑗=1

sup
𝑓 ∈F

1

𝑚

∑︁

𝑠𝑖∈𝑆
𝜎 𝑗,𝑖 𝑓 (𝑠𝑖) (3.5)

with 𝝈 being a 𝑚 × 𝑛 matrix of i.i.d. Rademacher random variables. 𝑛-
MCERA is useful to derive probabilistic upper bounds to the SD, as the fol-
lowing.

�eorem 3.1 (�. 3.1 of [Pellegrina et al., 2022]). Let 𝛿 ∈ (0, 1). For ease of
notation let

𝑅̃ = 𝑅𝑛𝑚 (F ,S,𝝈) + 2𝑧

√︄

ln 4
𝛿

2𝑛𝑚
(3.6)

With a probability of at least 1 − 𝛿 over the choice of S and 𝝈 , it holds

𝐷 (F ,S) ≤ 2𝑅̃ +

√︃

𝑐 (4𝑚𝑅̃ + 𝑐 ln 4
𝛿
) ln 4

𝛿

𝑚
+
𝑐 ln 4

𝛿

𝑚
+ 𝑐

√︄

ln 4
𝛿

2𝑚
(3.7)

where 𝑧 = max{𝑎, 𝑏} and 𝑐 = 𝑏 − 𝑎.

�eorem 3.1 allows us to obtain confidence intervals around the empir-
ical mean containing the expectation with probability at least 1 − 𝛿 for all
functions in F simultaneously.

3.3 Related work

Given a target variable 𝑇 , the task of finding 𝑀𝐵(𝑇 ) is strictly related to
the discovery of 𝑃𝐶 (𝑇 ). A common approach for MB discovery consists of
creating a candidate set of elements in 𝑀𝐵(𝑇 ) by running a 𝑃𝐶 discovery
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algorithm twice (first on𝑇 , and then on all the elements reported as member
of 𝑃𝐶 (𝑇 )) to find the elements at distance at most 2 from𝑇 , and then to elim-
inate false positives, which are those elements that are not parents, children,
or spouses of 𝑇 . Various algorithms follow this general scheme [Tsamardi-
nos et al., 2003a, Aliferis et al., 2003, Pena et al., 2007, Aliferis et al., 2010],
each one with a different variant that aims at minimizing the number of in-
dependence tests actually performed and their degrees of freedom to reduce
the amount of data required. However, as described in Section 3.4.3, this
does not decrease the number of statistical tests to be considered for MHT
correction, since a priori all tests could potentially be performed. Among
such algorithms, Pena et al. [Pena et al., 2007] proposed 𝑃𝐶𝑀𝐵 and proved
its correctness under the assumption of all statistical tests being correct, that
is, not returning any false positive or false negative. A different approach
has been proposed for 𝐼𝐴𝑀𝐵 [Tsamardinos et al., 2003b] that incrementally
grows a candidate set of elements in 𝑀𝐵(𝑇 ) without searching for 𝑃𝐶 (𝑇 ),
and then performs a false positive removal phase. Both 𝑃𝐶𝑀𝐵 and 𝐼𝐴𝑀𝐵 do
not report false positives only under the assumption of not having any false
positive and any false negative. Such assumptions are unrealistic in real-
world scenarios due to noise in the data, finite sample sizes, and probabilistic
guarantees of statistical tests, especially in multiple hypotheses scenarios.
Our algorithms RAveL-PC and RAveL-MB do not require such assumptions
to identify 𝑃𝐶 (𝑇 ) and𝑀𝐵(𝑇 ) with guarantees on the FWER.

To the best of our knowledge, the study of local causal discovery with
guarantees on false discoveries has received scant a�ention. Tsamardinos
et al. [Tsamardinos and Brown, 2008] introduced the problem of MHT in
the context of local causal discovery, and proposed to use the Benjamini-
Hochberg correction [Benjamini and Hochberg, 1995] to estimate the False
Discovery Rate (FDR) of elements retrieved by 𝑃𝐶 (𝑇 ) discovery algorithms.
However, such work does not provide an algorithm with guarantees for
𝑀𝐵(𝑇 ). To the best of our knowledge, nomethod has focused on local causal
discovery while bounding the FWER, which is extremely important in do-
mains where false positives are critical or where follow-up studies require
significant resources (e.g., biology and medicine).

Additional works focused on the more general task of BN inference.
In [Armen and Tsamardinos, 2014], the authors extended the analysis of [Tsamardi-
nos and Brown, 2008] from the local discovery task to the BN inference
while [Li andWang, 2009, Liu et al., 2012, Strobl et al., 2019] re-implemented
the PC algorithm for BN structure discovery using the Benjamini-Yekutieli [Ben-
jamini and Yekutieli, 2001] correction for the FDR, the former focusing on
the skeleton retrieving and the la�er deriving bounds on edge orientation
as well. Our work instead focuses on local causal discovery tasks.

Rademacher averages have been successfully used to speed-up data min-
ing tasks (e.g., pa�ern mining [Riondato and Upfal, 2015, Pellegrina et al.,
2022, Santoro et al., 2020, Pellegrina and Vandin, 2021]). To the best of our
knowledge, ours is the first work to introduce their use in (local) causal dis-
covery.
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3.4 Algorithms for local causal discoverieswith

FWER guarantees

In this Section we describe algorithms to obtain 𝑃𝐶 (𝑇 ) and 𝑀𝐵(𝑇 ) with
guarantees on the FWER. First, we discuss in Section 3.4.1 the requirements
for previously proposed algorithms 𝑃𝐶𝑀𝐵 and 𝐼𝐴𝑀𝐵 to obtain guarantees
on the FWER. In particular, we show that they require unrealistic assump-
tions that are not met in practice, as confirmed by our experimental eval-
uation (see Section 3.5). We then present in Section 3.4.2 our algorithms
RAveL-PC and RAveL-MB for the computation of 𝑃𝐶 (𝑇 ) and 𝑀𝐵(𝑇 ) with
guarantees on the FWER. Finally, in Section 3.4.3 we describe how our al-
gorithms perform effective independence testing by combining a novel test
statistic with Rademacher averages.

3.4.1 Analysis and limitations of 𝑃𝐶𝑀𝐵 and 𝐼𝐴𝑀𝐵

�e algorithms presented in Section 3.3 are correct under the assumption
that the independence tests result in no false positive and no false nega-
tive [Pena et al., 2007, Tsamardinos et al., 2003b]. In this Section we de-
termine milder sufficient conditions that allow 𝐺𝑒𝑡𝑃𝐶 [Pena et al., 2007] to
control the FWER for the PC discovery task, and 𝑃𝐶𝑀𝐵 [Pena et al., 2007]
and 𝐼𝐴𝑀𝐵 [Tsamardinos et al., 2003b] to control the FWER for the MB dis-
covery task. In all cases, a first requirement is that the independence tests
performed by the algorithms must account for multiple hypotheses testing
in order to bound the FWER. However, we also show that an additional re-
quirement on the ability to identify dependent variables (i.e., on the power of
the tests) is needed. In particular, we refer to the situation where all tests on
dependent variables correctly reject the null hypothesis of independence as
the infinite power assumption. In some cases, we consider the infinite power
assumption only for independence tests between pairs of variables that are
directly connected in the underlying DAG. We refer to such situation as the
local infinite power assumption.

𝑃𝐶𝑀𝐵

Both𝐺𝑒𝑡𝑃𝐶 and 𝑃𝐶𝑀𝐵make use of a subroutine called𝐺𝑒𝑡𝑃𝐶𝐷 [Pena et al.,
2007] whose aim is to return a set with parents, children, and (eventually)
other descendants of𝑇 by applying a sequence of independence tests. In this
section we will study under which conditions each method does not output
any false positive, and how each subroutine result may affect the output of
other algorithms.

We first start by studying under which conditions 𝐺𝑒𝑡𝑃𝐶𝐷 [Pena et al.,
2007] returns a false positive in output.

�eorem 3.2 (Study of false positives in𝐺𝑒𝑡𝑃𝐶𝐷). An element𝑋 ∉ 𝑃𝐶𝐷 (𝑇 )
is returned from GetPCD only if not all the parents of𝑇 are detected or the null

hypotheses of some independence tests is wrongly rejected.
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Proof. Let us recall that an element 𝑋 ∈ V returned by 𝐺𝑒𝑡𝑃𝐶𝐷 (𝑇,V) is a
false negative if and only if 𝑋 ∉ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑇 ) ∪ 𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑇 ).

It is easy see that an element is returned by 𝐺𝑒𝑡𝑃𝐶𝐷 only if it is not re-
moved at lines 9 and 19 of Algorithm 1, whichmeans that the null hypothesis
of tests at lines 8 and 18 gets always rejected1. �e independence test deter-
mines the dependence of𝑇 from𝑋 only if conditioning on Z = 𝑠𝑒𝑝 [𝑋 ] there
is an open path between 𝑋 and 𝑇 (i.e. 𝑇 6⊥⊥ 𝑋 | Z), or if the null hypothesis
gets wrongly rejected.

Let us now study the two topological cases of 𝑋 being disconnected to
𝑇 and of 𝑋 being connected to 𝑇 .

Disconnected case. Let 𝑋 be disconnected from 𝑇 . Since there are no
paths from𝑋 to𝑇 (therefore no open paths from𝑋 to𝑇 ), 𝑋 may be returned
by𝐺𝑒𝑡𝑃𝐶𝐷 only if independence tests at lines 8 and 18 is wrongly rejected.

Connected case. Let 𝑋 ∉ 𝑃𝐶𝐷 (𝑇 ) be connected to 𝑇 . 𝑋 is returned in
output only if in any iteration of the cycle the null hypothesis on tests at
lines 8 and 18 is wrongly rejected or there is an open path conditioning on
𝑆𝑒𝑝 [𝑋 ].

By assuming of not having wrong rejections of the null hypotheses, Z =

𝑃𝑎𝑟𝑒𝑛𝑡𝑠 (𝑇 ) d-separates 𝑋 and 𝑇 by definition of parents since 𝑋 is not a
descendant of 𝑇 . �is implies that if some parent of 𝑇 is undetected, then it
may not be possible to d-separate 𝑋 from 𝑇 . �

We can then determine under which conditions 𝐺𝑒𝑡𝑃𝐶𝐷 is able to con-
trol the FWER.

�eorem3.3. 𝐺𝑒𝑡𝑃𝐶𝐷 (𝑇,V) outputs a set of elements in 𝑃𝐶𝐷 (𝑇 ) with FWER

lower than 𝛿 if the FWER of every independence test performed by GetPCD is

below 𝛿 and the local infinite power assumption holds.

Proof. By analyzing GetPCD structure as in �. 3.2, an element is returned
only if both independence tests at lines 8 and 18 of Algorithm 1 reject the null
hypothesis. �erefore the algorithm outputs a false positive if under infi-
nite power assumption for elements directly connected at least one indepen-
dence test returns a false positive. Let us define the events 𝐸 =“GetPCD(𝑇,V)

outputs a false positive” and 𝐸𝑖 = “the 𝑖-th independence test returns a false

positive”. We then have

𝐹𝑊𝐸𝑅 = 𝑃 (𝐸) ≤ 𝑃 (∪𝑖𝐸𝑖) ≤ 𝛿

by definition of FWER. �

We now provide sufficient conditions for bounding the FWER of the el-
ements returned by 𝐺𝑒𝑡𝑃𝐶 [Pena et al., 2007].

1�e ”if” clause does not hold since an element may be added and then subsequently
removed leading to the end of the repeat cycle because 𝑃𝐶𝐷 did not change, but there still
are elements in 𝑐𝑎𝑛𝑃𝐶𝐷 i.e. unremoved elements.
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Algorithm 1: 𝐺𝑒𝑡𝑃𝐶𝐷 (𝑇,V) [Pena et al., 2007]
Input: target variable 𝑇 , set V of variables
Output: 𝑃𝐶𝐷 (𝑇 ) = {𝑋 ∈ V | 𝑋 ∈ 𝑃𝐶 (𝑇 ) ∨ 𝑋 ∈ 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑇 )}

1 𝑃𝐶𝐷 ← ∅;
2 𝐶𝑎𝑛𝑃𝐶𝐷 ← V \ {𝑇 };
3 repeat

4 /* Remove false positives from CanPCD */ ;
5 foreach 𝑋 ∈ 𝐶𝑎𝑛𝑃𝐶𝐷 do

6 𝑆𝑒𝑝 [𝑋 ] ← argminZ⊆𝑃𝐶𝐷 𝑑𝑒𝑝 (𝑇,𝑋 | Z);
7 foreach 𝑋 ∈ 𝐶𝑎𝑛𝑃𝐶𝐷 do

8 if 𝑇 ⊥⊥ 𝑋 | 𝑆𝑒𝑝 [𝑋 ] then
9 𝐶𝑎𝑛𝑃𝐶𝐷 ← 𝐶𝑎𝑛𝑃𝐶𝐷 \ {𝑋 };

10 /* Add the best candidate to PCD */ ;
11 𝑌 ← argmax𝑋∈𝐶𝑎𝑛𝑃𝐶𝐷 𝑑𝑒𝑝 (𝑇,𝑋 | 𝑆𝑒𝑝 [𝑋 ]);
12 𝑃𝐶𝐷 ← 𝑃𝐶𝐷 ∪ {𝑌 };
13 𝐶𝑎𝑛𝑃𝐶𝐷 ← 𝐶𝑎𝑛𝑃𝐶𝐷 \ {𝑌 };
14 /* Remove false positives from PCD */ ;
15 foreach 𝑋 ∈ 𝑃𝐶𝐷 do

16 𝑆𝑒𝑝 [𝑋 ] ← argminZ⊆𝑃𝐶𝐷\{𝑋 } 𝑑𝑒𝑝 (𝑇,𝑋 | Z);
17 foreach 𝑋 ∈ 𝑃𝐶𝐷 do

18 if 𝑇 ⊥⊥ 𝑋 | 𝑆𝑒𝑝 [𝑋 ] then
19 𝑃𝐶𝐷 ← 𝑃𝐶𝐷 \ {𝑋 };
20 until PCD does not change;
21 return 𝑃𝐶𝐷 ;

�eorem 3.4. 𝐺𝑒𝑡𝑃𝐶 (𝑇,V) outputs a set of elements in 𝑃𝐶 (𝑇 ) with FWER

≤ 𝛿 if the independence tests performed by 𝐺𝑒𝑡𝑃𝐶 have FWER ≤ 𝛿 and the

local infinite power assumption holds.

Proof. 𝐺𝑒𝑡𝑃𝐶 outputs a false positive only if at least one call to 𝐺𝑒𝑡𝑃𝐶𝐷

at lines 2-3 of Algorithm 2 outputs a false positive and, under the infinite
power assumption while testing the independence of elements directly con-
nected, this happens only if at least one independence test outputs a false
positive. Let us define the events 𝐸 =“𝐺𝑒𝑡𝑃𝐶 (𝑇,V) outputs a false positive”

and 𝐸𝑖 =“the 𝑖-th independence test returns a false positive”. We then have

𝐹𝑊𝐸𝑅 = 𝑃 (𝐸) ≤ 𝑃 (∪𝑖𝐸𝑖) ≤ 𝛿

by definition of FWER. �

�e following proves that similar requirements are needed for 𝑃𝐶𝑀𝐵 [Pena
et al., 2007] to have guarantees on the FWER.

�eorem 3.5. 𝑃𝐶𝑀𝐵(𝑇,V) outputs a set of elements in 𝑀𝐵(𝑇 ) with FWER

≤ 𝛿 if the independence tests performed by 𝑃𝐶𝑀𝐵 have FWER ≤ 𝛿 and the

infinite power assumption holds.
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Algorithm 2: 𝐺𝑒𝑡𝑃𝐶 (𝑇,V) [Pena et al., 2007]
Input: target variable 𝑇 , set V of variables
Output: 𝑃𝐶 (𝑇 )

1 𝑃𝐶 ← ∅;
2 foreach 𝑋 ∈ 𝐺𝑒𝑡𝑃𝐶𝐷 (𝑇,V) do
3 if 𝑇 ∈ 𝐺𝑒𝑡𝑃𝐶𝐷 (𝑋,V) then
4 𝑃𝐶 ← 𝑃𝐶 ∪ {𝑋 }
5 return 𝑃𝐶 ;

Proof. 𝑃𝐶𝑀𝐵 outputs a false positive only if there is a false positive in any
independence test performed by 𝐺𝑒𝑡𝑃𝐶 calls at lines 2 and 6 of Algorithm
3, or if tests at lines 8 and 9 return a false negative or a false positive, re-
spectively. Given the infinite power assumption and �eorem 3.4, 𝑃𝐶𝑀𝐵

outputs a false positive only if at least one independence test outputs a false
positive and by defining the events 𝐸 =“𝑃𝐶𝑀𝐵(𝑇,V) outputs a false positive”
and 𝐸𝑖 =“the 𝑖-th independence test returns a false positive” we have

𝐹𝑊𝐸𝑅 = 𝑃 (𝐸) ≤ 𝑃 (∪𝑖𝐸𝑖) ≤ 𝛿

by definition of FWER. �

Algorithm 3: 𝑃𝐶𝑀𝐵(𝑇,V) [Pena et al., 2007]
Input: target variable 𝑇 , set V of variables
Output: 𝑀𝐵(𝑇 )

1 /* Add true positives to MB */ ;
2 𝑃𝐶 ← 𝐺𝑒𝑡𝑃𝐶 (𝑇,V);
3 𝑀𝐵 ← 𝑃𝐶 ;
4 /* Add more true positives to MB */ ;
5 foreach 𝑌 ∈ 𝑃𝐶 do

6 foreach 𝑋 ∈ 𝐺𝑒𝑡𝑃𝐶 (𝑌,V) do
7 if 𝑋 ∉ 𝑃𝐶 then

8 find Z such that 𝑇 ⊥⊥ 𝑋 | Z and 𝑇,𝑋 ∉ Z ;
9 if 𝑇 6⊥⊥ 𝑋 | Z ∪ 𝑌 then

10 𝑀𝐵 ← 𝑀𝐵 ∪ {𝑋 };
11 return𝑀𝐵;

𝐼𝐴𝑀𝐵

�e following result proves analogous requirements of Section 3.4.1 for 𝐼𝐴𝑀𝐵.

�eorem 3.6. 𝐼𝐴𝑀𝐵(𝑇,V) outputs a set of elements in 𝑀𝐵(𝑇 ) with FWER

≤ 𝛿 if the independence tests performed by 𝐼𝐴𝑀𝐵 have FWER ≤ 𝛿 and the

infinite power assumption holds.
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Proof. 𝐼𝐴𝑀𝐵 outputs a false positive only if an element 𝑋 ∉ 𝑀𝐵(𝑇 ) gets
added to MB at lines 5-6, and it does not get removed from MB at lines 10-
11 of Algorithm 4. Under the infinite power assumption, all elements in
𝑃𝐶 (𝑇 ) get added at lines 5-6 by definition of PC, therefore 𝑋 gets returned
by IAMB only if independence tests at lines 10-11 output a false positive.
�en, by defining the events 𝐸 =“𝐺𝑒𝑡𝑃𝐶 (𝑇,V) outputs a false positive” and
𝐸𝑖 =“the 𝑖-th independence test returns a false positive”, we have

𝐹𝑊𝐸𝑅 = 𝑃 (𝐸) ≤ 𝑃 (∪𝑖𝐸𝑖) ≤ 𝛿

by definition of FWER. �

Algorithm 4: 𝐼𝐴𝑀𝐵(𝑇,V) [Tsamardinos et al., 2003b]

Input: target variable 𝑇 , set V of variables
Output: 𝑀𝐵(𝑇 )

1 /* Add true positives to MB */ ;
2 𝑀𝐵 ← ∅;
3 repeat

4 𝑌 ← argmax𝑋∈V\𝑀𝐵\{𝑇 } 𝑑𝑒𝑝 (𝑇,𝑋,𝑀𝐵);
5 if 𝑇 6⊥⊥ 𝑌 | 𝑀𝐵 then

6 𝑀𝐵 ← 𝑀𝐵 ∪ {𝑌 } ;
7 until MB does not change;
8 /* Remove false positives from MB */ ;
9 foreach 𝑋 ∈ 𝑀𝐵 do

10 if 𝑇 ⊥⊥ 𝑋 | 𝑀𝐵 \ {𝑋 } then
11 𝑀𝐵 ← 𝑀𝐵 \ {𝑋 } ;
12 return𝑀𝐵;

Relaxation of the infinite power assumption

Note that the results above require the (local) infinite power assumption to
hold in order to have guarantees on the FWER of the output of previously
proposed algorithms. In fact, if the (local) infinite power assumption does
not hold, such algorithmsmay output false positives even when all indepen-
dence tests do not return a single false positive. We now present three such
examples by considering the subgraph of Figure 3.1 in Section 3.5 between
variables V = {𝐶1, 𝐴2, 𝐵2,𝐶2} with edges E = {𝐶1 → 𝐴2,𝐶1 → 𝐵2, 𝐴2 →
𝐶2, 𝐵2 → 𝐶2}. Moreover, our experimental evaluation in Section 3.5 shows
that these situations do happen in practice.

Scenario 1: �e infinite power assumption holds only for directly

connected elements. Let us study the subgraph previously described un-
der only local infinite power assumption. Let us suppose to run 𝑃𝐶𝑀𝐵(𝐶1,V)
and that the call at line 2 correctly returned𝐺𝑒𝑡𝑃𝐶 (𝐶1,V) = {𝐴2, 𝐵2}. Let us
further suppose that𝐺𝑒𝑡𝑃𝐶 (𝐴2,V) = {𝐶1,𝐶2} and that a false negative arises
when testing the unconditional dependence between 𝐶1 and 𝐶2, leading to
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the choice of Z = ∅ on line 8. If the conditional independence test at line 9
correctly assesses the conditional dependence of𝐶1 and𝐶2 conditioning on
𝐴2, then 𝐶2 is wrongly considered a spouse of 𝐶1.

Scenario 2: No infinite power assumption. Consider as an exam-
ple the calculus of 𝐺𝑒𝑡𝑃𝐶 (𝐶2,V) in the subgraph previously described. Let
us suppose that a false negative occurs when testing the unconditional in-
dependencies between 𝐶2 and 𝐴2 and between 𝐶1 and 𝐴2. Let us further
suppose Z = {𝐴2, 𝐵2} to be the only set for which the null hypothesis of
independence between 𝐶1 and 𝐶2 is not rejected. �en 𝐺𝑒𝑡𝑃𝐶𝐷 (𝐶2,V) will
contain𝐶1 (because the independence conditioning on Z = {𝐴2, 𝐵2} is never
tested), and similarly 𝐺𝑒𝑡𝑃𝐶𝐷 (𝐶1,V) will contain 𝐶2 leading 𝐶1 to be re-
turned by 𝐺𝑒𝑡𝑃𝐶 (𝐶2,V).

Scenario 3: No infinite power assumption and 𝐺𝑒𝑡𝑃𝐶 does not re-

turn false positives. Let us finally consider a situation in which the infi-
nite power assumption does not hold and 𝐺𝑒𝑡𝑃𝐶 does not return any false
positive, as this may be the case of a modification of the algorithms pro-
posed by [Pena et al., 2007] using Bonferroni correction. Let us suppose
𝐺𝑒𝑡𝑃𝐶 (𝐶1,V) = {𝐴2}, and 𝐺𝑒𝑡𝑃𝐶 (𝐶2,V) = {𝐴2}. Let us suppose line 8 to
return Z = ∅, and the conditional independence test at line 9 to correctly
assess the conditional dependence of 𝐶1 and 𝐶2 conditioning on 𝐴2. Under
these assumptions, 𝐶2 is wrongly considered a spouse of 𝐶1. Note that this
scenario differs from the first because the local infinite power assumption
does not hold, leading to a partial discovery of the variables in 𝑃𝐶 (𝐶1) whose
elements are not enough to d-separate 𝐶1 and 𝐶2.

3.4.2 Algorithms RAveL-PC and RAveL-MB

As shown in Section 3.4.1, controlling the FWER of every independence test
is not sufficient for bounding the FWER of the variables returned by current
state-of-the-art algorithms for PC and MB discovery. In addition, infinite
statistical power is a strong assumption which is impossible to test and en-
sure in real-world scenarios. Motivated by these observations, we developed
RAveL-PC and RAveL-MB, two algorithms for the discovery of elements in PC
and MB, respectively, that control the FWER of their outputs without mak-
ing any assumption on statistical power.

RAveL-MB follows the same overall approach used by previously pro-
posed algorithms (e.g., 𝑃𝐶𝑀𝐵, see Section 3.3): it first identifies elements in
𝑃𝐶 (𝑇 ) and adds them to 𝑀𝐵(𝑇 ), and then tests the spouse condition on el-
ements at distance 2 from 𝑇 , that are variables 𝑌 ∈ 𝑃𝐶 (𝑋 ) with 𝑋 ∈ 𝑃𝐶 (𝑇 )
and 𝑌 ∉ 𝑃𝐶 (𝑇 ). �e pseudocode of RAveL-MB is shown in Algorithm 5.
RAveL-MB inizializes 𝑀𝐵 to the output of the function RAveL-PC(𝑇,V,𝛿)

(line 1), which returns a subset of 𝑃𝐶 (𝑇 ). For each element 𝑋 ∈ 𝑀𝐵 (line 2),
RAveL-MB computes RAveL-PC(𝑋,V,𝛿) and, for every returned element 𝑌
that is not already in𝑀𝐵 (line 3), an independence test of𝑇 on 𝑌 condition-
ing onV\{𝑌,𝑇 } using function test indep(𝑇,𝑌,V\{𝑌,𝑇 },𝛿) is performed
to test whether 𝑌 is a spouse of 𝑇 with respect to 𝑋 (line 4). If such test de-
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termines the conditional dependence between 𝑇 and 𝑌 , then 𝑌 is added to
𝑀𝐵 (line 5). Finally, a�er analyzing all variables originally in𝑀𝐵, RAveL-MB
outputs the set of elements in the Markov Boundary (line 6).

Note that the spouse condition is tested by conditioning only on the set
V \ {𝑌,𝑇 }. �is is sufficient, since it is a set conditioned on which 𝑇 and
𝑌 are d-connected if and only if 𝑌 is directly connected or is a spouse of 𝑇 .
In fact, if 𝑌 does not belong to any of these elements, then 𝑌 is connected
to 𝑇 through paths that contain chains or forks whose middle element is in
V \ {𝑌,𝑇 }. �at is, 𝑌 is connected to 𝑇 only through d-blocked paths.

Algorithm 5: RAveL-MB(𝑇,V,𝛿)

Input: target variable 𝑇 , set V of variables, threshold 𝛿 ∈ (0, 1]
Output: A subset of𝑀𝐵(𝑇 ) with FWER lower than 𝛿 .

1 𝑀𝐵 ← RAveL-PC(𝑇,V,𝛿) ;
2 foreach 𝑋 ∈ 𝑀𝐵 do

3 foreach 𝑌 ∈ RAveL-PC(𝑋,V,𝛿) and 𝑌 ∉ 𝑀𝐵 do

4 if not test indep(𝑇,𝑌,V \ {𝑌,𝑇 },𝛿) then

5 𝑀𝐵 ← 𝑀𝐵 ∪ {𝑌 };
6 return𝑀𝐵;

RAveL-MB uses algorithm RAveL-PC(𝑋,V,𝛿) (shown in Algorithm 6) for
the discovery of variables of a set V that are in 𝑃𝐶 (𝑋 ). �e parameter 𝛿
controls the overall FWER of the procedure. RAveL-PC(𝑋,V,𝛿) identifies
𝑃𝐶 (𝑋 ) by using the definition of parent-children set, that is, 𝑌 ∈ 𝑃𝐶 (𝑋 )
gets returned if only if all independence tests between 𝑋 and 𝑌 reject the
null hypothesis.

Algorithm 6: RAveL-PC(𝑇,V,𝛿)

Input: target variable 𝑇 , set V of variables, threshold 𝛿 ∈ (0, 1]
Output: A subset of 𝑃𝐶 (𝑇 ) with FWER lower than 𝛿 .

1 𝑃𝐶 ← V \ {𝑇 };
2 foreach 𝑋 ∈ V \ {𝑇 } do
3 foreach Z ⊆ V \ {𝑋,𝑇 } do
4 if test indep(𝑇,𝑋,Z,𝛿) then

5 𝑃𝐶 ← 𝑃𝐶 \ {𝑋 };
6 return 𝑃𝐶 ;

Both algorithms RAveL-MB and RAveL-PC employ a function, denoted
as test indep(𝑋,𝑌,Z,𝛿), that performs the independence test between
𝑋,𝑌 ∈ V conditioning on Z ⊆ V while controlling the FWER of
all testable hypotheses with threshold 𝛿 , and returns true only if the
null hypothesis gets rejected. Practical details on our implementation of
test indep(𝑋,𝑌,Z,𝛿) are provided in Section 3.4.3.

�e following results prove that RAveL-PC and RAveL-MB control the
FWER of PC and MB, respectively.
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�eorem 3.7. RAveL-PC(𝑇,V,𝛿) outputs a set of elements in 𝑃𝐶 (𝑇 ) with
FWER ≤ 𝛿 .

Proof. Note that the number of false positives of RAveL-PC(𝑇,V,𝛿) is
greater than 0 if and only if there is at least one variable 𝑋 of V \ {𝑇 } that is
not in 𝑃𝐶 (𝑇 ) and is in the set 𝑃𝐶 reported by RAveL-PC(𝑇,V,𝛿). A variable
𝑋 is returned in 𝑃𝐶 if and only if all independence tests between 𝑇 and 𝑋

(conditioning on the various sets Z ⊆ V \ {𝑋,𝑇 }) reject the null hypothesis.
�erefore RAveL-PC(𝑇,V,𝛿) reports a false positive only if at least one in-
dependence test returns a false positive, which happens with probability at
most 𝛿 by definition of test indep(𝑇,𝑋,Z,𝛿). �

�eorem 3.8. RAveL-MB(𝑇,V,𝛿) outputs a set of elements in 𝑀𝐵(𝑇 ) with
FWER ≤ 𝛿 .

Proof. �e set of RAveL-MB(𝑇,V,𝛿) output elements is the union of the set
𝑂1 of variables returned by RAveL-PC(𝑇,V,𝛿), and the set 𝑂2 of candidate
spouses𝑌 for which test indep(𝑇,𝑌,V\{𝑌,𝑇 },𝛿) rejects the null hypoth-
esis. �en, a necessary condition to return a false positive is that at least one
between sets 𝑂1 and 𝑂2 contains a false positive. �e last event happens if
and only if all calls to test indep(𝑇,𝑋,Z) returns at least a false positive,
which happens with probability at most 𝛿 . �

�e choice of V \ {𝑌,𝑇 } as conditioning set for testing the spouse condi-
tion is a consequence of RAveL-PC returning, with probability at least 1−𝛿 ,
a subset of 𝑃𝐶 (𝑇 ), and of any superset of 𝑃𝐶 (𝑇 ) allowing the discovery of
spouses by RAveL-MB. We note that prior knowledge may be incorporated
in the algorithm, if available, by conditioning on smaller set of variables,
therefore increasing the precision of independence tests.

3.4.3 Rademacher averages for independence testing

Note that our algorithms RAveL-PC and RAveL-MB both rely on the availabil-
ity of function test indep(𝑋,𝑌,Z,𝛿), which assesses the independence
between 𝑋,𝑌 ∈ V conditioning on Z ⊆ V and returns true only if the null
hypothesis gets rejected, while controlling the FWER of all testable hypothe-
ses below a threshold 𝛿 .

�e naı̈ve implementation of test indep(𝑋,𝑌,Z,𝛿) would be to per-
form a standard statistical test (see Section 3.2.2) and use Bonferroni cor-
rection (see Section 3.2.3) to correct for multiple hypothesis testing. In par-
ticular, this requires to use a modified threshold 𝛿/𝑁 for every hypothesis,
where 𝑁 is the maximum number of hypotheses that could be tested. �ere-
fore, 𝑁 is themaximum number of conditional independencies2 between the
variables in V, that is 𝑁 = V(V − 1)2V−3. Note that the value of 𝑁 grows

2𝑁 counts, in fact, the total number of possible conditional independencies between
any couple of variables by considering the symmetry property of independence tests, that
is testing the (conditional) independence of 𝑋 from 𝑌 is equivalent to testing the one of 𝑌
from 𝑋 .
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exponentially with V, leading to a Bonferroni correction which is very con-
servative and, therefore, to a high number of false negatives (independence
tests between dependent variables for which the null hypothesis does not
get rejected).

�e high number of tests is not a feature of our algorithms only, but it
is, in essence, shared by other widely used algorithms such as IAMB and
PCMB (see Section 3.3). In fact, for both algorithms, the potential number of
independence tests they perform can be as high as 𝑁 = V(V − 1)2V−3, even
if a smaller number of tests may be considered in practice, depending on the
output of the tests in previous steps, and a proper MHT correction depends
on the maximum number of tests that could be performed.

Our solution to make our algorithms RAveL-PC and RAveL-MB practical
is to implement test indep(𝑋,𝑌,Z,𝛿) exploiting Rademacher averages to
obtain data-dependent bounds and confidence intervals. �e key idea is to
estimate confidence intervals around the empirical test statistics so that they
contain the true values simultaneously with probability 1 − 𝛿 . In this way,
testing for independence corresponds to check whether a confidence inter-
val contains the expected value of the test statistic under the null hypothesis
of independence.

To implement the idea described above, we express Eqn. 3.1 as an ad-
ditive function on the samples as follows. First, let us assume the observa-
tions x of each variable 𝑋 to follow a probability distribution X with mean
𝜇X and whose absolute value is bounded by maxX . Let us also assume that
all variables have been centered around 0 (i.e. by subtracting 𝜇X) and then
normalized by dividing for maxX −𝜇X (i.e. they take values in [−1, 1]).

Let 𝑠1, 𝑠2, . . . , 𝑠𝑘 be the samples in the dataset S = {𝑠1, 𝑠2, . . . , 𝑠𝑘}, where
each 𝑠𝑖 is a collection of observations 𝑠𝑖 = {𝑣𝑖1, 𝑣𝑖2, . . . } of variables in V,
where 𝑣𝑖𝑗 is the observation of the 𝑗-th variable 𝑉𝑗 ∈ V in sample 𝑠𝑖 . Given
two variables𝑋,𝑌 ∈ V, and a set of variables Z ⊂ V, we define the following
function 𝑟𝑋,𝑌,Z(𝑠𝑖) on a sample 𝑠𝑖 as

𝑟𝑋,𝑌,Z(𝑠𝑖) = 𝑘
𝑥𝑖𝑦𝑖

𝑘 − 1 , (3.8)

where the conditioning set Z does not explicitly appear in the term 𝑘
𝑥𝑖𝑦𝑖
𝑘−1 but

it is used in the definition of the values in x and y as in Section 3.2.2.

We then define the following modified version 𝑟 of Pearson’s 𝑟 coeffi-
cient, which we refer to as the modified r statistic (or ModR), where 𝑠x is
replaced by maxX −𝜇X (similarly for 𝑠y):

𝑟𝑋,𝑌,Z =
1

𝑘

𝑘
∑︁

𝑖=1

𝑟𝑋,𝑌,Z(𝑠𝑖). (3.9)

By considering the family F of functions defined by 𝑟𝑋,𝑌,Z for each pair
𝑋,𝑌 of variables and each set Z ⊆ V \ {𝑋,𝑌 }, we have that the 𝑛-MCERA
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(Eqn. 3.5) is

𝑅𝑛𝑘 (F ,S, 𝜎) ¤=
1

𝑛

𝑛
∑︁

𝑗=1

sup
𝑟𝑋,𝑌,Z∈F

1

𝑘

𝑘
∑︁

𝑖=1

𝜎 𝑗,𝑖𝑟𝑋,𝑌,Z(𝑠𝑖) . (3.10)

A�er the𝑛-MCERA has been computed as above, we compute a boundB
to the supremum deviation𝐷 (F ,S) according to�eorem 3.1, which allows
us to obtain confidence intervals around the empirical 𝑟𝑋,𝑌,Z as

𝐶𝐼𝑋,𝑌,Z =
[

𝑟𝑋,𝑌,Z − B, 𝑟𝑋,𝑌,Z + B
]

(3.11)

with the guarantee that, simultaneously for all 𝑟𝑋,𝑌,Z ∈ F , 𝐶𝐼𝑋,𝑌,Z con-
tains the expected value of 𝑟𝑋,𝑌,Z with probability at least 1 − 𝛿 . �en, for a
pair𝑋,𝑌 of variables and a setZ ⊆ V\{𝑋,𝑌 }, we reject the null hypothesis of
independence between𝑋,𝑌 conditioning on Z (i.e., test indep(𝑋,𝑌,Z,𝛿)

returns true) if𝐶𝐼𝑋,𝑌,Z does not contain the value 0. In practice, we replace
the unknown quantities 𝜇X and maxX with their empirical estimates, that
is, we replace 𝜇X with the empirical sample mean x̄ and maxX with maxx.

We finally propose another test statistic on a sample 𝑠𝑖 , which we refer
to as the r-centered statistic (or 𝑟𝑐 ), defined as

𝑟𝑐𝑋,𝑌,Z(𝑠𝑖) =
𝑥𝑖𝑦𝑖

(𝑚𝑎𝑥{𝑥𝑖, 𝑦𝑖})2
(3.12)

where x and y are defined as previously (see Section 3.2.2). �e same in-
dependence testing procedure described for 𝑟𝑋,𝑌,Z applies for the empirical
average of 𝑟𝑐𝑋,𝑌,Z =

1
𝑘

∑𝑘
𝑖=1 𝑟

𝑐
𝑋,𝑌,Z(𝑠𝑖), since its expectation is zero under

independence assumption and data centered around zero as follows.

�eorem 3.9. LetW be the joint distribution of the variables 𝑋 , 𝑌 , and Z. If

𝑋 and 𝑌 are independent, then EW [𝑟𝑐𝑋,𝑌,Z] = 0.

Proof. We have that

EW
[

𝑟𝑐𝑋,𝑌,Z
]

= EW

[

1

𝑘

𝑘
∑︁

𝑖=1

𝑥𝑖𝑦𝑖

(𝑚𝑎𝑥{𝑥𝑖, 𝑦𝑖})2

]

which is proportional to EW [ÊS [𝑋𝑌 ]] (see Section 3.2.4 for definitions of
EW and ÊS). Under the independence assumption, we haveEW [ÊS [𝑋𝑌 ]] =
EW [ÊS [𝑋 ]] × EW [ÊS [𝑌 ]], and the result follows since EW [ÊS [𝑋 ]] =

EX [ÊS [𝑋 ]] = 0. �

3.5 Experimental evaluation

�is section describes the experimental evaluation performed to empirically
assess our algorithms. In Section 3.5.1 we compare RAveL-PC and RAveL-MB
performances with other state-of-the-art methods on synthetic data. Sec-
tion 3.5.2 present the analysis on two real world datasets (see the Appendix
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for details). We implemented3 RAveL-PC, RAveL-MB, and the other algo-
rithms considered in this section in Python 3. On each run we assumed
no prior knowledge of the data distributions values for each variable 𝑋 .

3.5.1 Synthetic data

𝐴1

𝐵1

𝐶1

𝐴2

𝐵2

𝐶2

𝐴3

𝐵3

𝐶3

𝐴4

𝐵4

𝐶4

𝐴5

𝐵5

𝐶5

𝐸1 𝐸𝐸
…

Figure 3.1: Bayesian Network used for synthetic data generation,
parametrized by two values 𝜎2 and 𝑛𝑒𝑥𝑡 . A�er drawing all the observations
x for a particular variable 𝑋 , x is normalized such that 𝑚𝑒𝑎𝑛(x) = 0 and
𝑣𝑎𝑟 (x) = 1, then the values for the descendants of 𝑋 are sampled.

We used synthetic data to evaluate RAveL-PC and RAveL-MB against
state-of-the-art algorithms for the task of PC andMB discovery, respectively.
In this scenario, each variable is a linear combination of its parents values
plus Gaussian noise. �e related structural model (shown in Figure 3.1) is
composed of 15 connected variables and 𝑛𝑒𝑥𝑡 external variables, and it is
specified by two parameters: 𝜎2 which controls the amount of noise in the
estimations, and 𝑛𝑒𝑥𝑡 which sets the number of external variables.

In these experiments we set the rejection threshold 𝛿 = 0.05, which is a
common value in literature, and we run each algorithm on increasing size
datasets. We repeated each trial 100 times and used 𝑛 = 1000 for the 𝑛-
MCERA. For each dataset, we considered all variables as target variable𝑇 in
turn and run the algorithms for each choice of 𝑇 . (Note that the number 𝑁
of potential hypotheses tested is still the same as defined in Section 3.4.3.).
Lastly, we limited our algorithms to consider only conditioning sets Z of at
most 2 variables (except for the independence test at line 6 of RAveL-MB) for
avoiding the analysis of all the exponential number 𝑁 of hypotheses. We
chose such value since each variable 𝑋 is d-separated by each 𝑌 ∉ 𝑃𝐶 (𝑋 )
by conditioning on a Z of size at most 2, and by running the algorithms on
synthetic data allowing higher maximum sizes, we observed no differences
in results w.r.t. the ones we are presenting.

In the first experiment, we compared different local causal discovery al-
gorithms on the BN obtained se�ing 𝜎2

= 1 and𝑛𝑒𝑥𝑡 = 15. For the PC discov-
ery task, we compared two versions of𝐺𝑒𝑡𝑃𝐶 [Pena et al., 2007], the original
one (without any correction for MHT) and one adaptation that uses Bonfer-
roni correction, with three versions of RAveL-PC: one that uses the modi-

3Code available at h�ps://github.com/VandinLab/RAveL .
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Figure 3.2: Empirical FWER of various PC discovery (a) andMB discovery (b)
algorithms on synthetic data for different sample sizes. FWER is the fraction
of 100 trials in which at least one false positive is reported. �e dashed line
represents the bound 𝛿 = 0.05 to the FWER used in the experiments.

fied r statistic (or ModR) defined in Eqn. 3.9, another that exploits 𝑟𝑐 , and a
variant of RAveL-PC that uses Bonferroni correction instead of Rademacher
averages for MHT. Figure 3.2(a) shows the estimated FWER of each method
(that is, the fraction of trials in which at least a false positive is reported).
�e results confirm our analysis in Section 3.4.2, and we observe that, for the
specific BN we consider, the adaptation of 𝐺𝑒𝑡𝑃𝐶 that uses Bonferroni cor-
rection has FWER below the threshold, even if this is not guaranteed from
our theoretical analysis.

For the MB discovery task, we compared two versions of 𝑃𝐶𝑀𝐵 [Pena
et al., 2007] and of 𝐼𝐴𝑀𝐵 [Tsamardinos et al., 2003b], the original ones
(without any correction for MHT) and two adaptations that use Bonfer-
roni correction, with three versions of RAveL-MB: one that uses the mod-
ified r statistic defined in Eqn. 3.9, another that exploits 𝑟𝑐 , and a variant
of RAveL-MB that uses Bonferroni correction instead of Rademacher aver-
ages for MHT. Figure 3.2(b) shows the FWER of each method. �e results
confirms RAveL-MB (with both statistics) and its variant to be the only al-
gorithms with guarantees on the FWER at any sample size, that is without
infinite power assumption. Moreover, note that 𝑃𝐶𝑀𝐵 reports false posi-
tives with high probability even if its PC discovery method𝐺𝑒𝑡𝑃𝐶 does not.
�is is due to elements at distance 2 from 𝑇 that are correctly identified as
candidate spouses, but for which the spouse condition used by 𝑃𝐶𝑀𝐵 results
in a false positive due to false negatives in 𝑃𝐶 (𝑇 ), as described in Section 12
(scenario 3).

We then assessed the fraction of false negatives for our algorithms,
which are the only ones with guarantees on the FWER, on datasets with
sample sizes up to 250000 elements by repeating each trial 100 times. Figure
3.3 summarizes (with solid lines) these results on a scenario with 𝜎2

= 1
(in Figure 3.3(a,b)) and another with 𝜎2

= 5 (in Figure 3.3(c,d)). For each
se�ing, we run the algorithms by considering a different number of vari-
ables (𝑛𝑒𝑥𝑡 = 0 and 𝑛𝑒𝑥𝑡 = 15), and we highlighted the difference in perfor-
mances between the two cases. �e results show how the approaches based
on Rademacher averages do not suffer from the addition of external variables
(i.e. their FN% are equivalent), as opposed to the versions of RAveL-PC and
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Figure 3.3: Empirical FN% of RAveL-PC (a,c) and RAveL-MB (b,d) on synthetic
data for different sample sizes in two data generative scenarios. We sampled
data from Figure 3.1 in two scenarios with different noise level: 𝜎2

= 1 for
(a,b), and 𝜎2

= 5 for (c,d). FN% is the mean percentage of false negatives
out of 100 trials. In each experiment we compared the approach that uses
the Pearson’s R test with Bonferroni correction, and two implementations
that exploits Rademacher averages, one using the modified r statistic ModR

defined in Eqn. 3.9, and another with 𝑟𝑐 . Solid lines represent experiments
on datasets with 𝑛𝑒𝑥𝑡 = 0 and 𝑛𝑒𝑥𝑡 = 15, and performance gaps between the
two are highlighted. Dashed lines show simulated results on datasets with
𝑛𝑒𝑥𝑡 = 750.

RAveL-MB that exploit the Bonferroni correction, whose performances de-
grade by increasing the number of variables under analysis. Both behaviors
are expected as the Bonferroni correction becomes stricter since the number
𝑁 of hypotheses to test increases (see Section 3.2.3), while the bound to the
supremum deviation remains stable as the complexity of the function class
F does not increase4. Motivated by these observations, we simulated the
performances of RAveL-PC and RAveL-MB variants that exploit Bonferroni
correction in a high-dimensional scenario with 750 total variables, and we
reported them as well in Figure 3.3 (dashed lines).

Figures 3.3(a,b) show differences between the approach that exploits
Rademacher averages with the modified r statistic defined in Eqn. 3.9 and
the one that exploits 𝑟𝑐 , with the FN% of the first one decreasing for datasets
with more than 10000 samples and the la�er one just at 5000 samples. Such

4�e most complex statistics in F are in fact the ones for which there is indepencence
between x and y, that are the ones with the highest variance.
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difference is due to the normalization procedure employed by the former ap-
proach (see Sec. 3.4.3). Such procedure allows us to bound the test statistic
(and therefore to use the Rademacher averages) but it also lowers the test
statistic value as the sample size increases (since it will increase the chances
of observing more extreme values) degrading the statistical power and re-
quiring more accurate estimates of the bound B to the supremum 𝐷 (F , 𝑆).
𝑟𝑐 instead is not affected by such issue and shows higher statistical power,
highlighting the importance of the choice of the test statistic. From Figure
3.3(a,b) we also observe that the use of Bonferroni correction leads to a high
statistical power, even with a high number of variables, in the 𝜎2

= 1 sce-
nario. Such trend does not hold when 𝜎2

= 5 and the dimensionality is high
(Figure 3.3(c,d)), for which RAveL-PC and RAveL-MB that exploit 𝑟𝑐 havemore
statistical power than algorithmic variants with Bonferroni correction.

3.5.2 Real datasets

We tested our algorithms on the Boston housing dataset [Harrison Jr and
Rubinfeld, 1978] (see Appendix 6.1), which contains data about house prices
in Boston suburbs, considering the median price of homes in each suburb as
target𝑇 . Since the number of variables for such dataset is small, we used the
Bonferroni variant of our algorithms RAveL-PC and RAveL-MB, with 𝛿 = 0.01.
Given the small number of observations (506 samples), we limited our anal-
ysis to conditioning sets Z of size at most 2 for maintaining a high statistical
power in the independence testing. Both algorithms reported in output two
variables, one related to the number of rooms per house, and the other to
the median income of the suburb residents, that clearly influence the median
price of the houses in the neighborhood. �e first variable is a common in-
dicator of the price of a house, while the second confirms the intuition that
between two identical houses, the one built in a wealthier neighborhood has
a higher price.

We finally tested our algorithms on the Framingham dataset (see Ap-
pendix 6.2), that provides information about the development of coronary
heart disease (CHD) in 10 years for 3656 citizens of the city of Framingham,
with 16 features describing health status and lifestyle. Given the relatively
small number of samples, we limited our analysis to conditioning sets Z of
size at most 2 for maintaining an high statistical power in the independence
testing. We preprocessed the dataset by removing samples withmissing data
and binary features that were highly unbalanced, for which therefore we
would not have had enough statistical power to test our assumptions5. We
tested RAveL-PC and RAveL-MB variants using Bonferroni correction with
𝛿 = 0.05 and got in output, for both discovery tasks, three variables: Age,
Systolic Blood Pressure, and Glucose. Such results are supported by theWorld
Health Organization guidelines6. Overall, our results on real data provide

5Dataset information on the Appendix.
6More information available on the official site https://www.who.int/en/news-room/

fact-sheets/detail/cardiovascular-diseases-(cvds) [Accessed: March 2023]
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empirical evidence that our algorithms identify meaningful causal relations
while avoiding false positives.

3.6 Conclusions

In this Chapter we presented two algorithms, RAveL-PC and RAveL-MB, for
the task of local causal discovery. In contrast to state-of-the-art approaches,
our algorithms provide guarantees on false discoveries in terms of bounding
the FWER. Our algorithms use Rademacher averages to to properly account
for multiple hypothesis testing, and our experimental evaluation shows that
our algorithms properly control for false discoveries. Our algorithms can be
extended to other (e.g., non-linear) test statistics and to other tests. In partic-
ular, Rademacher averages provide appealing time-effective alternatives for
independence testing with test statistics whose distributions are unknown,
since in such scenarios a typical solution is to rely on permutation testing,
which require to analyze a large number of permuted datasets in order to
achieve high statistical power. Interesting research directions include the
application of our framework to recently proposed independence tests [Bel-
lot and van der Schaar, 2019], improving the efficiency of our algorithms,
and exploiting them for structure discovery.
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Chapter 4

ALLSTAR

In this Chapter we study one instance of the effect estimation with statistical
guarantees problem on observational data. We use the semantics of causal
rules to describe combinations of treatment values and we propose ALLSTAR
for the discovery of the rule with the highest reliable causal effect. Our algo-
rithm has been adapted to discovery sound biological rules, and it has been
applied on a breast cancer dataset to discover which combination of somatic
genomic alteration is causally associated to a specific cancer type. ALLSTAR
behaviour and performances have been assessed on synthetic datasets, and
discovery results from real-world datasets have been validated against the
literature.

4.1 Introduction

In the last ten years, the advances in DNA sequencing technologies have
allowed to precisely depict the landscape of somatic alterations in large co-
horts of tumours for various cancer types [Mardis, 2019, Weinstein et al.,
2013, �e International Cancer Genome Consortium, 2010]. �e study of
these data has shown that cancer is characterized by an extreme inter-
tumour heterogeneity, with the alterations observed in different tumours be-
ing almost entirely different for any pairs of tumours. A number of compu-
tational tools have been designed to try to identify the alterations that drive
the insurgence and development of tumours, while tackling inter-tumour
heterogeneity [Cortés-Ciriano et al., 2022]. �ese tools are able to detect
various types of signals [Cibulskis et al., 2013, Vandin et al., 2012, Mula-
roni et al., 2016, Arnedo-Pac et al., 2019] and integrate different prior and/or
clinical information [Cowen et al., 2017, Reyna et al., 2020, Sarto Basso et al.,
2019], but a common feature of such tools is that they detect alterations cor-
related with cancer phenotypes. �at is, they identify alterations, or groups
of alterations, significantly enriched in a group of patients or significantly
associated with a (clinical) phenotype.

While the identification of alterations correlatedwith cancer phenotypes
provides interesting insights into cancer initiation and progression, it does
not guarantee that causal relations between somatic mutations and cancer
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are reported. While experimental and clinical validation is a necessary step
to demonstrate the significance of alterations, tools reporting causal rela-
tions with guarantees on the quality of their findings would greatly reduce
the resources needed to identify relevant alterations in follow-up experi-
mental and clinical studies.

Randomized control trials are the gold standard in observational stud-
ies [Concato et al., 2000, Rosenbaum et al., 2010], and, in recent years, a
lot of a�ention has been devoted towards mining causal rules [Silverstein
et al., 2000] from observational data. Recently, Budhathoki et al. [2021] pro-
posed a novel estimator of a rule’s effect, taking into account the uncertainty
of the estimates derived from data, and developed a branch and bound al-
gorithm for the discovery task. Similarly, our work aims at finding reli-
able causal rules, but properly implements a correction for controlling the
Family-Wise Error Rate (FWER) in a multiple hypothesis testing scenario,
which is a fundamental feature of cancer studies given the high number of
alterations found in tumours.

In this Chapter, we describe ALLSTAR, a novel tool to identify reli-
able causal relations between somatic mutations and cancer phenotypes.
ALLSTAR identifies causal relations in the form of rules highlighting com-
binations of alterations with the highest average effect on the phenotype.
Our contributions are fourfold. Firstly, we prove that the underlying com-
putational problem is NP-hard. Secondly, we show that one needs to prop-
erly correct for multiple hypothesis testing when identifying reliable causal
rules. �irdly, we design ALLSTAR, an effective branch-and-bound algorithm
to identify the 𝑘 rules with the highest reliable average effect on the pheno-
type, with guarantees on the Family-Wise Error Rate (FWER) of the output.
ALLSTAR identifies rules where genes are connected in a large interaction
graph provided in input, and employs an iterative procedure leading to the
identification of diverse rules, which highlight different causal relations po-
tentially linked to cancer heterogeneity. Fourthly, we perform an extensive
evaluation of ALLSTAR on both synthetic and cancer data, showing the sta-
tistical robustness of ALLSTAR and its ability to report well-supported as well
as potentially novel causal relations between somatic mutations and cancer
phenotypes.

ALLSTAR focuses on estimating the impact of genomic alterations on a tu-
mour subtype, unlike Bayesian approaches such as Zhang et al. [2014] that
learned a causal graph from �e Cancer Genome Atlas (TCGA) mutation
data to identify alterations relevant to ovarian cancer but without consid-
ering their effect on a target variable. A step towards the identification of
causal relations between multi-omics data and a target variable (e.g., phe-
notype) has been made by the tools Aristotle [Mansouri et al., 2022] and
CauMu [Liu et al., 2022], both identifying single features (i.e., alterations, or
genes) linked to the phenotype. Our tool provides an efficient approach to
identify rules comprising multiple features, which is an important charac-
teristic given the high inter-tumour heterogeneity. Moreover, Aristotle
focuses on the significance of the relation (by computing a corresponding
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𝑝-value), rather than their effect as done by ALLSTAR. Other causal tools, in-
stead, leverage the increasing availability of single-cell RNAseq data (e.g.,
Cifuentes-Bernal et al. [2022]) and the estimates of pseudo-time derived
from such data to identify causal relations at the transcriptomic level.

4.2 Methods

4.2.1 Causal Rules

Causal rules study the influence that a subset of actionable variables X =

{𝑋1, . . . , 𝑋𝑛} exert on a target variable 𝑌 accounting for the possible con-
founding influence of a set of control variables Z = {𝑍1, . . . , 𝑍𝑚}, that are
common causes of at least one 𝑋𝑖 ∈ X and 𝑌 . More specifically, a rule
𝜎 = 𝜋1 ∧ 𝜋2 ∧ · · · ∧ 𝜋ℓ is a conjunction of boolean propositions 𝜋𝑖 defined
on an actionable variable (e.g., 𝜋𝑖 ≡ 𝑋5 = 1), and which evaluates as true
(⊤) under an assignment x = {𝑥1, . . . , 𝑥𝑛} if all its propositions are verified
by se�ing each 𝑋 𝑗 to the value 𝑥 𝑗 (otherwise the rule 𝜎 is false, or ⊥). �e
causal effect of a rule 𝜎 [Budhathoki et al., 2021] on the target variable 𝑌
taking value 𝑦 is defined as

𝑒𝑦 (𝜎) =
∑︁

z

(𝑝 (𝑌 |𝜎 (x) = ⊤,Z = z) − 𝑝 (𝑌 |𝜎 (x) =⊥,Z = z))𝑝 (Z = z)

where 𝜎 (x) represents the value of 𝜎 under assignment x. 𝑒𝑦 (𝜎) takes value
in [−1, 1] and it measures the increase in the probability that the target 𝑌
takes value𝑦 when the rule 𝜎 is true w.r.t. when 𝜎 is false. Despite being de-
fined on conditional probabilities, 𝑒𝑦 (𝜎) measures the causal influence that
the variables composing the propositions in 𝜎 exert on the event 𝑌 = 𝑦 if
the admissible input structure assumptions [Budhathoki et al., 2021] are met,
that are:

1. the target variable 𝑌 is not a cause of any 𝑋𝑖 ∈ X;

2. none of the variables 𝑋𝑖 ∈ X is a cause of any 𝑍 𝑗 ∈ Z;

3. none of the variables 𝑋𝑖 ∈ X is a cause of any other 𝑋 𝑗 ∈ X; and

4. there is no unobserved variable𝑈 that directly cause 𝑋𝑖 ∈ X.
In other words, if the admissible input assumptions are met, 𝑒𝑦 (𝜎) measures
the average treatment effect that the variables in 𝜎 exert on the event 𝑌
taking value 𝑦 without including any spurious (i.e. non-causal) statistical
correlation.

In this work we focus on applying the framework above to somatic mu-
tations in cancer datasets, defining X, Z, and 𝑌 as follows:

1. the set X of features includes somatic alterations (i.e., SNVs, loss of
heterozygosity, hypermethylation) in a set of genes, and the observa-
tions are provided by a binary matrix describing the status (present or
not) of such alterations in a cohort of patients;
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2. the set Z of confounders includes relevant germline mutations and
clinical information (i.e. race, age, etc.), and the observations are pro-
vided by a corresponding matrix of relevant clinical variables;

3. the target 𝑌 is a phenotype of interest, such as histological or molec-
ular marker-derived cancer subtypes.

In our se�ing, the constraints required by an admissible input structure for
causal rule discovery translate as follows:

1. the target variable 𝑌 does not cause somatic alterations;

2. there is no somatic alteration that is a cause of any confounder;

3. there are no causal relations between somatic alterations;

4. there are no causal relations between somatic alterations and relevant
unobserved variables.

Assumptions 1, 2, and 4 are satisfied by a proper choice of target variable
𝑌 , of confounders Z, and the features X to include in the study. Assump-
tion 3 is instead supported by the fact that somatic alterations arise as inde-
pendent observations in the genome (even in normal cells), even if specific
somatic alterations may modify the overall distribution of alterations in the
genome (e.g., due to their impact on processes involved in mutagenesis). In
such setup, each rule represents the observation of a specific set of gene al-
terations that occur simultaneously, and the rule effect is a measure of the
influence of such pa�ern on having a specific cancer type.

4.2.2 Rule Effect Estimation

�e estimation of probabilities from data is challenging when sample sizes
are small, as the estimates obtained with naı̈ve empirical estimators have
high variance. As a consequence, rules discovered by data using such naı̈ve
empirical estimators have effects whose estimates are far from their true
effects. To mitigate this phenomenon, which may lead to overfi�ing, Bud-
hathoki et al. [2021] proposes a reliable estimator for the effect of causal
rules.

Let us start the analysis by defining 𝑝 (𝑌 = 𝑦 |𝜎 = ⊤) = 𝑛𝑌=𝑦,𝜎=⊤
𝑛𝜎=⊤

where
𝑛𝜎=⊤ is the number of instances for which 𝜎 = ⊤ (i.e, 𝜎 is true), and 𝑛𝑌=𝑦,𝜎=⊤
is the number of instances for which𝑌 = 𝑦 and 𝜎 = ⊤. Analogously we have
𝑝 (𝑌 = 𝑦 |𝜎 =⊥) = 𝑛𝑌=𝑦,𝜎=⊥

𝑛𝜎=⊥
. By considering all samples such that 𝜎 = ⊤ (resp.

𝜎 =⊥), the value 𝑦 follows a binomial distribution with success probability
𝑝 (𝑌 = 𝑦 |𝜎 = ⊤). For a given confidence level 𝛼 ∈ (0, 1), by defining 𝛽 (𝛼) as
the 1−𝛼/2 quantile of a standard normal distribution, the confidence bound
for 𝑝𝑐 (𝑌 = 𝑦 |𝜎 = ⊤) proposed by Budhathoki et al. [2021] is then

[

𝑝𝑐 (𝑌 = 𝑦 |𝜎 = ⊤) − 𝛽 (𝛼)
2
√
𝑛𝜎=⊤

, 𝑝𝑐 (𝑌 = 𝑦 |𝜎 = ⊤) + 𝛽 (𝛼)
2
√
𝑛𝜎=⊤

]

.
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Such bound allows us to compute the effect of reliable causal rules,
defined as the lower bound of the effect of causal rules. �at is, the estimated
reliable effect 𝑒

𝑦

𝑟𝑒𝑙
(𝜎) of a causal rule 𝜎 on 𝑌 taking value 𝑦 with confidence

𝛼 is defined as:

𝑒
𝑦

𝑟𝑒𝑙
(𝜎, 𝛼) =𝑝𝑐 (𝑌 = 𝑦 |𝑑𝑜 (𝑄𝜎 )) − 𝑝𝑐 (𝑌 = 𝑦 |𝑑𝑜 (𝑄𝜎 ))+

− 𝛽 (𝛼)
2
√
𝑛𝜎=⊤

− 𝛽 (𝛼)
2
√
𝑛𝜎=⊥

.

where 𝑄𝜎 is a stochastic policy i.e., a probability distribution over the in-
terventions (see Budhathoki et al. [2021] for more details), which combines
atomic interventions 𝑑𝑜 (𝑋 = 𝑥) [Pearl, 2009], i.e. changes the value of the
variable 𝑋𝑖 to 𝑥𝑖 while keeping the values of all the other variables fixed.

4.2.3 Probability Estimation from Data

�e estimator introduced by Budhathoki et al. [2021] is correct for the effect
estimation of just one rule, but it may lead to false positives if multiple hy-
potheses (i.e. multiple rules) are analyzed, as in our case of discovering the
top-𝑘 rules with the largest effect. As we focus on discovering rules bound-
ing the FWER, that is the probability of returning in output at least one false
positive, we correct the estimator proposed in Budhathoki et al. [2021] for
multiple hypothesis testing using Bonferroni correction [Bonferroni, 1936],
that is, we consider a corrected threshold 𝛼𝑐 = 𝛼/𝑁 for each hypothesis
where 𝑁 is the number of (potential) hypotheses tested.

4.3 ALLSTAR: Inferring Reliable Causal Rules

between Somatic Mutations and Cancer

Phenotypes

In this Section, we present our algorithm ALLSTAR (reliable cAusaL ruLe dis-
covery between Somatic muTations and cAnceR phenotypes) for causal rule
discovery with guarantees on its results. We start our analysis by proving
that the underlying problem of estimating the rule with highest causal ef-
fect is NP-hard even if the probability distributions are known a priori (Sec-
tion 4.3.1). In Section 4.3.2 we describe the algorithm and its subfunctions,
andwe prove ALLSTAR correctness. In Section 4.3.3we present a novel bound
that speeds-up the discovery in single-core machines, and Section 4.3.4 de-
scribes the cleanup procedure employed by ALLSTAR.

4.3.1 Computational Problem Definition and NP-

Hardness

Wenow define the computational problem at the core of finding causal rules.
In particular, we consider the problem of finding the rule with the largest
positive effect on a target variable, defined as follows.
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Definition 4.1. Max Positive CRD problem. Consider variables Z ∪ X

and a target variable 𝑌 . Find the rule 𝜎∗ with i) 𝑒 (𝜎∗) > 0 and ii) 𝜎∗ =

argmax𝜎 𝑒 (𝜎).

�e Max Positive CRD problem is a simplified version of the problem of
finding the rule with largest positive effect from data, since it assumes that
one has access to the exact probabilities for the events of interests, while,
in practice, such probabilities are estimated from an observational dataset
(see Section 4.2). Nonetheless, we prove that the problem above is compu-
tationally difficult. In particular, we prove that finding the causal rule with
themaximum effect is NP-hard, evenwhen no confounder is considered (i.e.,
when Z = ∅) and the true probabilities are described by a Bayesian Network.

We now define the aforementioned problem, that we call the MaxCRD

problem.

Definition 4.2. MaxCRD Problem. Given a Bayesian Network 𝐵, output ⊤ if

the rule 𝜎∗ = argmax𝜎 |𝑒 (𝜎) | with the highest absolute effect has a non-zero

effect.

�e following theorem proves that the MaxCRD problem is computation-
ally difficult.

�eorem 4.1. MaxCRD is NP-hard.

Proof. We prove that MaxCRD is NP-hard by reducing from SAT. �e proof is
divided in two steps: first we show a polynomial-time reduction of an input
of SAT to an input of MaxCRD, and then we show that solving MaxCRD on such
input allows to derive a solution to SAT in polynomial time on the original
instance.

We start by describing the reduction from SAT. Let 𝜓 (X) be a boolean
formula over variables in X. Let us define G =< V, E > with V = X ∪ {𝑌 }
and E = {𝑋𝑖 → 𝑌 |𝑋𝑖 ∈ X}. Let us define each 𝑋𝑖 ∼ B(0.5) be a Bernoulli
distribution with probability 𝑝 (𝑋𝑖 = 0) = 𝑝 (𝑋𝑖 = 1) = 0.5. Let 𝑌 take
values in {0, 1} and let 𝑝 (𝑌 = 1|𝑋1 = 𝑥′1, ..., 𝑋𝑛 = 𝑥′𝑛) = 1 if and only if
𝜓 ((𝑥′1, ..., 𝑥′𝑛)) = ⊤ else 𝑝 (𝑌 = 1|𝑋1 = 𝑥′1, ..., 𝑋𝑛 = 𝑥′𝑛) = 01. We then define
the BN 𝐵 =< G, 𝑝 > as the reduced input for MaxCRD.

We now prove that solving MaxCRD on the reduced input leads to solv-
ing SAT in polynomial time on the original instance by proving that (i) if
MaxCRD(𝐵) = ⊤ then𝜓 (X) = ⊤ and (ii) if MaxCRD(𝐵) = ⊥ then we can build a
polynomial-time algorithm that solves SAT.

Let us prove (i). If MaxCRD(𝐵) = ⊤ then ∃𝜎 |𝑒𝑐𝑜𝑟𝑟 (𝜎) ≠ 0 that is 𝑝 (𝑌 =

𝑦 |𝜎 = ⊤) − 𝑝 (𝑌 = 𝑦 |𝜎 =⊥) ≠ 0. By construction, we have two cases:
𝑦 = 1 or 𝑦 = 0. If 𝑦 = 1 then 𝜓 (X) is satisfiable by construction since at
least one between 𝑝 (𝑌 = 1|𝜎 = ⊤) and 𝑝 (𝑌 = 1|𝜎 =⊥) is positive. (Note
that 𝜎 =⊥ corresponds to all assignments of variables X for which rule 𝜎
is not satisfied, and 𝑝 (𝑌 = 1|𝜎 =⊥) > 0 if and only if at least one such

1Note that the probability distribution function is fully specified since 𝑝 (𝑌 = 0|𝑋1 =

𝑥 ′1, ..., 𝑋𝑛 = 𝑥 ′𝑛) = 1 − 𝑝 (𝑌 = 1|𝑋1 = 𝑥 ′1, ..., 𝑋𝑛 = 𝑥 ′𝑛).

42



Figure 4.1: An illustration of ALLSTAR framework. From a dataset compris-
ing a set of confounders Z, treatments X, and a target 𝑌 , ALLSTAR uses a
branch and bound approach to discover the top-𝑘 rules 𝜎∗1 , ..., 𝜎

∗
𝑘
with the

highest reliable causal effect. ALLSTAR exploits a gene-gene interaction net-
work G to focus on biologically meaningful rules.

assignment lead to 𝑌 = 1, that by definition implies that such assignment
satisfies 𝜓 (X).) If 𝑦 = 0 then we notice that the same rule evaluated on
𝑦 = 1 has a non-zero effect given that 𝑦 = 1 is 𝑦 = 0’s complementary event
therefore 𝑝 (𝑌 = 0|𝜎 =⊥) = 1 − 𝑝 (𝑌 = 1|𝜎 =⊥) (and the same holds for
𝜎 =⊥).

Let us prove (ii). If MaxCRD(𝐵) = ⊥ then ∀𝜎 we have 𝑝 (𝑌 = 𝑦 |𝜎 = ⊤) =
𝑝 (𝑌 = 𝑦 |𝜎 =⊥) = 𝑝 (𝑌 = 𝑦) that is the value of 𝑌 is independent on X

assignments. �is means that𝜓 (X) is either a tautology or a contradiction2

and by evaluating𝜓 (X) on any assignment we can distinguish between the
two cases. �

As stated before, in practice we do not have access to the exact proba-
bilities and, therefore, to the exact effect 𝑒 (𝜎) for a rule 𝜎 . We are therefore
interested in finding the rule with the largest positive reliable effect from an
observational dataset, which we formalize in the problem below.

Definition 4.3. Max Reliable Positive CRD Problem. Consider an obser-

vational datasetD on variables Z∪X∪ {𝑌 } and a confidence level 𝛼 ∈ (0, 1).
Find the rule 𝜎∗ such that i) 𝑒𝑟𝑒𝑙 (𝜎∗) > 0 and ii) 𝜎∗ = argmax𝜎 𝑒𝑟𝑒𝑙 (𝜎).

4.3.2 ALLSTAR Algorithm

At its core, ALLSTAR (see Figure 4.1) employs the branch-and-bound ap-
proach proposed in Budhathoki et al. [2021] to discover the rule with the
highest causal effect, while limiting to rules with at most ℓ alterations. More-
over, since in practice we are interested in finding multiple and diverse

2If not, then it would be possible to discover a rule with non-zero effect 𝜎 : 𝑋1 = 𝑥 ′1 ∧
... ∧𝑋𝑛 = 𝑥 ′𝑛 on all elements of X. By construction, in fact, 𝑝 (𝑌 = 1|𝜎 = ⊤) ∈ {0, 1} since it
evaluates on just one element, and 𝑝 (𝑌 = 1|𝜎 =⊥) ≠ 𝑝 (𝑌 = 1|𝜎 = ⊤) otherwise the value
of 𝑌 would be constant.
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rules with positive reliable effect and with functionally related alterations,
ALLSTAR uses an iterative approach to identify at most 𝑘 rules, where 𝑘 is
a parameter provided by the user, and an interaction graph G to consider
only rules with functionally related alterations.

Algorithm 7: ALLSTAR

Input: alterations X, confounders Z, value 𝑦 of target 𝑌 , max. rule
length ℓ , confidence 𝛼 , graph G = (X, 𝐸), integer 𝑘 , clean-up
threshold 𝑡

Output: top-𝑘 reliable causal rules
1 𝑁 ← calculateRulesNumber(G, ℓ); 𝛼𝑐 ← 𝛼/𝑁 ;
2 output← ∅; Q← empty FIFO queue;
3 for 𝑖 ← 1 to 𝑘 do

4 𝑒max ← −∞; 𝜎max ← ∅;
5 for 𝑋 𝑗 ∈ X do Q.enqueue(“𝑋 𝑗 = 1”);
6 while |Q| > 0 do
7 𝜎 ← Q.dequeue();
8 if upperBoundRelATE(𝜎 ,𝑦,Z,𝛼𝑐) > 𝑒max then

9 𝑒𝜎 ← computeRelATE(𝜎,𝑦,Z, 𝛼𝑐);
10 if 𝑒𝜎 > 𝑒max then 𝑒max ← 𝑒𝜎 ; 𝜎max ← 𝜎 ;
11 for 𝜎′ ∈expand(𝜎,𝐺, ℓ) do
12 Q.enqueue(𝜎′)
13 if 𝑒max > 0 then output← output ∪ {𝜎max};
14 update(X,𝜎max,𝑡);

15 return output;

Specifically, ALLSTAR takes in input a set X of alterations, a set Z of con-
founders, a value𝑦 of interest for the target variable𝑌 , the maximum length
ℓ of rules, a confidence level 𝛼 , a graph G whose vertices are the alterations
in X and whose edges represent some relation between alterations (e.g., an
edge represents the interaction between the proteins where the alterations
are found), the maximum number 𝑘 of rules to be reported in output, and a
clean-up threshold 𝑡 ∈ [0, 1] that controls the diversity of the rules reported
in output. In output, ALLSTAR produces at most 𝑘 rules containing up to ℓ

alterations, with the highest reliable effect and where each rule consists of
alterations that form a connected subgraph of G. In addition, each reported
rule comprises alterations that appear in a set of patients different from the
alterations in other reported rules, where the difference is controlled by the
parameter 𝑡 .

ALLSTAR starts by computing the total number of candidate rules of
length at most ℓ (that is the number of connected subgraphs in G of length
at most ℓ) and then calculates the correct threshold 𝛼𝑐 for each confidence
bound (see Section 4.2.3) using Bonferroni correction (line 1). �e rule dis-
covery is then performed in 𝑘 iterations (line 3). In each iteration, a breadth-
first search (BFS) of the la�ice defined by set of all possible rules with at most
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ℓ alterations is performed by using a FIFO queue Q and its (standard) oper-
ations enqueue and dequeue. During the BFS, the best rule 𝜎max, and its
maximum reliable estimated effect 𝑒max, discovered during the exploration
are maintained. A�er the initialization of 𝜎max and 𝑒max (line 4), the queue
Q is initialized by inserting the rules containing a single alteration (line 5).
(Note that ALLSTAR can also consider the absence of an alteration as part of
a rule (i.e. 𝑋𝑖 = 0); for clarity’s sake, this is not reported in Algorithm 7.)
�e BFS then proceeds by extracting the current rule 𝜎 (line 7) until Q is
not empty (line 6). When a rule 𝜎 is extracted from Q, an upper bound to
its reliable effect is computed with the function computeRelATE(𝜎,𝑦,Z, 𝛼𝑐).
If such upper bound is greater than 𝑒max (line 8) then the (exact) reliable
effect estimate 𝑒𝜎 of 𝜎 is computed (line 9), and the values 𝑒max, 𝜎max are
updated if 𝑒𝜎 > 𝑒max (line 10). �en, the rules that are obtained by expand-
ing 𝜎 , obtained with the function expand(𝜎,G, ℓ), are added to the queue
(lines 11-12). expand(𝜎,G, ℓ) returns all rules (with at most ℓ alterations)
that are obtained by adding to 𝜎 one alteration that must be connected in G
to at least one alteration of 𝜎 . When the BFS completes, the best rule 𝜎max

is added to the output set if its estimated reliable effect is positive (line 13),
and the set X of alterations is updated (line 14) to avoid discovering highly-
overlapping, redundant, rules (see below). At the end, the set of at most
top-𝑘 rules is reported in output (line 15).

Algorithm 8: calculateRulesNumber

Input: Graph G = (V, E), maximum rule length ℓ

Output: Number 𝑁 of connected subgraphs of length at most ℓ
between elements in G

1 𝑃 ← ∅;
2 𝑄 ← ∅;
3 for 𝑋 ∈ V do

4 𝑃 ← 𝑃 ∪ {𝑋 };
5 𝑄 ← 𝑄 ∪ {𝑋 };
6 for 𝑖 ← 1 to ℓ − 1 do
7 𝐿 ← ∅;
8 for 𝑞 ∈ 𝑄 do

9 for 𝑋 ∈ 𝑞 do

10 for 𝑒 ∈ E do

11 if 𝑋 ∈ 𝑒 & 𝑒 \ {𝑋 } ∉ 𝑞 then

12 𝐿 ← 𝐿 ∪ {𝑞 ∪ {𝑒 \ {𝑋 }}}
13 Remove duplicates from 𝐿;
14 𝑃 ← 𝑃 ∪ {𝐿};
15 𝑄 ← 𝐿;

16 return size(𝑃 );

ALLSTAR exploits three subroutines calculateRulesNumber,
upperBoundRelATE, and computeRelATE that will be briefly explained
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in the following:
calculateRulesNumber takes as input a graph G and the maximum rule
length ℓ and outputs the number of connected subgraphs of length at most
ℓ between elements in G. It is used to calculate the total number of possible
rules under study, which is the amount of test performed in the worst case,
and the pseudocode is described in Algorithm 8.
upperBoundRelATE takes as an input a rule 𝜎 , the value 𝑦 for target 𝑌 , a set
of confounders Z, and a threshold 𝛼𝑐 corrected for multiple hypotheses test-
ing, and it outputs the tight optimistic upper bound to the effect for the rule
proposed by Budhathoki et al. [2021]. It is used by the branch-and-bound
algorithm for deciding whether to compute the values a specific branch
(i.e. all children of a specific rule) or to avoid the computation because the
best solution found in such branch would never improve the current best
solution (i.e., the incumbent) 𝑒𝑚𝑎𝑥 .
More specifically, let us consider a rule 𝜎 and a more specific rule 𝜎′ = 𝜎∧𝜋 𝑗 .
Let us define the quantity 𝜏𝜎 ′ (𝜎, z) on the elements for which Z = z holds as

𝜏𝜎 ′ (𝜎, z) = max
𝑎′𝜎∈{0,1,...,𝑎𝜎 }

𝑎′𝜎 + 1
𝑎′𝜎 + 2

− 𝑛1 − 𝑎′𝜎 + 1
𝑛 − 𝑎′𝜎 + 2

+

− 𝛽 (𝛼𝑐)
2
√︁

𝑎′𝜎 + 2
− 𝛽 (𝛼𝑐)
2
√︁

𝑛 − 𝑎′𝜎 + 2

where 𝛽 (𝛼𝑐) is the 1 − 𝛼𝑐/2 quartile of the standard normal distribution, 𝑛
is the number of instances taken into account (i.e. with Z = z), 𝑛1 of which
have 𝑌 = 𝑦, and 𝑎𝜎 is the number of instances for which 𝜎 holds, Z = z and
𝑌 = 𝑦. �e upper bound is then defined as

𝑈 (𝜎′) =
∑︁

z

(𝜏𝜎 ′ (𝜎, z)𝑝 (Z = z))

where 𝑝 (Z = z) is the empirical probability of Z taking value z. Differently
from Budhathoki et al. [2021] our bound uses a confidence level 𝛼𝑐 = 𝛼/𝑁 ,
where𝑁 is the total number of rules considered by the algorithm, to account
for the multiple hypothesis testing problem.
computeRelATE takes in input a rule 𝜎 , the value 𝑦 for target 𝑌 , a set of
confoundersZ, and a threshold𝛼𝑐 and calculates the reliable effect of the rule
𝑒𝑟𝑒𝑙 (𝜎) as described in Section 4.2.3. Let us recall from 4.2.2 the definition of
𝑝 (𝑌 = 𝑦 |𝜎 = ⊤) = 𝑛𝑌=𝑦,𝜎=⊤

𝑛𝜎=⊤
where 𝑛𝜎=⊤ is the number of instances for which

𝜎 = ⊤ (i.e, 𝜎 is true), and𝑛𝑌=𝑦,𝜎=⊤ is the number of instances for which𝑌 = 𝑦

and 𝜎 = ⊤. Analogously we have 𝑝 (𝑌 = 𝑦 |𝜎 =⊥) = 𝑛𝑌=𝑦,𝜎=⊥
𝑛𝜎=⊥

. In extreme
cases (e.g. 𝜎 =⊥ for all instances) such quantities are ill-defined, therefore
the Laplace correction is applied to the estimated conditional probability,

which becomes 𝑝𝑐 (𝑌 = 𝑦 |𝜎 = ⊤) = 𝑛𝑌=𝑦,𝜎=⊤+1
𝑛𝜎=⊤+2 . �e returned value 𝑒

𝑦

𝑟𝑒𝑙
(𝜎) is
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then defined as

𝑒
𝑦

𝑟𝑒𝑙
(𝜎) =

∑︁

z

[(

𝑝𝑐 (𝑌 = 𝑦 |Z = z, 𝜎 = ⊤)+

− 𝑝𝑐 (𝑌 = 𝑦 |Z = z, 𝜎 =⊥)+

− 𝛽 (𝛼𝑐)
2
√
𝑛Z=z,𝜎=⊤

− 𝛽 (𝛼𝑐)
2
√
𝑛Z=z,𝜎=⊥

)

𝑝 (Z = z)
]

.

�eoretical guarantees. �e following theorem proves that ALLSTAR pro-
duces in output a set of rules with a rigorous bound on its FWER, where
a false positive is defined as a rule 𝜎 reported in output but with effect
𝑒 (𝜎) ≤ 0.

�eorem 4.2. ALLSTAR(X, Z, 𝑦, ℓ , 𝛼 , G = (X, E), 𝑘 , 𝑡 ) outputs a set of rules

with 𝐹𝑊𝐸𝑅 ≤ 𝛼 .

Proof. [𝑆𝑘𝑒𝑡𝑐ℎ] Let us notice that each iteration of the for loop at line 3 of
Algorithm 7 considers an increasingly small subset of X and therefore the
total amount 𝑁 of candidate causal rules that may be evaluated by ALLSTAR
(i.e. the total number of hypotheses tested in the worst scenario) is equal
to the total number of rules that can be evaluated on the first iteration of
the loop. In particular, the number of all the different rules of max length ℓ

(i.e. 𝑁 , line 1) is equivalent to the number of distinct connected subgraphs
in G of length at most ℓ since ALLSTAR exploits G to expand a rule 𝜎 to a
more specific 𝜎′ ⊃ 𝜎 by adding a proposition 𝑋𝑖 = 1 only if 𝑋𝑖 is not already
present in 𝜎 and it is connected to at least one treatment of 𝜎 .

We now prove that, by se�ing 𝛼𝑐 = 𝛼/𝑁 (line 1), ALLSTAR returns a false
positive with probability at most 𝛼 . Let us suppose that a false positive rule
𝜎𝐹𝑃 (i.e. such that 𝑒 (𝜎𝐹𝑃 ) ≤ 0) is returned in output by ALLSTAR. A necessary
condition for this to happen is to add 𝜎𝐹𝑃 to the top-𝑘 rules found (line 13)
which in turn happens only if its estimated effect 𝑒𝜎 (calculated in line 9)
is greater than 0 (line 13). By construction of the confidence intervals with
confidence 𝛼𝑐 , a rule with 𝑒 (𝜎𝐹𝑃 ) ≤ 0 may have its estimated effect 𝑒𝜎 > 0
with probability at most 𝛼𝑐 . Since there are at most 𝑁 rules under study,
in the worst case the probability of having at least a false positive estimate
is 𝑁 × 𝛼𝑐 = 𝛼 which implies that the algorithm does not output any false
positive with probability of at least 1 − 𝛼 . �

4.3.3 Improved Bound Description

While the parallel implementation of ALLSTAR employs the branch-and-
bound approach proposed in Budhathoki et al. [2021], we also develop an
improved (i.e., tighter) upper bound on the reliable causal effect of a rule that
is best suited for single-core runs since it requires a data structure shared
among cores. Such bound relies on the key observation that one rule 𝜎′ is
more specific of every rule in Ω𝑝 = {𝜎′ \ {∧𝜋𝑘}|∀𝜋𝑘 ∈ 𝜎′}. Consider a rule
𝜎 = 𝜋1∧ ...∧𝜋𝑖 and a more specific one 𝜎′ = 𝜎 ∧𝜋 𝑗 . Budhathoki et al. [2021]
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defined the upper bound 𝜏𝜎 ′ (𝜎, z) to the reliable effect estimate 𝑒𝑟𝑒𝑙 (𝜎′) of 𝜎′
as a function of the number of instances 𝑛 (in the Z strata), the number 𝑛1
of instances with 𝑌 = 𝑦, and the number 𝑎𝜎 of instances for which 𝜎 holds
and 𝑌 = 𝑦, as

𝜏𝜎 ′ (𝜎, z) = max
𝑎′𝜎∈{0,1,...,𝑎𝜎 }

𝑎′𝜎 + 1
𝑎′𝜎 + 2

− 𝑛1 − 𝑎′𝜎 + 1
𝑛 − 𝑎′𝜎 + 2

+

− 𝛽 (𝛼)
2
√︁

𝑎′𝜎 + 2
− 𝛽 (𝛼)
2
√︁

𝑛 − 𝑎′𝜎 + 2

which upper bounds the effect of 𝜎′ by exploiting the fact that 𝑎𝜎 will upper
bound the number 𝑎𝜎 ′ of instances for which the 𝜎′ holds and 𝑌 = 𝑦, given
that 𝜎′ is more specific than 𝜎 . We argue that 𝜎′ not only is more specific
than 𝜎 , but also than every rule in the set Ω𝑝 = {𝜎′ \ {∧𝜋𝑘}|∀𝜋𝑘 ∈ 𝜎′} of all
possible rules chosen from 𝜎′ removing the proposition 𝜋𝑘 . �e proposed
estimator must hold for each rule in Ω𝑝 therefore we propose a tighter op-
timistic estimator that considers 𝑎𝑚𝑖𝑛 = min𝜎 𝑗∈Ω𝑝

𝑎𝜎 𝑗
as

𝜏𝜎 ′ (𝜎, z) = max
𝑎′
Ω𝑝
∈{0,1,...,𝑎𝑚𝑖𝑛}

𝑎′
Ω𝑝
+ 1

𝑎′
Ω𝑝
+ 2 −

𝑛1 − 𝑎′Ω𝑝
+ 1

𝑛 − 𝑎′
Ω𝑝
+ 2 +

− 𝛽 (𝛼)
2
√︃

𝑎′
Ω𝑝
+ 2
− 𝛽 (𝛼)
2
√︃

𝑛 − 𝑎′
Ω𝑝
+ 2

Notice that if a rule 𝜎𝑟𝑒𝑚 ∈ Ω𝑝 has been pruned by the breadth-first
branch and bound algorithm, then we can set 𝜏𝜎 ′ (𝜎, z) = −∞ since the con-
dition in line 8 does not hold for any such 𝜎′, given that it is more specific
than 𝜎𝑟𝑒𝑚 .

4.3.4 Cleanup �reshold

As stated above, in order to identify a diverse and more informative set
of rules, the set X of alterations is updated a�er each rule is extracted.
�is is done with function update(X,𝜎max,𝑡) (line 14), which we now de-
scribe. Such function removes from the set of alterations X the ones that
either appear in the rule 𝜎max or are very similar to at least one alteration
in 𝜎max. �e similarity is defined according to the normalized city-block
Manha�an distance, defined for two vectors a and b in 𝑛 dimensions as
𝑑𝑀 (a, b) = 1

𝑛

∑𝑛
𝑖=1 |𝑎𝑖 − 𝑏𝑖 |. In particular, update(X,𝜎max,𝑡 ) removes from X

all alterations in 𝜎max and the ones with distance 𝑑𝑀 less than 𝑡 from at least
one alteration in 𝜎max, where the distance between the vectors describing
the appearance of alterations in patients is considered and 𝑡 is a user-defined
threshold. �is function therefore allows to recover non-overlapping rules
over the whole alterations’ search space.

Implementation. We implemented ALLSTAR in Python 3. Our imple-
mentation exploits multicore parallelism, when available. Code, data and
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Figure 4.2: Ranking comparison of the top-10 binary rules with the highest
effect computed on a dataset of 100 samples w.r.t. three different metrics
(𝑝-value, odds-ratio and reliable effect). Each row corresponds to a rule and
each column corresponds to its ranking (with 1st scores being the highest)
w.r.t. 𝑝-value, odds-ratio and ALLSTAR reliable effect, respectively. Color-
scale representing ranking position on the right.

scripts to reproduce the experiments described below are available at https:
//github.com/VandinLab/ALLSTAR.

4.4 ALLSTAR Performances

In this Section, we assess ALLSTAR’s performances on synthetic data. We
start the analysis by comparing ALLSTAR with standard correlational ap-
proaches3 (Section 4.4.1). We then evaluate the impact of the multiple hy-
potheses testing correction employed by ALLSTAR (Section 4.4.2), and the
role of input parameters G (Section 4.4.3) and 𝑡 (Section 4.4.4). We then as-
sessed the stability of our algorithm on different combinations of ℓ and 𝑡

(Section 4.4.5). Lastly, we studied ALLSTAR computational performances by
comparing it to a brute-force algorithm (Section 4.4.6).

4.4.1 Comparison with Statistical Methods

Firstly we compared ALLSTARwith standard correlational approaches, to un-
derstand whether the results obtained are the same. In particular, we gen-
erated all possible binary rules comprising one gene and one target on a
dataset of 100 samples, and for each one we computed i) the reliable ef-
fect as computed by ALLSTAR, ii) the 𝑝-value from the Fisher exact test, and

3We could not compare with Aristotle due to issues with its implementation, available
at this link.
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iii) the odds ratio4. We then sorted the results according to each computed
value and compared the three rankings. In Figure 4.2 we show the rankings
of the top-10 rules with the highest reliable effect: the top rules obtained by
ALLSTAR have a much lower ranking as if they were ranked by 𝑝-value or
odds ratio. For example, 4 of the top-10 rules according to the reliable effect
are not in the top-10 by 𝑝-value or by odds ratio, with one rule appearing
in the 18th position of the ranking by 𝑝-value. In general, while there is a
concordance in terms of Kendall-tau coefficient [Kendall, 1938] between the
ranking by reliable effect and the other measures (Kendall-tau coefficient
0.79 correlation between the odds ratio and effects; Kendall-tau coefficient
0.9 between 𝑝-values and effects), the reliable effect provides different top
rules (which are the most interesting ones for any practical purpose) than
standard correlation approaches.

4.4.2 Algorithm Correctness

We then performed multiple experiments to assess ALLSTAR’s efficiency and
correctness, using synthetic datasets. Every synthetic dataset resembles the
structure of real cancer data, with mutated genes as treatments X and a
binary outcome 𝑌 . (For simplicity we set Z = ∅ in these analyses.) For each
experiment, we sampled 10 datasets for every tested sample size (25, 50, 75,
100, 250, 500, 1000, 5000, 10000, and 25000). In each dataset, most alterations
are drawn randomly with probability 0.5 and independently of the outcome
𝑌 . In some datasets, we planted alterations with a causal relation to the
target 𝑌 ; such alterations constitute the rules of interest to assess ALLSTAR’s
performance. �eir relationships with 𝑌 are described in the related Section
below.

In the first experiment, we assessed the impact of correcting for mul-
tiple hypothesis testing on false positives. In this experiment we consid-
ered only random alterations in each sample, hence no causal rule (i.e.
any rule with a positive effect) with respect to the outcome was planted.
We considered three different estimates of the (reliable) effect: the ver-
sion based on the naı̈ve estimate of probabilities, the reliable approach pro-
posed in Budhathoki et al. [2021]5, and the one used by ALLSTAR (see Sec-
tion 4.2.3). For the last two estimates, the value 𝛼 = 0.05 was considered.
In particular, the naı̈ve approach estimates the effect 𝑒 (𝜎) as the difference
𝑝 (𝑌 = 𝑦 |𝜎 = ⊤) − 𝑝 (𝑌 = 𝑦 |𝜎 =⊥) (i.e., empirical probabilities estimated
from data and without any correction), while the reliable approach pro-
posed in Budhathoki et al. [2021] considers 𝑒𝑟𝑒𝑙 (𝜎) (i.e., adding confidence
bounds) but without correcting for multiple hypothesis testing, as it is done
instead in our approach (see Sections 4.2.2-4.2.3). Our findings show that
both the naı̈ve and reliable approach incorrectly return at least one rule

4In the two la�er cases, we computed the values taking into consideration the contin-
gency table associated to each rule as in Budhathoki et al. [2021].

5�e code available at the bitbucket repository does not run properly, therefore we im-
plemented our own, equivalent, version.
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with a positive effect for every dataset (i.e., corresponding to a FWER of 1),
while ALLSTAR is the only one correctly returning zero false positives. �ese
results show that the multiple hypothesis correction on ALLSTAR’s reliable
effect is a crucial component to avoid false discoveries.

4.4.3 Role of G
We then assess the effectiveness of using the interaction graphG in ALLSTAR
when identifying causal rules composed of multiple alterations by sampling
multiple datasets with a total of 22 alterations, of which 7 are part of a rule
causally related to the target 𝑌 and constitute a connected subgraph of G.
Figure 4.3 shows the results obtained passing G in input (do�ed line) and the
results obtained when no prior knowledge on gene interaction is considered
(dash-do�ed line), obtained by passing a fully connected graph in input to
ALLSTAR. In particular, we considered both the effect estimation of the im-
planted rule and the runtime, and we ran ALLSTAR for various values of the
maximum rule length ℓ . As expected, the estimate of the effect converges to
the true effect for all values of ℓ , and the estimate obtained using the inter-
action graph G is significantly be�er than the one when no prior knowledge
is considered. Moreover, the use of G drastically reduces the runtime (due
to a reduction in the number of candidate rules). For example, with 25000
samples and ℓ = 7, the runtime using G is of few seconds, while almost 3
minutes are required when no prior knowledge is considered. �is shows
that the interaction graph leads to significant improvements in terms of the
estimate of the true effect and of runtime.

4.4.4 Role of 𝑡

We then ran an experiment to assess the ability of ALLSTAR (i) to recover
planted rules that cover a wide spectrum of diverse functional processes,
a key feature given the high inter-tumor heterogeneity that characterizes
cancer, (ii) even when some admissible input structure assumptions (see Sec.
4.2.1) are not satisfied.

To empirically test the first hypothesis, we compare ALLSTAR with a
naı̈ve greedy selection of the top-k rules by effect, without considering any
cleanup threshold 𝑡 . Let us consider the scenario of Section 4.4.3 experi-
ment, in which we consider datasets with a rule 𝜎 implanted composed of
7 elements. By considering rules length ℓ ∈ {2, 3, 4, 5}, all the elements of
the implanted rule are returned by ALLSTAR by just se�ing 𝑘 = ⌈7

ℓ
⌉. In other

words, all elements of 𝜎 are in the top-4 rules returned by ALLSTAR for ℓ = 2,
in the top-3 for ℓ = 3, and in the top-2 for ℓ ∈ {4, 5}. A greedy algorithm
that ranks per effect all the rules of length ℓ and selects the top-𝑘 without
exploiting a cleanup threshold, however, was never able to discover all the
important genes in 𝜎 and always returned rules with repeated genes. Such
results are sound w.r.t. different dataset sizes (as we tested datasets with 100,
1000, and 10000 samples) and statistical noises (as we tested 10 datasets per
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(a)

(b)

Figure 4.3: Mean planted reliable rule effect (a) and mean runtimes (b) over
multiple dataset sizes on 10 runs. In each plot, the do�ed lines represent
ALLSTAR results passing a protein-protein interaction G in input, and dash-
do�ed lines represent the approach with a fully connected graph (i.e., no
prior knowledge).
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Figure 4.4: Data generative BN (a) and assumed graph (b) of last synthetic
experiment. In the second plot, clone variables (i.e. those which definition
depends on other variables) are shown with a dashed border, and variables
that output rules with a positive effect by ALLSTAR without cleaning proce-
dure are represented in grey.

sample size).

We then tested the second hypothesis by simulating datasets with 3
planted rules (of 5 genes in total) and 100 random alterations. For each al-
teration in a planted rule, we also planted a correlated alteration with 97.5%
of values identical to the planted alteration (see equations in Section 6.3 the
Appendix). �is allows us to assess whether ALLSTAR reports the correct
causal alterations and not the correlated (but non-causal) ones. We obtained
the top-3 rules running both a variant of ALLSTAR obtained without using
the Manha�an distance-based updating procedure (see function update(X,
𝜎max,𝑡) in Algorithm 7), and ALLSTAR with 𝑡 = 0.05. ALLSTAR reports the
planted rules and correctly disregards the rules comprising the correlated al-
terations. �e variant of ALLSTAR that does not use the Manha�an distance-
based updating procedure, instead, produces, among the top-3 rules, rules
containing the correlated alterations. In the la�er case, ALLSTAR variant re-
turning correlations instead of causal relations is a consequence of the fail-
ure of assumption 3 (see Section 4.2.1) for the admissible causal structure,
while the Manha�an distance-based updating procedure allowed us to re-
move the spuriously-linked variables and to report only causal relations. In
particular, the graph of the data generative BN was the one shown in Fig-
ure 4.4(a), while the one assumed by ALLSTAR was Figure 4.4(b). �e main
difference between the two BNs are the d-separations between 𝑋𝑖, 1 ≤ 𝑖 ≤ 5
and their clones 𝑋𝑖 (𝑐𝑙𝑜𝑛𝑒) . In particular, 𝑋𝑖 always blocks spurious correla-
tion paths (more on this and d-separation in Pearl [2009]) from 𝑋𝑖 (𝑐𝑙𝑜𝑛𝑒) in
Figure 4.4(a) but not in Figure 4.4(b), therefore if we (incorrectly) assume the
underlying graph to be as the la�er, in order to still have correct results we
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Figure 4.5: Average effect returned by ALLSTAR (solid lines) and theoretical
value (dashed lines) for the 3 implanted rules of Section 4.4.3. Results have
been averaged on datasets with 1000 samples, and the variability in each run
results is negligible.

should be able to have some other heuristic mechanism (the threshold-based
cleaning procedure) that removes the clones in order not to return them. Let
us also notice that another difference between Figure 4.4(a) and Figure 4.4(b)
relies on the links between the external variables (𝐸𝑖, 1 ≤ 𝑖 ≤ 100) and 𝑌 .
Such links imply some form of (possible) dependence whose strength is de-
fined by the probability distribution functions inferred by the observational
dataset. ALLSTAR however, is able to confidently ignore such spurious cor-
relations due to the use of the reliable effect estimator and its ability to deal
withmultiple hypotheses testing (more on that on�eorem 4.2 proof). Anal-
ysis of relaxation of the other assumptions (and the consequent development
of newmethods) is still an open research task, for which we point the reader
to the discussion on Budhathoki et al. [2021].

4.4.5 Stability Analysis

We experimentally assessed the stability of ALLSTAR results with respect to
the user-defined parameters ℓ and 𝑡 .

In the first experiment, we run ALLSTAR on the datasets of Section 4.4.3,
with ℓ taking values from 3 to 7, and 𝑡 = 0.05. Figure 4.5 shows the aver-
age effect returned by ALLSTAR (solid lines) for the three implanted rules by
varying ℓ , as well as their theoretical value (dashed lines). Results have been
averaged for all datasets of 1000 samples, and their variability across the runs
is negligible. As expected, the rule effect returned by ALLSTAR decreases as
the rule length increases because the number of hypotheses to test increases
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and therefore the Bonferroni correction becomes stricter. Moreover, despite
increasing ℓ allows ALLSTAR to evaluate more rules, our algorithm did not
return any false positive.

We then analyzed results variability w.r.t. changes of 𝑡 by run-
ning ALLSTAR on the same setup of Section 4.4.4, and se�ing 𝑡 to
0.01, 0.025, 0.05, 0.075, and 0.1. We finally set 𝑘 = 4 to assess the ability
of ALLSTAR to avoid returning duplicated rules. ALLSTAR returned duplicate
rules consistently among all the runs for 𝑡 = 0.01, among 6 of 10 runs for
𝑡 = 0.025, and did not return any duplicated rule for all the other values
of 𝑡 tested. �is is an expected behavior in this data generative scenario
since each rule differs from its clone on 2.5% of samples on average (see
Section 4.4.4).

4.4.6 Computational Performances

We finally compared the computational performances of ALLSTAR against a
brute-force algorithm that exploits G to select the candidate rules to study,
but calculates them all without exploiting the branch-and-bound. In this
experiment we created 10 synthetic datasets with 1000 samples from the
following distributions

𝑋1 ∼B(0.15)
𝐸𝑖 ∼B(0.1), 1 ≤ 𝑖 ≤ 600

𝑌 ∼𝑋1 ∨ B(0.05)

and we searched for the rule with the highest effect (𝑘 = 1) by se�ing the
target value𝑌 = 1. We run both algorithms on 60 cores of our cluster and we
tracked the runtimes without considering the time required to calculate the
Bonferroni correction (i.e. function calculateRulesNumber of ALLSTAR)
as our focus is to compare the performances of the two rule discovery ap-
proaches only6. Figure 4.6 compares the average runtimes in seconds of
both approaches (y axis is log-scaled) over increasing maximum rule lengths
ℓ . As expected, ALLSTAR is faster than the brute force approach due to the
speedup given by its branch-and-bound, and such difference increases with
the number of rules under study, therefore it increases monotonically with
ℓ . As a reference, the brute force algorithm is more than 3 times slower than
ALLSTAR when discovering rules se�ing ℓ = 4, and nearly 20 times slower
for ℓ = 5.

4.5 Rule Discovery on Breast Cancer Data

In this Section, we describe the discovery results on real-world breast can-
cer data. We start in Section 4.5.1 by introducing the datasets, and in Sec-

6We remind that such procedure would be a prerequisite for both algorithms, therefore
it would just add a bias term to both runtimes under analysis.

55



Figure 4.6: Average runtime comparison between ALLSTAR and a brute-force
algorithm on 10 synthetic datasets over different rule lengths ℓ . Y-axis is log-
arithmically scaled, and variability across runs with the same ℓ is negligible
(and therefore not plo�ed).

tion 4.5.2 we compare our method with other statistical methods. Sec-
tion 4.5.3 describes our results on real-wold data and validates their bio-
logical relevance. Finally, Section 4.5.4 provides an assessment of results
stability.

4.5.1 Cancer Data and Interaction Network

We tested ALLSTAR on publicly available breast cancer (BRCA) data from
TCGA. In particular, we downloaded public clinical and somatic mutational
data from the TCGA-BRCA repository, for a total of 1096 samples. We also
included the subtype classification of TCGA-BRCA based on the 50-gene
PAM50 model [Parker et al., 2009]. We also retrieved germline mutational
pa�erns for TCGA patients in BRCA1 and BRCA2 from Kraya et al. [2019].
We integrated two additional alteration types that play a significant role
in cancer: loss of heterozygosity (LOH) information from Riaz et al. [2017]
and reported by Bodily et al. [2020], and hypermethylation from Xena Func-
tional Genomics Explorer data [Goldman et al., 2015] and reported in Bodily
et al. [2020]. �e final datasets comprised a number of samples ranging from
898 to 935, depending on the target variable of interest. As an input graph
G for ALLSTAR we considered the most recent Functional Interaction [Wu
et al., 2010] gene network from Reactome7, which comprises almost 14,000
genes and more than 250,000 edges. Note that patients in our dataset are

7FIsInGene (version 2021), available at this link.
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Figure 4.7: Comparison of the rankings in terms of reliable effect (ALLSTAR
output, x-axis) and 𝑝-value (CMH test output, y-axis) for real-world data.
Each dot corresponds to one of the top-1000 rules ranked by reliable effect.

all affected by cancer, therefore every reported rule implicitly conditions on
such event.

4.5.2 Comparison with Statistical Methods

Initially, we emulated the analysis of Section 4.4.5 on real-world cancer data,
that presents an even larger difference between rankings than synthetic
data. For this test we selected the dataset presented in Section 4.5.1 with
the 300 most frequent somatic mutations, the 300 most frequent LOHs, and
the profiles of 22 frequently hypermethylated genes, as X, and the Triple-
Negative binary molecular classification, as target 𝑌 . We then ran both
ALLSTAR and a python implementation of the Cochran–Mantel–Haenszel
test (CMH), ranking reliable effects and 𝑝-values for rules built on every
combination of one confounder, two alterations and the outcome. �e scat-
ter plot describing the two rankings’ comparison for the first 1000 rules
sorted by reliable effect, is shown in Figure 4.7. It seems clear that a consider-
able amount of rules ranked among the top-1000 in the effect ranking, when
assessed using the correlation-based method CMH, are placed well beyond
the 100000th position. Additionally, the 𝑝-value rankings compressed to the
bo�om of the plot are actually all valued 1. CMH is not able to differentiate
all these rules, giving them a 𝑝-value of zero, which hints at their possible
significance, but fails at prioritizing the combinations of genes that may be
relevant to the Triple-Negative phenotype.

4.5.3 Rule Discovery on Breast Cancer Data

In this Section we provide more details on how we built the datasets, the pa-
rameters we used in our analyses with ALLSTAR, the results we obtained, and
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their biological relevance. We ran ALLSTAR on breast cancer data described
in Section 4.5.1, split into treatments X, confounders Z, and outcomes 𝑌 . In
each run, we considered a common set of confounders, while X and 𝑌 are
combined in different ways in each run to focus on certain cancer mecha-
nisms. In particular:

• We considered 7 confounder variables Z: gender, race, age at diagno-
sis, menopause status, history of another previous malignancy, and
the presence of a germline mutation in genes BRCA1 and BRCA2.

• We selected a total of 622 alterations, which include the 300 most fre-
quently somatically mutated genes, the 300 most frequent LOHs, and
22 frequently hypermethylated genes. We performed two types of
analyses: one where each alteration corresponds to a treatment (el-
ement of X), and one where we considered as treatments X the 300
most frequently altered genes by considering a gene mutated if any of
the 3 alterations above is present.

• As target 𝑌 , we considered three sub-typing classifications: an his-
tological categorization (Ductal, Lobular, and Other carcinoma), an
expanded molecular one, based on gene expression (Basal, HER2E,
Luminal-A, Luminal-B, and Normal-like), and a specific binary molec-
ular classification (Triple-Negative, or not).

We tested ALLSTAR under multiple se�ings on the differently combined
datasets: we set the maximum rule length ℓ from 2 to 4, 𝑘 = 3, and 𝑡 = 0.01.
Data requirements increase exponentially with the size of Z, and, therefore,
for each dataset we run ALLSTARmultiple times each time passing a different
subset of Z of cardinality at most 1. On each run, we set 𝛼 = 0.05/(|Z| + 1)
to bound the FWER of all the tests on the same dataset below 0.05. Finally,
we took into consideration both the presence and the absence of treatment.
Table 4.1 shows the best rules with no confounders, at the top, and when
conditioning on confounders, at the bo�om.

�e first three rules by effect include gene CDH1, which is a recurrently
mutated gene in breast cancer and whose impact has been recognized as
substantial [Pereira et al., 2016] in lobular histological subtype [McCart Reed
et al., 2021, Erber and Hartmann, 2020], consistent with rules 𝑎 and 𝑏; con-
sistently, rule 𝑐 states that the absence of an alteration in CDH1, given a
breast cancer diagnosis, increases the chances of developing a ductal sub-
type, antagonist to the lobular one. Moreover, the combination of mutated
CDH1 with unaltered ANK2 and SCN5A (rule 𝑏) provides an additional per-
spective on the mechanisms regulating the lobular subtype: ANK2 is typi-
cally downregulated in breast cancer, while SCN5A is upregulated in almost
every neoplastic process. However, SCN5A is known to mediate the epithe-
lial–mesenchymal transition (EMT), a biological trait underpinning cancer
aggressiveness: the absence of a mutation in this gene can be interpreted as
a normal state for EMT, aligned with the mild characteristics of the lobular
subtype [Gradek et al., 2019, Luo et al., 2020]. Additionally, the rule including
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ID Rule Effect

𝑎 CDH1𝑠𝑜𝑚 1→ Lobular 0.470

𝑏 CDH1𝑠𝑜𝑚 1 ∧ ANK2𝑠𝑜𝑚 0 ∧ SCN5A𝑠𝑜𝑚 0→ Lobular 0.430

𝑐 CDH1𝑠𝑜𝑚 0→ Ductal Carcinoma 0.401

𝑑 ITGB3𝑎𝑙𝑡 1 ∧ RHOA𝑎𝑙𝑡 1 ∧MAP3K1𝑎𝑙𝑡 1→ Basal 0.342

𝑒 TP53𝑠𝑜𝑚 1 ∧ ATRIP𝑙𝑜ℎ 1 ∧ ERBB2𝑙𝑜ℎ 1→ Basal 0.300

𝑓 ITGB3𝑎𝑙𝑡 1 ∧MAP3K1𝑎𝑙𝑡 1→ Basal 0.297

𝑔 TP53𝑠𝑜𝑚 0→ Luminal-A 0.289

ℎ RB1𝑙𝑜ℎ 1 ∧ PHB𝑙𝑜ℎ 1 ∧ LIMD1𝑙𝑜ℎ 1→ Basal 0.271

𝑖 TP53𝑠𝑜𝑚 0 ∧ BRCA1𝑚𝑒𝑡ℎ 0→ Luminal-A 0.268

𝑗 ERBB2𝑎𝑙𝑡 1 ∧MST1𝑎𝑙𝑡 1→ Basal 0.245

𝑘 MST1𝑙𝑜ℎ 1 ∧ ERBB2𝑙𝑜ℎ 1→ Basal 0.243

𝑙 RB1𝑙𝑜ℎ 1 ∧ PHB𝑙𝑜ℎ 1→ Basal 0.242

𝑚 STAT3𝑎𝑙𝑡 1 ∧ ERBB2𝑎𝑙𝑡 1 ∧WNT5A𝑎𝑙𝑡 1→ Basal 0.241

𝑛 TP53𝑎𝑙𝑡 1 ∧ RB1𝑎𝑙𝑡 1 ∧ NGFR𝑎𝑙𝑡 1→ Basal 0.241

𝑜 PIK3CA𝑠𝑜𝑚 0 ∧ RHOA𝑙𝑜ℎ 1 ∧ NGFR𝑙𝑜ℎ 1→ Basal 0.240

𝑝 TP53𝑠𝑜𝑚 1 ∧ NME1𝑙𝑜ℎ 1→ Basal 0.230

𝑞 TP53𝑙𝑜ℎ 1 ∧ PRKCD𝑙𝑜ℎ 1 ∧ NME1𝑙𝑜ℎ 1→ Basal 0.226

𝑟 PDX1𝑎𝑙𝑡 1 ∧ SPOP𝑎𝑙𝑡 1→ Basal 0.203

𝑠 TP53𝑠𝑜𝑚 1 ∧ ERBB2𝑙𝑜ℎ 1 ∧ PRKCD𝑙𝑜ℎ 1→ TripleN 0.195

𝑡 ITGB3𝑎𝑙𝑡 1 ∧ RHOA𝑎𝑙𝑡 1 ∧MAP3K1𝑎𝑙𝑡 1→ TripleN 0.184

𝑢 TP53𝑠𝑜𝑚 0 ∧ BRCA2𝑠𝑜𝑚 0→ Luminal-A | gender 0.243

𝑣 CDH1𝑠𝑜𝑚 1 ∧ AKT1𝑠𝑜𝑚 0→ Lobular | age at diagnosis 0.229

𝑤 ERBB2𝑎𝑙𝑡 1 ∧ RHOA𝑎𝑙𝑡 1→ Basal | BRCA2𝑔𝑒𝑟𝑚 0.202

𝑥 TP53𝑠𝑜𝑚 0 ∧ BRCA2𝑠𝑜𝑚 0 ∧ BRCA1𝑚𝑒𝑡ℎ 0 → Luminal-A |
gender

0.197

𝑦 TP53𝑠𝑜𝑚 0 ∧ RB1𝑠𝑜𝑚 0 ∧ BRCA1𝑚𝑒𝑡ℎ 0 → Luminal-A |
BRCA2𝑔𝑒𝑟𝑚

0.191

𝑧 TP53𝑠𝑜𝑚 1 ∧ ERBB2𝑙𝑜ℎ 1→ Basal | history other malignancy 0.175

Table 4.1: Best rules, with (bo�om) and without (top) confounder’s con-
ditioning, ordered by descending effect. Rules’ description is as follows:
GENE1𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒 [0,1] ∧ GENE2𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡𝑦𝑝𝑒 [0,1]∧ . . . → Target sub-
type | Confounder.

the absence of mutation in AKT1 in lobular carcinoma (rule 𝑣) is coherent,
since this gene is strongly associated with ductal differentiation [Hinz and
Jücker, 2019]. As a plus, this rule is strengthened by the conditioning on the
confounder ”age at diagnosis”, which removes spurious correlations.

When considering a gene altered in the presence of either a somatic,
LOH or hypermethylation, strong effects are linked to the molecular basal-
like subtype. ALLSTAR reports the combination of aberrations occurring in
ITGB3 and MAP3K (rule 𝑓 ) as strongly causal of the aforementioned sub-
type, in agreement with literature: Fuentes et al. [2020] and Li et al. [2022]
converge on this conclusion due to their cancer-promoting activity and in-
clusion in the metastatic process. ITGB3 and MAP3K have recently gained
a�ention relatively to basal-like breast cancer, but their combination is yet
to be investigated. Even more interesting is the extension of this causal rule
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with the alteration of RHOA (rule 𝑑): the higher score of this expanded rule
in association with basal-like subtype can be explained by the association
of the outcome with precocious metastasization in accordance to RHOA’s
anti-metastatic function [Kalpana et al., 2021].

Even more specific mechanisms are retrieved by considering the decom-
posed treatments. Besides the strong positive effect of mutated TP53, which
is well ascertained in non-luminal breast cancer [Abubakar et al., 2019],
even more relevant is the causal effect increase in combination with the
LOH event in ATRIP (rule 𝑒). When stable, this gene is responsible for anti-
proliferative signal mediation [Venere et al., 2007], but its impairment’s ef-
fect is not well established in the literature. �e interaction with mutated
TP53 is interesting but it needs further investigation.

Another combination strongly rooted in literature is LOH in RB1 and
PHB (rule 𝑙 ), as explained by Wang et al. [1999]: RB1 is an important tu-
mour suppressor gene [Herschkowitz et al., 2008], while PHBmediates anti-
proliferation signalling [Jupe et al., 1996, Sato et al., 1992], therefore their
combined action, if altered, is easily explainable in basal-like tumours. �e
addition of LOH in LIMD1 (rule ℎ) is less established in breast cancer, being
more associated with lung carcinoma, but its oncosuppressive role, and the
correlation between LOH andmitosis, make it a potential key player in basal
subtype [Huggins and Andrulis, 2008].

HER2-positive, basal-like, and triple-negative breast cancer are consis-
tently determined by aberrations occurring in MST1 [Jin et al., 2021]. Our
findings (rules 𝑗, 𝑘) coherently overlap this knowledge, extending it by pair-
ing MST1 and ERBB2 within the same positively-scored rule. ERBB2 is a
member of the epidermal growth factor (EGF) receptor family and its overex-
pression in 20-30% of invasive breast carcinomas leads to increased chemore-
sistance to certain chemotherapeutic agents [Tan and Yu, 2007]. Its muta-
tional impact is undefined in literature, as only ERBB2’s expression abnor-
malities have been encountered in breast malignancies, especially in triple-
negative/basal-like. Our result in this particular case is partially coherent
but can enable further studies into the MST1-ERBB2 interaction in terms
of mammalian carcinoma profiling. Conversely, the joint action between
ERBB2, STAT3, and WNT5A (rule𝑚) is more explainable. STAT3 has a piv-
otal role in the initiation, progression, metastasis, and immune evasion of
triple-negative breast cancer [Qin et al., 2019], while WNT5A reduces the
clonogenicity, invasiveness, migration, and proliferation of carcinoma cells,
and it is also considered a therapeutic target [Kobayashi et al., 2018]. �e
rule that ALLSTAR returned is not specific, as it emerged from the aggre-
gated dataset, but it suggests a strong mutational involvement of these three
genes in basal breast cancer. �is being said, ERBB2 is recalled in rule𝑤 with
RHOA: both genes offer potential reasons to be partnering in the determina-
tion of Basal subtype, but there is no clinical evidence of their combination,
let alone an involvement of BRCA2 germline mutation as a confounder to
condition over. �is rule is a clear example of potential relations that need
to be evaluated in future studies. It is not a surprise that various rules with
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a high conditional effect, which is one of the main contributions of choos-
ing a causal approach, are related to one of the most debated genes, ERBB2,
suggesting its direct involvement in breast cancer carcinogenesis (see also
rule 𝑧 in combination with TP53).

An additional point favourable to our methodology consists in the rules
we have not found: long genes, such as TTN, HMCN1, or DMD, usually
harbor several mutations simply due to their size. ALLSTAR seems robust to
this drawback, even if those genes are in the top-20 of the most somatically
mutated ones in TCGA data. As a term of comparison, Saravia et al. [2019]
perform a chi-square test to detect meaningful mutations in triple-negative
breast cancer, identifying TTN, HMCN1, and DMD, among others, as statis-
tically significant players in recurrent pa�erns of genomic alterations with
a potential contribution to tumour evolution. �e authors themselves ac-
knowledge the possibility their findings may be false positives and our re-
sults support this hypothesis.

As a further functional evaluation, we considered, for each analysis, the
set of genes obtained by merging the alterations reported in any of the rules
from ALLSTAR, and performed pathway enrichment analysis with DAVID
[Huang et al., 2009] to find statistically overrepresented biological functions
(encoded in KEGG database, Kanehisa and Goto [2000]) in each of these sets
of genes. We selected 0.05 as the significance cut-off for pathways’ 𝑝-value.
We then counted the occurrence of each pathway, when significantly en-
riched, over all the results of the analyses we ran. �e most represented
pathway, occurring in 65% of the sets, is neurotrophin signaling pathway,
whose relevance as a potential therapeutic target for breast cancer has been
previously ascertained in preclinical studies [Hondermarck, 2012]. Inter-
estingly, the breast cancer pathway (KEGG: hsa05224) occupies one of the
top spots with a 57% of occurrence, alongside other known relevant path-
ways such as Rap1 and PI3K-Akt signaling [Zhang et al., 2017]. Additionally,
the fluid shear stress and atherosclerosis (KEGG: hsa05418) scored an occur-
rence of 60%: the impact of this process in breast cancer, and in oncogenesis
in general, is still unclear. However, this result seems to endorse some pre-
liminary findings: according to Choi et al. [2019], in addition to promoting
hematopoietic growth, biomechanical forces seem to be significant microen-
vironmental variables in the generation of cancer stem-like cells (CSLCs) or
tumour-initiating cells (TICs) in cancer metastasis.

4.5.4 Results Stability

Lastly, we evaluated the stability of our discoveries by using a high confi-
dence subnetwork of Reactome’s Protein-Protein Interaction (PPI) (see Sec-
tion 4.5.1), as input knowledge. Conveniently, the original PPI from Reac-
tome is featured with a score (𝑠 ∈ [0, 1]) for each pair of genes, represent-
ing the confidence of their edge in the interaction network. To build the
experiment, we removed every pair with a score lower than 1, thus keep-
ing only high confidence links, and run ALLSTAR with the same data inputs
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and parameters as described in Section 4.5.3, with the exception of the PPI.
We then compared the results obtained running our algorithm with the two
PPIs. Keeping Table 4.1 as reference, a total of 7 rules out of 26 (27% of the
reference), and specifically, rules 𝑏, ℎ, 𝑙 ,𝑚, 𝑟 , 𝑢, and 𝑣 , were not retrieved in
this analysis. �ese results show that most of the rules found by ALLSTAR

including lower confidence interactions, are still reported using only high-
confidence interactions. Moreover, the excluded rules 𝑟 and 𝑢 were not ex-
tensively characterized by our oncologist due to lack of literature support.
Conversely, rules𝑏, ℎ, 𝑙 ,𝑚, and 𝑣 were labelled as potentially novel discover-
ies: as motivated in Section 4.5.3, these rules refer to proteins whose impact
on breast cancer is debated. Even if their role in breast cancer physiology is
not specifically supported by sufficient literature, the underlying biological
mechanisms are explainable, either because of their genetic properties and
functionalities, or the existence of an analogous biological process in other
cancer types. Overall, these results show that ALLSTAR can focus on well-
characterized mechanisms by including only high-confidence interactions,
but also that ALLSTAR can be used in to pinpoint potential novel discoveries
by including lower-confidence interactions.

4.6 Conclusions

We introduced ALLSTAR, a novel tool to identify causal relations between so-
matic alterations and cancer phenotypes from mutational data measured in
large cohorts of cancer patients, in contrast to previous approaches focus-
ing on correlations. Our tool reports rules defined on several interactions
and integrates prior information in the form of a graph to focus on func-
tionally related alterations. It also uses an iterative procedure to identify
diverse rules to tackle inter-tumour heterogeneity. Our extensive experi-
mental evaluation shows that ALLSTAR is an efficient and effective tool and
that it identifies well-supported causal relations from cancer data.
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Chapter 5

Conclusions

Within this Section, we provide an overview of the contributions made in
this�esis, highlighting for each one possible uses, extensions, and research
directions.

In Chapter 3 we studied the problem of local causal discovery with sta-
tistical guarantees on the returned output. In particular, we focused on con-
trolling the Family-Wise Error Rate, that is the probability of returning at
least one false positive in output, as it is a relevant measure that received
scant a�ention in the causal discovery community. Initially, we proved that
state-of-the-art algorithms cannot be adapted for such task due to unfea-
sible and untestable assumptions on the power of the independence tests
used in the discovery processes. We then introduced two novel algorithms
with provable guarantees, RAveL-PC and RAveL-MB, for the discovery of the
Parent-Children set and the Markov boundary, respectively. Our algorithms
rely on Rademacher averages to provide such guarantees on their outputs,
which is a novelty in the causal discovery field. Additionally, we introduced
two new test statistics for the task. We then evaluated the performances of
our algorithms on synthetic datasets, empirically showing the correctness
of our claims and comparing our algorithmswith twomodified versions that
exploit the Bonferroni correction for multiple hypotheses testing. Our anal-
ysis shown how these la�er versions are to be preferred in scenarios with
few samples and few variables, while it is preferable to use the standard
versions when dealing with high-dimensional problems and lot of samples.
Lastly, we ran our algorithms on two real-world datasets obtaining results
that are sound with scientific literature and prior knowledge.

RAveL algorithms can be exploited in dataset exploration phases in
which false discoveries have a significant impact. One such example is
clinical trials design, given that a false discovery in this field might lead
to the development of useless or even harmful drugs. Our algorithms rely
on Rademacher averages which may provide speed-ups in the causal dis-
covery when the test statistic distribution is unknown, as typical solutions
to overcome this issue rely on permutation testing which is a computation-
ally intensive task. We therefore advise the use of RAveL algorithms in such
contexts. Finally, other interesting research directions include exploiting
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RAveL for the global causal discovery task with guarantees, as they rely on
local causal discovery functions as primitives to perform the whole network
inference.

In Chapter 4 we then studied the effect estimation problem with guar-
antees on the Family-Wise Error Rate on the returned output, as estimating
multiple probabilities from datasets may result in false positives due to finite
sample issues and the underlying multiple hypotheses problem. In our work
we used the syntax of causal rules to represent combination of treatments
taking specific values and influencing a target variable, and for each rule we
assigned a score that is the average treatment effect that the specific com-
bination of assignments exerts on the target w.r.t. any other combination.
Firstly, we proved that the underlying problem of mining the rule with the
highest effect is NP-hard even if the probability distributions are known. We
then developed ALLSTAR, a branch-and-bound algorithm to discover the top-
𝑘 causal rules with the highest effect by controlling the Family-Wise Error
Rate of the rules returned in output. �e algorithm takes in input a graph
G that encodes the set of feasible rules to study, as we may want to use our
prior knowledge to exclude certain combinations of treatments from the dis-
covery. ALLSTAR also accepts in input a parameter ℓ used to study only rules
composed of up to ℓ treatments, and another 𝑡 that controls the diversity
of the rules returned in output. All these input parameters make ALLSTAR
a flexible tool for exploratory data analysis in multiple scenarios, especially
biological ones. We evaluated the performances of our algorithm on syn-
thetic datasets, and we show its ability to retrieve results that are different
w.r.t. statistical (but not causal) methods commonly used in the biological
field. We confirmed such discovery with experiments on real-world breast
cancer data, where classical methods are not able to differentiate treatment
effects as effectively as ALLSTAR. Lastly, we compared the discovery results
with breast cancer literature, assessing ALLSTAR ability to retrieve both well-
supported results and novel biologically sound rules.

Our algorithm can be exploited in multiple scenarios for which we want
to assess the causal impact of multiple treatments on a specific target vari-
able, not only on breast cancer data. Additionally, while ALLSTAR reports
in output rules that are conjunctions of boolean propositions (i.e. treatment
taking specific values), it would be interesting to design an algorithm that is
able to report also disjunctions of propositions. Alternatively, future research
may focus on improving ALLSTAR performances. In particular, our tool ex-
ploits the Bonferroni correction to properly control the Family-Wise Error
Rate, which may be overly conservative in scenarios with lot of hypotheses
(i.e. rules). An alternative approach for providing the same guarantees may
exploit Rademacher averages, as described in Chapter 3. Lastly, ALLSTAR re-
turns significant results only when analysing just a few confounders, as data
requirements increase exponentially with the number of confounders un-
der study. An interesting research direction is to study suitable techniques
to tackle such issue, possibly by exploiting clustering techniques or by en-
coding confounders information in a lower dimensional space, in a similar
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fashion of autoencoders or other dimensionality reduction algorithms.
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Chapter 6

Appendix

6.1 Variables in Boston housing dataset

Variables description follows from the paper describing the dataset Harri-
son Jr and Rubinfeld [1978].

Variable name Explanation

CRIM Per capita crime rate by town
ZN Proportion of residential land zoned for lots over 25,000 sq.�.

INDUS Proportion of non-retail business acres per town.
CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX Nitric oxides concentration (parts per 10 million)
RM Average number of rooms per dwelling
AGE Proportion of owner-occupied units built prior to 1940
DIS Weighted distances to five Boston employment centres
RAD Index of accessibility to radial highways
TAX Full-value property-tax rate per $10,000

PTRATIO Pupil-teacher ratio by town
B 1000(𝐵𝑘 − 0.63)2 where 𝐵𝑘 is the proportion of blacks by town

LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $1000’s

6.2 Framingham dataset

Dataset and variable description are taken from
https://www.kaggle.com/datasets/dileep070/

heart-disease-prediction-using-logistic-regression. Vari-
ables “CurrentSmoker”, “PrevalentStroke”, “PrevalentHyp”, and “Diabetes”
were removed in the data preprocessing phase.
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Variable name Explanation

Age Age of the patient (Continuous - Although the recorded ages have been truncated
to whole numbers, the concept of age is continuous)

Current Smoker Whether or not the patient is a current smoker (Nominal)
Cigs Per Day �e number of cigare�es that the person smoked on average in one day. (can be

considered continuous as one can have any number of cigare�es, even half a cigare�e.)
BP Meds Whether or not the patient was on blood pressure medication (Nominal)

Prevalent Stroke Whether or not the patient had previously had a stroke (Nominal)
Prevalent Hyp Whether or not the patient was hypertensive (Nominal)

Diabetes Whether or not the patient had diabetes (Nominal)
Tot Chol Total cholesterol level (Continuous)
Sys BP Systolic blood pressure (Continuous)
Dia BP Siastolic blood pressure (Continuous)
BMI Body Mass Index (Continuous)

Heart Rate Heart rate (Continuous - In medical research, variables such as heart rate though in fact
discrete, yet are considered continuous because of large number of possible values.)

Glucose Glucose level (Continuous)
10 year risk of coronary Binary: “1”, means “Yes”, “0” means “No”

heart disease CHD

6.3 Equations of Section 4.4.4’s Experiment

�e equations for sampling data from the graph of Figure 4.4(a) follows:

𝑋1 ∼B(0.5)
𝑋2 ∼B(0.4)
𝑋3 ∼B(0.7)
𝑋4 ∼B(0.65)
𝑋5 ∼B(0.15)

𝑋𝑖 (𝑐𝑙𝑜𝑛𝑒) ∼𝑋𝑖 ⊕ B(0.025)
𝐸𝑖 ∼B(0.5)
𝑌 ∼(𝑋1 ∧ 𝑋2) ∨ (𝑋3 ∧ 𝑋4) ∨ 𝑋5
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